@article{WilbertGuckenbergerPolatetal.2010, author = {Wilbert, Juergen and Guckenberger, Matthias and Polat, Buelent and Sauer, Otto and Vogele, Michael and Flentje, Michael and Sweeney, Reinhart A.}, title = {Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68613}, year = {2010}, abstract = {Background: To introduce a novel method of patient positioning for high precision intracranial radiotherapy. Methods: An infrared(IR)-array, reproducibly attached to the patient via a vacuum-mouthpiece(vMP) and connected to the table via a 6 degree-of-freedom(DoF) mechanical arm serves as positioning and fixation system. After IR-based manual prepositioning to rough treatment position and fixation of the mechanical arm, a cone-beam CT(CBCT) is performed. A robotic 6 DoF treatment couch (HexaPOD™) then automatically corrects all remaining translations and rotations. This absolute position of infrared markers at the first fraction acts as reference for the following fractions where patients are manually prepositioned to within ± 2 mm and ± 2° of this IR reference position prior to final HexaPOD-based correction; consequently CBCT imaging is only required once at the first treatment fraction. The preclinical feasibility and attainable repositioning accuracy of this method was evaluated on a phantom and human volunteers as was the clinical efficacy on 7 pilot study patients. Results: Phantom and volunteer manual IR-based prepositioning to within ± 2 mm and ± 2° in 6DoF was possible within a mean(± SD) of 90 ± 31 and 56 ± 22 seconds respectively. Mean phantom translational and rotational precision after 6 DoF corrections by the HexaPOD was 0.2 ± 0.2 mm and 0.7 ± 0.8° respectively. For the actual patient collective, the mean 3D vector for inter-treatment repositioning accuracy (n = 102) was 1.6 ± 0.8 mm while intra-fraction movement (n = 110) was 0.6 ± 0.4 mm. Conclusions: This novel semi-automatic 6DoF IR-based system has been shown to compare favourably with existing non-invasive intracranial repeat fixation systems with respect to handling, reproducibility and, more importantly, intrafraction rigidity. Some advantages are full cranial positioning flexibility for single and fractionated IGRT treatments and possibly increased patient comfort.}, subject = {Strahlentherapie}, language = {en} } @article{vanOorschotBeckmannSchulzeetal.2011, author = {van Oorschot, Birgitt and Beckmann, Gabriele and Schulze, Wolfgang and Rades, Dirk and Feyer, Petra}, title = {Radiotherapeutic options for symptom control in breast cancer}, series = {Breast Care}, volume = {6}, journal = {Breast Care}, number = {1}, issn = {1661-3791}, doi = {10.1159/000324564}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199105}, pages = {14-19}, year = {2011}, abstract = {The majority of breast cancer patients will require radiation therapy at some time during the course of their disease. An estimated 30-50\% of all radiation treatments are of palliative nature, either to alleviate symptoms or prophylactic to prevent deterioration of quality of life due to locally progressive disease. Radiotherapy is a locally effective tool, and typically causes no systemic and mostly mild acute side effects. The following article provides an overview of options and decision-making in palliative radiotherapy for symptom control.}, language = {en} } @article{SaidPolatSteinetal.2012, author = {Said, Harun M. and Polat, Buelent and Stein, Susanne and Guckenberger, Mathias and Hagemann, Carsten and Staab, Adrian and Katzer, Astrid and Anacker, Jelena and Flentje, Michael and Vordermark, Dirk}, title = {Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells}, series = {World Journal of Clinical Oncology}, volume = {3}, journal = {World Journal of Clinical Oncology}, number = {7}, doi = {10.5306/wjco.v3.i7.104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123385}, pages = {104-110}, year = {2012}, abstract = {AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 x 10(7) cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5'-GCATTATTGGCATGGGAAC-3' and 5'-ATGCAGAGTAACGTGGAAG-3'. reverse transcription polymerase chain reaction was performed using primers designed using published information on -actin and hypoxia-inducible factor (HIF)-1 mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays.}, language = {en} } @phdthesis{Buckel2012, author = {Buckel, Lisa}, title = {Evaluating the combination of oncolytic vaccinia virus and ionizing radiation in therapy of preclinical glioma models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85309}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Glioblastoma multiforme (GBM) represents the most aggressive form of malignant brain tumors and remains a therapeutically challenge. Intense research in the field has lead to the testing of oncolytic viruses to improve tumor control. Currently, a variety of different oncolytic viruses are being evaluated for their ability to be used in anti-cancer therapy and a few have entered clinical trials. Vaccinia virus, is one of the viruses being studied. GLV-1h68, an oncolytic vaccinia virus engineered by Genelux Corporation, was constructed by insertion of three gene cassettes, RUC-GFP fusion, β-galactosidase and β- glucuronidase into the genome of the LIVP strain. Since focal tumor radiotherapy is a mainstay for cancer treatment, including glioma therapy, it is of clinical relevance to assess how systemically administered oncolytic vaccinia virus could be combined with targeted ionizing radiation for therapeutic gain. In this work we show how focal ionizing radiation (IR) can be combined with multiple systemically delivered oncolytic vaccinia virus strains in murine models of human U-87 glioma. After initial experiments which confirmed that ionizing radiation does not damage viral DNA or alter viral tropism, animal studies were carried out to analyze the interaction of vaccinia virus and ionizing radiation in the in vivo setting. We found that irradiation of the tumor target, prior to systemic administration of oncolytic vaccinia virus GLV-1h68, increased viral replication within the U-87 xenografts as measured by viral reporter gene expression and viral titers. Importantly, while GLV-1h68 alone had minimal effect on U-87 tumor growth delay, IR enhanced GLV-1h68 replication, which translated to increased tumor growth delay and mouse survival in subcutaneous and orthotopic U-87 glioma murine models compared to monotherapy with IR or GLV-1h68. The ability of IR to enhance vaccinia replication was not restricted to the multi-mutated GLV-1h68, but was also seen with the less attenuated oncolytic vaccinia, LIVP 1.1.1. We have demonstrated that in animals treated with combination of ionizing radiation and LIVP 1.1.1 a strong pro-inflammatory tissue response was induced. When IR was given in a more clinically relevant fractionated scheme, we found oncolytic vaccinia virus replication also increased. This indicates that vaccinia virus could be incorporated into either larger hypo-fraction or more conventionally fractionated radiotherapy schemes. The ability of focal IR to mediate selective replication of systemically injected oncolytic vaccinia was demonstrated in a bilateral glioma model. In mice with bilateral U-87 tumors in both hindlimbs, systemically administered oncolytic vaccinia replicated preferentially in the focally irradiated tumor compared to the shielded non- irradiated tumor in the same mouse We demonstrated that tumor control could be further improved when fractionated focal ionizing radiation was combined with a vaccinia virus caring an anti-angiogenic payload targeting vascular endothelial growth factor (VEGF). Our studies showed that following ionizing radiation expression of VEGF is upregulated in U-87 glioma cells in culture. We further showed a concentration dependent increase in radioresistance of human endothelial cells in presence of VEGF. Interestingly, we found effects of vascular endothelial growth factor on endothelial cells were reversible by adding purified GLAF-1 to the cells. GLAF-1 is a single- chain antibody targeting human and murine VEGF and is expressed by oncolytic vaccinia virus GLV-109. In U-87 glioma xenograft murine models the combination of fractionated ionizing radiation with GLV-1h164, a vaccinia virus also targeting VEGF, resulted in the best volumetric tumor response and a drastic decrease in vascular endothelial growth factor. Histological analysis of embedded tumor sections 14 days after viral administration confirmed that blocking VEGF translated into a decrease in vessel number to 30\% of vessel number found in control tumors in animals treated with GLV-164 and fractionated IR which was lower than for all other treatment groups. Our experiments with GLV-1h164 and fractionated radiotherapy have shown that in addition to ionizing radiation and viral induced tumor cell destruction we were able to effectively target the tumor vasculature. This was achieved by enhanced viral replication translating in increased levels of GLAF-2 disrupting tumor vessels as well as the radiosensitization of tumor vasculature to IR by blocking VEGF. Our preclinical results have important clinical implications of how focal radiotherapy can be combined with systemic oncolytic viral administration for highly aggressive, locally advanced tumors with the potential, by using a vaccinia virus targeting human vascular endothelial growth factor, to further increase tumor radiation sensitivity by engaging the vascular component in addition to cancer cells.}, subject = {Gliom}, language = {en} } @phdthesis{Herrmann2013, author = {Herrmann, Christian}, title = {Robotic Motion Compensation for Applications in Radiation Oncology}, isbn = {978-3-923959-88-4}, doi = {10.25972/OPUS-6727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79045}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Aufgrund vieler Verbesserungen der Behandlungsmethoden im Laufe der letzten 60 Jahre, erlaubt die Strahlentherapie heutzutage pr{\"a}zise Behandlungen von statischen Tumoren. Jedoch birgt die Bestrahlung von sich bewegenden Tumoren noch große Herausforderungen in sich, da bewegliche Tumore oft den Behandlungsstrahl verlassen. Dabei reduziert sich die Strahlendosis im Tumor w{\"a}hrend sich diese im umliegenden gesunden Gewebe erh{\"o}ht. Diese Forschungsarbeit zielt darauf ab, die Grenzen der Strahlentherapie zu erweitern, um pr{\"a}zise Behandlungen von beweglichen Tumoren zu erm{\"o}glichen. Der Fokus der Arbeit liegt auf der Erstellung eines Echtzeitsystems zur aktiven Kompensation von Tumorbewegungen durch robotergest{\"u}tzte Methoden. W{\"a}hrend Behandlungen befinden sich Patienten auf einer Patientenliege, mit der statische Lagerungsfehler vor Beginn einer Behandlung korrigiert werden. Die in dieser Arbeit verwendete Patientenliege "HexaPOD" ist ein paralleler Manipulator mit sechs Freiheitsgraden, der große Lasten innerhalb eines eingeschr{\"a}nkten Arbeitsbereichs pr{\"a}zise positionieren kann. Obwohl der HexaPOD urspr{\"u}nglich nicht f{\"u}r dynamische Anwendungen konzipiert wurde, wird dieser f{\"u}r eine dauerhafte Bewegungskompensation eingesetzt, in dem Patienten so bewegt werden, dass Tumore pr{\"a}zise im Zentralstrahl w{\"a}hrend der Dauer einer gesamten Behandlung verbleiben. Um ein echtzeitf{\"a}higes Kompensationssystem auf Basis des HexaPODs zu realisieren, muss eine Reihe an Herausforderungen bew{\"a}ltigt werden. Echtzeitaspekte werden einerseits durch die Verwendung eines harten Echtzeitbetriebssystems abgedeckt, andererseits durch die Messung und Sch{\"a}tzung von Latenzzeiten aller physikalischen Gr{\"o}ßen im System, z.B. Messungen der Tumor- und Atemposition. Neben der konsistenten und durchg{\"a}ngigen Ber{\"u}cksichtigung von akkuraten Zeitinformation, werden alle software-induzierten Latenzen adaptiv ausgeglichen. Dies erfordert Vorhersagen der Tumorposition in die nahe Zukunft. Zahlreiche Pr{\"a}diktoren zur Atem- und Tumorpositionsvorhersage werden vorgeschlagen und anhand verschiedenster Metriken evaluiert. Erweiterungen der Pr{\"a}diktionsalgorithmen werden eingef{\"u}hrt, die sowohl Atem- als auch Tumorpositionsinformationen fusionieren, um Vorhersagen ohne explizites Korrelationsmodell zu erm{\"o}glichen. Die Vorhersagen bestimmen den zuk{\"u}nftigen Bewegungspfad des HexaPODs, um Tumorbewegungen zu kompensieren. Dazu werden verschiedene Regler entwickelt, die eine Trajektorienverfolgung mit dem HexaPOD erm{\"o}glichen. Auf der Basis von linearer und nicht-linearer dynamischer Modellierung des HexaPODs mit Methoden der Systemidentifikation, wird zun{\"a}chst ein modellpr{\"a}diktiver Regler entwickelt. Ein zweiter Regler wird auf Basis einer Annahme {\"u}ber das Arbeitsprinzip des internen Reglers im HexaPOD entworfen. Schließlich wird ein dritter Regler vorgeschlagen, der beide vorhergehenden Regler miteinander kombiniert. F{\"u}r jeden dieser Regler werden vergleichende Ergebnisse aus Experimenten mit realer Hardware und menschlichen Versuchspersonen pr{\"a}sentiert und diskutiert. Dar{\"u}ber hinaus wird die geeignete Wahl von freien Parametern in den Reglern vorgestellt. Neben einer pr{\"a}zisen Verfolgung der Referenztrajektorie spielt der Patientenkomfort eine entscheidende Rolle f{\"u}r die Akzeptanz des Systems. Es wird gezeigt, dass die Regler glatte Trajektorien realisieren k{\"o}nnen, um zu garantieren, dass sich Patienten wohl f{\"u}hlen w{\"a}hrend ihre Tumorbewegung mit Genauigkeiten im Submillimeterbereich ausgeglichen wird. Gesamtfehler werden im Kompensationssystem analysiert, in dem diese zu Trajektorienverfolgungsfehlern und Pr{\"a}diktionsfehlern in Beziehung gesetzt werden. Durch Ausnutzung von Eigenschaften verschiedener Pr{\"a}diktoren wird gezeigt, dass die Startzeit des Systems bis die Verfolgung der Referenztrajektorie erreicht ist, wenige Sekunden betr{\"a}gt. Dies gilt insbesondere f{\"u}r den Fall eines initial ruhenden HexaPODs und ohne Vorwissen {\"u}ber Tumorbewegungen. Dies zeigt die Eignung des Systems f{\"u}r die sehr kurz fraktionierten Behandlungen von Lungentumoren. Das Tumorkompensationssystem wurde ausschließlich auf Basis von klinischer Standard-Hardware entwickelt, die in vielen Behandlungsr{\"a}umen zu finden ist. Durch ein einfaches und flexibles Design k{\"o}nnen Behandlungsr{\"a}ume in kosteneffizienter Weise um M{\"o}glichkeiten der Bewegungskompensation erg{\"a}nzt werden. Dar{\"u}ber hinaus werden aktuelle Behandlungsmethoden wie intensit{\"a}tsmodulierte Strahlentherapie oder Volumetric Modulated Arc Therapy in keiner Weise eingeschr{\"a}nkt. Aufgrund der Unterst{\"u}tzung verschiedener Kompensationsmodi kann das System auf alle beweglichen Tumore angewendet werden, unabh{\"a}ngig davon ob die Bewegungen vorhersagbar (Lungentumore) oder nicht vorhersagbar (Prostatatumore) sind. Durch Integration von geeigneten Methoden zur Tumorpositionsbestimmung kann das System auf einfache Weise zur Kompensation von anderen Tumoren erweitert werden.}, subject = {Robotik}, language = {en} }