@phdthesis{Kuzkina2020, author = {Kuzkina, Anastasia}, title = {Dermal α-synuclein oligomers and aggregates in Parkinson's disease}, doi = {10.25972/OPUS-20436}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Lewy bodies and Lewy neurites are neuropathological hallmarks of Parkinson's disease (PD). These depositions in the brain mostly consist of aggregated α-synuclein (α-syn) phosphorylated at Ser129. A number of studies reported detection of phosphorylated α-syn (p-α-syn) in the dermal nerve fibers in Parkinson's disease. The objective of this study was to investigate whether pathological α-syn accumulations detected in the skin represent aggregated protein. A number of methods aimed at detecting α-syn oligomers and aggregates were first tested and optimized on the brain samples in PD and normal control. These methods included proximity ligation assay (PLA), PET-blot, immunohistochemical (IHC) stains with α-syn aggregate (5G4) or oligomer specific (ASyO5) antibodies and a stain against native α-syn (syn211) after proteinase K (PK) digestion. Subsequently, the most specific methods (stains with 5G4, ASyO5 and syn211 after PK digestion) were studied in two separate patient and control cohorts. Anti-p-α-syn stain was performed in parallel. Single sections from at least 2 biopsy sites from 44 patients and 22 controls (cohort 1) as well as serial sections of 4 biopsy sites from 27 patients and 5 controls (cohort 2) were systematically studied for presence of aggregated and oligomeric α-syn. In total, 5G4 positive deposits were found in 24\% (cohort 1) and 37\% (cohort 2), ASyO5 positive lesions in 17,7\% (cohort 1) and 33\% (cohort 2), syn211 positive lesions after PK digestion in 38,7\% (cohort 1) and 48\% (cohort 2) of cases. There was a major overlap among positivity for a particular staining on the patient level and in most cases, the same nerve fiber was found to be positive for all 4 markers in neighboring sections. Among the skin biopsies which contained p-α-syn accumulation, 59\% were also PK resistant, 41\% were 5G4 positive and 45\% were ASyO5 positive. The samples belonging to normal controls did not show any positive signal in either of the newly established stainings or in the anti-p-α-syn staining. Using 3 distinct IHC methods, α-syn oligomers and aggregates were detectable in the majority of p-α-syn positive skin biopsies. This finding supports the hypothesis that α-syn aggregation occurs in the peripheral (i.e. dermal) nerves and can be specifically detected using skin biopsy.}, subject = {Parkinson-Krankheit}, language = {en} } @phdthesis{Griffoni2019, author = {Griffoni, Chiara}, title = {Towards advanced immunocompetent skin wound models for in vitro drug evaluation}, doi = {10.25972/OPUS-19212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192125}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Current preclinical models used to evaluate novel therapies for improved healing include both in vitro and in vivo methods. However, ethical concerns related to the use of animals as well as the poor physiological translation between animal and human skin wound healing designate in vitro models as a highly relevant and promising platforms for healing investigation. While current in vitro 3D skin models recapitulate a mature tissue with healing properties, they still represent a simplification of the in vivo conditions, where for example the inflammatory response originating after wound formation involves the contribution of immune cells. Macrophages are among the main contributors to the inflammatory response and regulate its course thanks to their plasticity. Therefore, their implementation into in vitro skin could greatly increase the physiological relevance of the models. As no full-thickness immunocompetent skin model containing macrophages has been reported so far, the parameters necessary for a successful triple co-culture of fibroblasts, keratinocytes and macrophages were here investigated. At first, cell source and culture timed but also an implementation strategy for macrophages were deter-mined. The implementation of macrophages into the skin model focused on the minimization of the culture time to preserve immune cell viability and phenotype, as the environment has a major influence on cell polarization and cytokine production. To this end, incorporation of macrophages in 3D gels prior to the combination with skin models was selected to better mimic the in vivo environment. Em-bedded in collagen hydrogels, macrophages displayed a homogeneous cell distribution within the gel, preserving cell viability, their ability to respond to stimuli and their capability to migrate through the matrix, which are all needed during the involvement of macrophages in the inflammatory response. Once established how to introduce macrophages into skin models, different culture media were evaluated for their effects on primary fibroblasts, keratinocytes and macrophages, to identify a suitable medium composition for the culture of immunocompetent skin. The present work confirmed that each cell type requires a different supplement combination for maintaining functional features and showed for the first time that media that promote and maintain a mature skin structure have negative effects on primary macrophages. Skin differentiation media negatively affected macrophages in terms of viability, morphology, ability to respond to pro- and anti-inflammatory stimuli and to migrate through a collagen gel. The combination of wounded skin equivalents and macrophage-containing gels con-firmed that culture medium inhibits macrophage participation in the inflammatory response that oc-curs after wounding. The described macrophage inclusion method for immunocompetent skin creation is a promising approach for generating more relevant skin models. Further optimization of the co-cul-ture medium will potentially allow mimicking a physiological inflammatory response, enabling to eval-uate the effects novel drugs designed for improved healing on improved in vitro models.}, subject = {Haut}, language = {en} }