@phdthesis{Hadi2024, author = {Hadi, Naji Said Aboud}, title = {In vitro Studies on the Genotoxicity of Selected Pyrrolizidine Alkaloids}, doi = {10.25972/OPUS-37037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-370376}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Cancer is one of the leading causes of death worldwide. Toxic contaminants in human food or medicinal products, such as substances like pyrrolizidine alkaloids (PAs), have been thought to contribute to cancer incidence. PAs are found in many plant species as secondary metabolites, and they may affect humans through contaminated food sources, herbal medicines, and dietary supplements. Hundreds of compounds belonging to PAs have been identified, differing in their chemical structures, either in their necine base moiety or esterification at their necic acid moiety. PAs undergo hepatic metabolism, and after this process, they can induce hepatotoxicity, genotoxicity, and carcinogenicity. However, the mechanism of inducing genotoxicity and carcinogenicity is still unclear and warrants further investigation. Therefore, the present study aims to investigate the mechanism of genotoxicity induced by selected PAs with different chemical structures in in vitro systems. Primarily, human hepatoma HepG2 cells were utilized, and in co-culture, metabolically active HepG2 cells were combined with non-metabolically active human cervical HeLa H2B-GFP cells. First, the genotoxicity of the PAs europine, lycopsamine, retrorsine, riddelliine, seneciphylline, echimidine, and lasiocarpine was investigated in the cytokinesis-block micronucleus (CBMN) assay. All seven selected PAs caused the formation of micronuclei in a dose-dependent manner, with the maximal increase of micronucleus formation ranging from 1.64 to 2.0 fold. The lowest concentrations at which significant induction of micronuclei was found were 3.2 µM for lasiocarpine and riddelliine, 32 µM for retrorsine and echimidine, and 100 µM for seneciphylline, europine, and lycopsamine. These results confirmed previously published potency rankings in the micronucleus assay. The same PAs, with the exception of seneciphylline, were also investigated in a crosslink-modified comet assay, and reduced tail formation after hydrogen peroxide treatment was found in all diester-type PAs. Meanwhile, an equimolar concentration of the monoesters europine and lycopsamine did not significantly reduce DNA migration. Thus, the crosslinking activity was related to the ester type. Next, the role of metabolic enzymes and membrane transporters in PA-induced genotoxicity was assessed. Ketoconazole (CYP 450-3A4 inhibitor) prevented lasiocarpine-induced micronucleus formation completely, while furafylline (CYP 450-1A2 inhibitor) reduced lasiocarpine-induced micronucleus formation, but did not abolish it completely. This implies that the CYP 450 enzymes play an important role in PA-induced genotoxicity. Carboxylesterase 2 enzyme (CES 2) is commonly known to be involved in the detoxification of xenobiotics. Loperamide (CES 2 inhibitor) yielded an increased formation of lasiocarpine-induced micronuclei, revealing a possible role of CES-mediated detoxification in the genotoxicity of lasiocarpine. Also, intracellular glutathione (GSH) plays an important role in the detoxification of xenobiotics or toxins in the cells. Cells which had been pretreated with L-buthionine sulfoximine (BSO) to reduce GSH content were significantly more sensitive for the induction of micronucleus formation by lasiocarpine revealing the importance of GSH in PA-induced genotoxicity. Quinidine (Q) and nelfinavir (NFR) are OCT1 and OATP1B1 influx transporter inhibitors, respectively, which reduced micronucleus induction by lasiocarpine (only quinidine significantly), but not completely, pointing to a relevance of OCT1 for PA uptake in HepG2 cells. Verapamil (V) and benzbromarone (Bz) are MDR1 and MRP2 efflux transporter inhibitors, respectively, and they caused a slightly increased micronucleus induction by lasiocarpine (significant only for benzbromarone) thus, revealing the role of efflux transporters in PA-induced genotoxicity. The mechanistic approach to PA-induced genotoxicity was further studied based on oxidative stress via the formation of reactive oxygen species (ROS) in HepG2 cells. Overproduction of ROS can cross-link cellular macromolecules such as DNA, leading to genomic damage. An equimolar concentration of 10 µM of lasiocarpine (open-diester PA), riddelliine (cyclic-diester PA), and europine (monoester) significantly induced ROS production, with the highest ROS generation observed after lasiocarpine treatment, followed by riddelliine and then europine. No significant increase in ROS production was found with lycopsamine (10 µM; monoester PA), even at a higher concentration (320 µM). The generation of ROS by these PAs was further analyzed for confirmation by using 5 mM of the thiol radical scavenger antioxidant N-acetyl cysteine (NAC) combined with lasiocarpine, riddelliine, or europine. This analysis yielded a significant decrease in ROS after combining NAC with lasiocarpine, riddelliine, and europine. In addition, lasiocarpine, riddelliine, and europine induced a loss of mitochondrial membrane potential, pointing to mitochondria as the source of ROS generation. In vivo, hepatic sinusoidal epithelial cells (HSECs) are known to be damaged first by PAs after hepatic metabolization, but HSECs themselves do not express the required metabolic enzymes for activation of PAs. To mimic this situation, HepG2 cells were used to metabolically activate PA in a co-culture with HeLa H2B-GFP cells as non-metabolically active neighbours. Due to the green fluorescent GFP label the HeLa cells could be identified easily based in the co-culture. The PAs europine, riddelliine and lasiocarpine induced micronucleus formation in HepG2 cells, and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Metabolic inhibition of CYP 450 enzymes with ketoconazole abrogated micronucleus formation induced by the same PAs tested in the co-culture. The efflux transporter inhibitors verapamil and benzbromarone reduced the micronucleus formation in the co-culture. Furthermore, mitotic disturbances as an additional genotoxic mechanism of action were observed in HepG2 cells and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Overall, we were able to show that PAs were activated by HepG2 cells and the metabolites induced genomic damage in co-cultured non-metabolically active green HeLa cells. Finally, in HepG2 cells as well as the co-culture, combinations of PAs lasiocarpine and riddelliine favoured an additive effect rather than synergism. Thus, this study therefore provides support that the assumption of dose-addition can be applied in the characterization of the genotoxicity risk of PAs present in a mixture.}, subject = {Pyrrolizidinalkaloide}, language = {en} } @phdthesis{Kaempf2012, author = {K{\"a}mpf, Anne Kristina}, title = {Does methylphenidate cause a cytogenetic effect in children with attention deficit hyperactivity disorder?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77652}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {MPH wird seit {\"u}ber 50 Jahren zur Therapie des ADHS eingesetzt. Gerade in den letzten Jahren wurde deutlich, dass der Einsatz ohne fundierte Kenntnis {\"u}ber m{\"o}gliche Langzeit-effekte erfolgte, da zum Zeitpunkt der Zulassung aufgrund der begrenzten technischen M{\"o}glichkeiten weniger strenge und weniger umfassende Einschr{\"a}nkungen beachtet wer-den mussten (Walitza, Werner et al. 2007). Da in den letzten Jahren die Anzahl der verschrieben Tagesdosen MPH sprunghaft anstiegen, ist es wichtig, auch die langfristigen Nebenwirkungen von MPH zu untersuchen (Janhsen 2007). Eine Studie von El-Zein et al. von 2005 brachte die Frage auf, ob MPH eventuell Genomsch{\"a}den hervorrufe. Bei 11 von 12 untersuchten Kindern wurde unter der Therapie mit MPH um das 2,4fache erh{\"o}hte Mikrokernfrequenzen gefunden (El-Zein, Abdel-Rahman et al. 2005). Dies beunruhig-te vor allem im Hinblick auf das mit erh{\"o}hten Mikrokernfrequenzen korrelierte erh{\"o}hte Karzinomrisiko. Eine daraufhin von Walitza et al. durchgef{\"u}hrte Studie, die ebenfalls Mikrokernfrequenzen in peripheren Blutzellen untersuchte (Walitza, Werner et al. 2007), konnte keine Hinweise auf eine Genomsch{\"a}digung durch MPH erbringen. Zahlreiche weitere Untersuchungen zur potentiellen Genomsch{\"a}digung durch MPH konnten die Ergebnisse durch in vivo- oder in vitro-Studien nicht best{\"a}tigen und kritisierten die ge-ringe Stichprobengr{\"o}ße sowie mangelnde Transparenz der Arbeit von El-Zein (Preston, Kollins et al. 2005; El-Zein, Hay et al. 2006; Holtmann, Kaina et al. 2006; Suter, Martus et al. 2006). Da jedoch keine weitere Studie sich konkret mit zytogenetischen Effekten in peripheren Blutzellen befasste, soll die vorliegende Arbeit dazu dienen, den Verdacht einer Genomsch{\"a}digung endg{\"u}ltig auszur{\"a}umen (Walitza, Kampf et al. 2009). Dazu wurde eine gr{\"o}ßere Gruppe von Kindern eingeschlossen, sowie Untersuchungen zu verschiedenen Zeitpunkten w{\"a}hrend der MPH-Einnahme, bis hin zu Untersuchungen nach einem Zeitraum von 12 Monaten der MPH- Einnahme, durchgef{\"u}hrt. Mit Hilfe eines Mikrokerntestes wurden in der vorliegenden Studie versucht, DNS-Sch{\"a}den an periphe-ren Lymphozyten zu bestimmen, um daraus auf ein potentiell erh{\"o}htes Krebsrisiko schließen zu k{\"o}nnen. Im Vergleich mit einer gesunden Kontrollgruppe waren die Werte von ADHS-Kindern ohne MPH-Therapie sowie nach 3 und 12 Monaten MPH-Therapie zwar signifikant er-h{\"o}ht, diese gesunde Kontrollgruppe wies jedoch im Vergleich mit internationalen Refe-renzwerten eine extrem niedrige Mikrokernfrequenz auf, so dass davon ausgegangen werden muss, dass diese Vergleiche nur begrenzte Aussagekraft haben. In keiner der verschiedenen mit MPH therapierten Gruppen konnten {\"u}ber die Dauer der Einnahme eine signifikant Erh{\"o}hung der Mikrokernfrequenzen im Vergleich zu den Werten vor Einnahmebeginn nachgewiesen werden, was den Schluss zul{\"a}sst, dass eine Therapie mit Methylphenidat in therapie{\"u}blichen Dosen bei Kindern das Erbgut nicht zu sch{\"a}digen scheint. Dieses Ergebnis best{\"a}tigen inzwischen auch weitere Studien. Der Mikrokerntest erfasst Genomsch{\"a}den, nicht jedoch etwaige tumorpromovierende Eigenschaften des verabreichten Medikaments. Damit ist unklar, ob MPH auf andere Art als {\"u}ber eine Sch{\"a}digung des Genoms das Karzinomrisiko erh{\"o}hen k{\"o}nnte. Erste epidemiologische Studien sehen jedoch keinen Hinweis auf eine wie auch immer entstandene erh{\"o}hte Karzinominzidenz unter der Therapie mit MPH (Selby, Friedman et al. 1989; Oestreicher, Friedman et al. 2007). Hier scheinen jedoch weitere epidemiologische Studien, die m{\"o}g-lichst große Zeitspannen umfassen, n{\"o}tig zu sein}, subject = {Methylphenidat}, language = {en} } @phdthesis{Vukicevic2004, author = {Vukicevic, Vladimir}, title = {Mechanisms of apoptosis modulation and their contribution to genomic instability in tumor cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10605}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {The concept of programmed cell death has been increasingly considered from various aspects since early 1970's. Primarily, knowledge of apoptosis referred to morphological changes in which chromatin is condensed and increasingly fragmented, revealed as small structure in the nucleus. The membrane shrinks and the cell becomes dense as can be seen by flow cytometry. Interestingly, similar modes of cell deletion were observed in nematodes indicating that apoptosis is a highly conserved machinery. Three Caeonorhabditis elegans gene products are found to have high homology with mammalian apoptotic genes: CED-9 inhibits apoptosis and is related to bcl-2; CED-3 and CED-4 promote apoptosis and are related to caspase 9 and APAF-1. Apoptosis is not accidental death, but a highly controlled and medically important molecular process. More general terms such as 'physiological' or 'regulated' cell death cover different morphologies and sequences. Programmed suicide of cells that were subjected to toxic exogenous and endogenous stimuli plays a key role in understanding cancer development and its treatment. Apoptosis involves sequences of events that may overlap and play contradictory or antagonistic roles in cell death. Generally, the ability to trigger apoptotic processes in cancer cells would benefit an organism by keeping homeostasis intact. Programmed cell death is a regularly present mechanism, for instance, in lymphocyte recruitment in the thymus where immature lymphocytes may recognize host antigens. Therefore, such lymphocytes become apoptotic and are removed by macrophages. Removal prevents possible autoimmune diseases. Unlike apoptosis, necrosis is a passive process of cell death recognizable by membrane morphological changes and accompanied by leakage of intracellular material into intercellular space that may cause inflammation in the organism. Signals that may initiate apoptosis are generally classified into two groups: signals that launch extrinsic apoptotic pathways starting with aggregation of death receptors and intrinsic apoptotic pathways starting with disruption of intracellular homeostasis such as the release of mitochondrial factors or DNA degradation. Early in the process, apoptotic signals may lead to a broad range of signaling mechanisms such as DNA repair and assessment of DNA damage (check points). Thus, failure in any of these steps can cause a defective apoptotic response that plays a decisive role in both tumorigenesis and drug resistance in tumor treatment. More distinctly, the capability of cancer cells to go into apoptosis prevents further neoplastic changes. Generally, the purpose of this study is to investigate the balance between formation of genomic damage and induction of apoptosis under genotoxic stress. After genotoxic insult there are different possibilities for the fate of a cell (Figure 1). The genomic integrity is analyzed at cellular checkpoints, usually leading to a delay in cell cycle progression if DNA was damaged. Mutations in genes such as p53 and p21 change the cellular response to genotoxic stress and may alter the balance between apoptosis and genomic damage. However, p53 is usually mutated or not expressed in 70\% of human tumors. Alterations in p53 states that reflect distinct apoptotic response upon induction of DNA damage were examined. In this study, three cell lines with distinct p53 states were used: TK6 harboring wild-type p53, WTK1 with mutated p53 and NH32 with knocked out p53. In the present work we applied different approaches to investigate the correlation between DNA damage and apoptotic responsiveness in cancer cell lines with different p53 states or in hormone responsive cell lines with over expressed bcl-2 gene. We were focused on effects caused by temporary down regulation of the p53 and Bcl-2 activity in human lymphoblastoid cell lines. In addition, we investigated the impact of estradiol-induced proliferation on apoptosis and DNA damage in stably transfected cells with bcl-2gene.}, subject = {Apoptosis}, language = {en} }