@phdthesis{Seibt2009, author = {Seibt, Joachim}, title = {Theoretical investigations on the spectroscopy of molecular aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37218}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die spektroskopischen Eigenschaften von Molek{\"u}laggregaten wurden mittels quantendynamischer Berechnungen untersucht. Hierbei wurden sowohl lineare als auch nichtlineare Spektroskopietechniken einbezogen. Zur Simulation von Absorptions- und CD-Spektroskopie wurden Kopplungseffekte sowie die relative Orientierung der Monomer-Einheiten in den Modellen ber{\"u}cksichtigt, um gemessene Spektren reproduzieren und so die entsprechenden Parameter zu bestimmen. Zur genaueren Beschreibung wurden auch Ergebnisse quantenchemischer Rechnungen verwendet. Dar{\"u}ber hinaus wurden Untersuchungen zur nichtlinearen optischen Spektroskopie an Dimeren durchgef{\"u}hrt.}, subject = {Theoretische Chemie}, language = {en} } @phdthesis{Graefe2005, author = {Gr{\"a}fe, Stefanie}, title = {Laser-control of molecular dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13388}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this work a new algorithm to determine quantum control fields from the instantaneous response of systems has been developed. The derived fields allow to establish a direct connection between the applied perturbation and the molecular dynamics. The principle is most easily illustrated in regarding a classical forced oscillator. A particle moving inside the respective potential is accelerated if an external field is applied acting in the same direction as its momentum (heating). In contrary, a deceleration is achieved by a field acting in the opposite direction as the momentum (cooling). Furthermore, when the particle reaches a classical turning point and then changes its direction, the sign of the field has to be changed to further drive the system in the desired way. The frequency of the field therefore is in resonance with the oscillator. This intuitively clear picture of a driven classical oscillator can be used for directing (or controlling) quantum mechanical wave packet motion. The efficiency of the instantaneous dynamics algorithm was demonstrated in treating various model problems, the population transfer in double well potentials, excitation and dissociation of selective modes, and the population transfer between electronic states. Although it was not tried to optimize the fields to gain higher yields, the control was found to be very efficient. Driving population transfer in a double well potential could be shown to take place with nearly 100\% efficiency. It was shown that selective dissociation within the electronic ground state of HOD can be performed by either maximizing a selected coordinate's differential momentum change or the energy absorption. Concerning the population transfer into excited electronic states, a direct comparison with common control algorithms as optimal control theory and genetic algorithms was accomplished using a one-dimensional representation of methyl iodide. The fields derived from the various control theories were effective in transferring population into the chosen target state but the underlying physical background of the derived optimal fields was not obvious to explain. The instantaneous dynamics algorithm allowed to establish a direct relation between the derived fields and the underlying molecular dynamics. Bound-to-bound transitions could be handled more effectively. This was demonstrated on the sodium dimer in a representation of 3 electronic states being initially in its vibronic ground state. The objective was to transfer population into a predefined excited state. Choosing the first or the second state as a target, the control fields exhibited quite different features. The pulse-structure is related to the excited state wave packet, moving in, and out of the Franck-Condon region. Changing the control objective, the derived control field performed pure electronic transitions on a fast time-scale via a two-step transition. Futhermore, orientational effects have been investigated. The overall-efficiency of the population transfer for differently oriented molecules was about 70 \% or more if applying a control field derived for a 45° orientation. Spectroscopic methods to gain information about the outcome of the control process have been investigated. It was shown that pump/probe femtosecond ionization spectroscopy is suited to monitor time-dependent molecular probability distributions. In particular, time-dependent photoelectron spectra are able to monitor the population in the various electronic states. In the last chapter a different possibility of controlling molecules was regarded by investigating molecular iodine with a setup similar to the STIRAP ("Stimulated Raman Adiabatic passage") scenario. The possibility to extend this technique to a fs-time scale was examined in theory as well as in experiments, the latter being performed by Dr. Torsten Siebert in the Kiefer group, University of W{\"u}rzburg. It was shown that off-resonant excitation with implementation of the pulses with a higher intensity of the Stokes pulse as compared to the pump pulse - describing a so-called f-STIRAP like configuration - was shown to effectively transfer population into excited ground-state vibrational levels. This was theoretically underlined by comparing the numerically exact coupling case with the adiabatic picture. The process was described to run in the vicinity of adibaticity. A new model explaining the process by the system's vector rotating around the dressed state vector will be adopted in future calculations. Altogether, a new promising algorithm to control dynamical processes based on the instantaneous response has been developed. Because the derived control fields have been shown to be very efficient in selectively influencing molecules, it is to be expected that farther reaching applications can be realized in future investigations.}, subject = {Laserstrahlung}, language = {en} } @phdthesis{Erdmann2004, author = {Erdmann, Marco}, title = {Coupled electron and nuclear dynamics in model systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9968}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Subject of this work was to investigate the influence of nonadiabatic coupling on the dynamical changes of electron and nuclear density. The properties of electron density have neither been discussed in the stationary case, nor for excited electronic states or for a coupled electronic and nuclear motion. In order to remove these restrictions one must describe the quantum mechanical motion of all particles in a system at the same level. This is only possible for very small systems. A model system developed by Shin and Metiu [1, 2] contains all necessary physical ingredients to describe a combined electronic and nuclear motion. It consists of a single nuclear and electronic degree of freedom and the particle interaction is parameterized in such a way as to allow for a facile switching between and adiabatic (Born-Oppenheimer type) and a strongly coupled dynamics. The first part of the work determined the "static" properties of the model system: The calculation of electronic eigenfunctions, adiabatic potential curves, kinetic coupling elements and transition dipole moments allowed for a prediction of the coupled dynamics. The potentials obtained from different parameterization showed two distinct cases: In the first case the ground and first excited state are separated by a large energy gap which is the typical Born-Oppenheimer case; the second one exhibits an avoided crossing which results in a breakdown of the adiabatic approximation. Due to the electronic properties of the system, the quantum dynamics in the two distinct situations is very different. This was illustrated by calculating nuclear and electron densities as a function of time. In the Born-Oppenheimer case, the electron density followed the vibrational motion of the nucleus. This was demonstrated in two examples. In the strongly coupled case the wave packet did not exhibit features caused by nonadiabatic coupling. However, projections of the wave function onto the electronic states revealed the usual picture obtained from solutions of the nuclear Schr{\"o}dinger equation involving coupled electronic states. In that case the nuclear motion triggered charge transfer via nonadiabatic coupling. The second part of the work demonstrated that the model system can easily be modified to yield binding situations often found in diatomic molecules. The different situations can be characterized in terms of bound and dissociative adiabatic potential curves. The investigation focussed on the case of an electronic predissociation, where the ground state is dissociative in the asymptotic limit of large internuclear distances. Within our model system we were able to demonstrate how the character of the electron density changes during the fragmentation process. In the third part we investigated the influence of external fields on the correlated dynamics of electron and nucleus. Employing adiabatic potential curves, the structure of absorption spectra can be understood within the weak-field limit. In the above described Born-Oppenheimer case the adiabatically calculated spectrum was in very good agreement with the exact one, whereas in the strongly coupled case the obtained spectrum was not able to resemble the exact one. Regarding the dynamics during a laser excitation process the time-dependent electron and nuclear densities nicely illustrated the famous Franck-Condon principle. The interaction with strong laser pulses lead to an excitation of many bound electronic and vibrational states. The electron density reflected the classical-like quiver motion of the electron induced by the fast variations of the electric field. The nucleus did not follow these fast oscillations because of its much larger mass. The last part of the work extended the original model system by including an additional electron. As a consequence of the Pauli principle, the spatial electronic wave function has to be either symmetric or anti-symmetric with respect to exchange of the two electrons. This corresponds to anti-parallel or parallel electron spins, respectively. The extended model already contains the physical properties of a many-electron system. Solving the time-dependent Schr{\"o}dinger equation for a typical vibrational wave packet motion clearly indicated that the electron density is no longer suited to "localize" single electrons. We extended the definition of the electron localization function (ELF) to an exact, time-dependent wave function and demonstrated, how the ELF can be used to further characterize a coupled electron and nuclear motion. Finally, we gave an outlook of how to define electron localization in the case of anti-parallel electron spins. We derived a quantity similar to the ELF denoted "anti-parallel spin electron localization function" (ALF) and demonstrated that the ALF allows to follow time-dependent changes of the electron localization in a numerical example. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867.}, subject = {Nichtadiabatischer Prozess}, language = {en} }