@article{DziomShuvaevPimenovetal.2017, author = {Dziom, V. and Shuvaev, A. and Pimenov, A. and Astakhov, G.V. and Ames, C. and Bendias, K. and B{\"o}ttcher, J. and Tkachov, G. and Hankiewicz, E.M. and Br{\"u}ne, C. and Buhmann, H. and Molenkamp, L.W.}, title = {Observation of the universal magnetoelectric effect in a 3D topological insulator}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15197}, doi = {10.1038/ncomms15197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170875}, year = {2017}, abstract = {The electrodynamics of topological insulators (TIs) is described by modified Maxwell's equations, which contain additional terms that couple an electric field to a magnetization and a magnetic field to a polarization of the medium, such that the coupling coefficient is quantized in odd multiples of α/4π per surface. Here we report on the observation of this so-called topological magnetoelectric effect. We use monochromatic terahertz (THz) spectroscopy of TI structures equipped with a semitransparent gate to selectively address surface states. In high external magnetic fields, we observe a universal Faraday rotation angle equal to the fine structure constant α=e\(^{2}\)/2E\(_{0}\)hc (in SI units) when a linearly polarized THz radiation of a certain frequency passes through the two surfaces of a strained HgTe 3D TI. These experiments give insight into axion electrodynamics of TIs and may potentially be used for a metrological definition of the three basic physical constants.}, language = {en} } @article{KnorrRudolfNuernberger2013, author = {Knorr, Johannes and Rudolf, Philipp and Nuernberger, Patrick}, title = {A comparative study on chirped-pulse upconversion and direct multichannel MCT detection}, doi = {10.1364/OE.21.030693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111334}, year = {2013}, abstract = {A comparative study is carried out on two spectroscopic techniques employed to detect ultrafast absorption changes in the mid-infrared spectral range, namely direct multichannel detection via HgCdTe (MCT) photodiode arrays and the newly established technique of chirped-pulse upconversion (CPU). Whereas both methods are meanwhile individually used in a routine manner, we directly juxtapose their applicability in femtosecond pump-probe experiments based on 1 kHz shot-to-shot data acquisition. Additionally, we examine different phase-matching conditions in the CPU scheme for a given mid-infrared spectrum, thereby simultaneously detecting signals which are separated by more than 200 cm-1.}, language = {en} } @phdthesis{Wolpert2008, author = {Wolpert, Daniel}, title = {Quantum Control of Photoinduced Chemical Reactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The control of quantum mechanical processes, especially the selective manipulation of photochemical reactions by shaped fs laser pulses was successfully demonstrated in many experiments in the fields of physics, chemistry and biology. In this work, attention is directed to the control of two systems that mark a bridge to real synthetic chemistry. In a liquid phase environment the outcome of the photo-induced Wolff rearrangement of an industrially relevant diazonaphthoquinone compound, normally used in photoresists (e.g. Novolak) was optimized using shaped fs laser pulses. In the second series of experiments chemical reactions on a catalyst metal surface which comprise laser induced molecular bond formation channels were selectively manipulated for the first time. The control of liquid phase reactions necessitates adequate spectroscopic signals that are characteristic for the formed product species. Therefore, a pump-probe setup for transient absorption spectroscopy in the mid-infrared for the purpose of investigating ultrafast structural changes of molecules during photoreactions was constructed. This versatile setup enables to monitor structural changes of molecules in the liquid phase and to find appropriate feedback signals for the control of these processes. Prior to quantum control experiments, the photoinduced Wolff-rearrangement reaction of 2-diazo-1-naphthoquinone (DNQ) dissolved in water and methanol was thoroughly investigated. Steady state absorption measurements in the mid-infrared in combination with quantum chemical density functional theory (DFT) calculations revealed the characteristic vibrational bands of DNQ and of possible products. A mid-infrared transient absorption study was performed, to illuminate the structural dynamics of the ultrafast rearrangement reaction of DNQ. The experimental observations indicate, that the Wolff rearrangement reaction of DNQ proceeds within 300 fs. A model for the relaxation dynamics of the ketene photoproduct and DNQ after photoexcitation can be deduced that fits the measured data very well. The object of the quantum control experiments on DNQ was the improvement of the ketene yield. It was shown that the ketene formation after Wolff rearrangement of DNQ is very sensitive to the shape of the applied excitation laser pulses. The variation of single parameters, like the linear chirp as well as the pulse separation of colored double pulses lead to the conclusion that the well known intrapulse dumping mechanism is responsible for the impact of the frequency ordering within the excitation pulse on the photoproduct yield. Adaptive optimizations using a closed learning loop basically lead to the same result. Adaptive fs quantum control was also applied to surface reactions on a catalyst metal surface for the first time. Therefore, the laser-induced catalytic reactions of carbon monoxide (CO) and hydrogen (H2) on a Pd(100) single crystal surface were studied. This photochemical reaction initiated with fs laser pulses has not been observed before. Several product molecules could be synthesized, among them also species (e.g. CH^3+) for whose formation three particles are involved. The systematic variation of different parameters showed that the reactions are sensitive to the catalyst surface, the composition of the adsorbate and to the laser properties. A pump-probe study revealed that they occur on an ultrafast time scale. These catalytic surface reactions were then investigated and improved with phaseshaped fs laser pulses. By applying a feedback optimal control scheme, the reaction outcome could be successfully manipulated and the ratio of different reaction channels could be selectively controlled. Evidence has been found that the underlying control mechanism is nontrivial and sensitive to the specific conditions on the surface. The experiments shown here represent the first successful experiment on adaptive fs quantum control of a chemical reaction between adsorbate molecules on a surface. In contrast to previous quantum control experiments, reaction channels comprising the formation of new molecular bonds rather than the cleavage of already existing bonds are controlled. This work successfully showed that quantum control can be extended to systems closer to situations encountered in synthetic chemistry as was demonstrated in the two examples of the optimization of a complicated rearrangement reaction and the selective formation of chemical bonds with shaped fs laser pulses.}, subject = {Nichtlineare Spektroskopie}, language = {en} } @phdthesis{Baia2002, author = {Baia, Gheorghe Lucian}, title = {Theory and applications of confocal micro-Raman spectroscopy on hybrid polymer coatings and PDMS membranes and spectroscopic studies of doped B2O3-Bi2O3 glass systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4606}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {The thesis consists of two major parts. The first part contains a theoretical-experimental study of confocal micro-Raman spectroscopy on hybrid polymer coatings and an application of this spectroscopic method on PDMS-membranes. The theoretical-experimental study includes the application of a model that describes the influence of the refraction effect on the focus length on confocal Raman experiments, and the development of a new model that additionally takes into account the effect of diffraction on the focus dimensions. A parallel comparison between these two theoretical approaches and experimental data has been also drawn and a better agreement between theory and experiment was observed, when both refraction and diffraction effects were considered. Further, confocal resonance micro-Raman spectroscopy has been applied to characterise the diffusion processes of pharmacologically relevant molecules (b-carotene dissolved in dimethylsulfoxide) through a polydimethylsiloxane (PDMS)-membrane. The diffusion rate as a function of the measurement depth and diffusion time as well as the concentration gradient under a steady flux have been determined. The measurements shown that the confocal micro-Raman technique is a powerful tool to investigate the kinetics of diffusion processes within a membrane before the steady state has been reached. The second part of the thesis contains infrared and Raman spectroscopic studies of copper and iron doped B2O3-Bi2O3 glass systems. These studies were performed to obtain specific data regarding their local structure and the role played by dopant ions on boron and bismuthate units. The changes of B2O3 and Bi2O3 structural units due to the relaxation of the amorphous structure, which was induced in these samples by the thermal treatment, were also evidenced.}, language = {en} } @phdthesis{Bolboaca2002, author = {Bolboaca, Monica-Maria}, title = {Vibrational characterisation of coordination and biologically active compounds by means of IR absorption, Raman and surface-enhanced Raman spectroscopy in combination with theoretical simulations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {The thesis contains two major parts. The first part deals with structural investigations on different coordination compounds performed by using infrared absorption and FT-Raman spectroscopy in combination with density functional theory calculations. In the first section of this part the starting materials Ph2P-N(H)SiMe3 and Ph3P=NSiMe3 and their corresponding [(MeSi)2NZnPh2P-NSiMe3]2 and Li(o-C6H4PPh2NSiMe3)]2·Et2O complexes have been investigated in order to determine the influence of the metal coordination on the P-N bond length. In the next section the vibrational spectra of four hexacoordinated silicon(IV) and germanium(IV) complexes with three symmetrical bidentate oxalato(2-) ligands have been elucidated. Kinetic investigations of the hydrolysis of two of them, one with silicon and another one with germanium, have been carried out at room temperature and at different pH values and it was observed that the hydrolysis reaction occurs only for the silicon compound, the fastest reaction taking place at acidic pH. In the last section of this part, the geometric configurations of some hexacoordinated silicon(IV) complexes with three unsymmetrical bidentate hydroximato(2-) ligands have been determined. The second part of the thesis contains vibrational investigations of some biologically active molecules performed by means of Raman spectroscopy together with theoretical simulations. The SER spectra of these molecules at different pH values have also been analysed and the adsorption behaviour on the metal surface as well as the influence of the pH on the molecule-substrate interaction have been established.}, subject = {Komplexe}, language = {en} }