@article{ČuklinaHahnImakaevetal.2016, author = {Čuklina, Jelena and Hahn, Julia and Imakaev, Maxim and Omasits, Ulrich and F{\"o}rstner, Konrad U. and Ljubimov, Nikolay and Goebel, Melanie and Pessi, Gabriella and Fischer, Hans-Martin and Ahrens, Christian H. and Gelfand, Mikhail S. and Evguenieva-Hackenberg, Elena}, title = {Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-016-2602-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164565}, pages = {302}, year = {2016}, abstract = {Background Differential RNA-sequencing (dRNA-seq) is indispensable for determination of primary transcriptomes. However, using dRNA-seq data to map transcriptional start sites (TSSs) and promoters genome-wide is a bioinformatics challenge. We performed dRNA-seq of Bradyrhizobium japonicum USDA 110, the nitrogen-fixing symbiont of soybean, and developed algorithms to map TSSs and promoters. Results A specialized machine learning procedure for TSS recognition allowed us to map 15,923 TSSs: 14,360 in free-living bacteria, 4329 in symbiosis with soybean and 2766 in both conditions. Further, we provide proteomic evidence for 4090 proteins, among them 107 proteins corresponding to new genes and 178 proteins with N-termini different from the existing annotation (72 and 109 of them with TSS support, respectively). Guided by proteomics evidence, previously identified TSSs and TSSs experimentally validated here, we assign a score threshold to flag 14 \% of the mapped TSSs as a class of lower confidence. However, this class of lower confidence contains valid TSSs of low-abundant transcripts. Moreover, we developed a de novo algorithm to identify promoter motifs upstream of mapped TSSs, which is publicly available, and found motifs mainly used in symbiosis (similar to RpoN-dependent promoters) or under both conditions (similar to RpoD-dependent promoters). Mapped TSSs and putative promoters, proteomic evidence and updated gene annotation were combined into an annotation file. Conclusions The genome-wide TSS and promoter maps along with the extended genome annotation of B. japonicum represent a valuable resource for future systems biology studies and for detailed analyses of individual non-coding transcripts and ORFs. Our data will also provide new insights into bacterial gene regulation during the agriculturally important symbiosis between rhizobia and legumes.}, language = {en} } @article{BabskiHaasNaetherSchindleretal.2016, author = {Babski, Julia and Haas, Karina A. and N{\"a}ther-Schindler, Daniela and Pfeiffer, Friedhelm and F{\"o}rstner, Konrad U. and Hammelmann, Matthias and Hilker, Rolf and Becker, Anke and Sharma, Cynthia M. and Marchfelder, Anita and Soppa, J{\"o}rg}, title = {Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq)}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, number = {629}, doi = {10.1186/s12864-016-2920-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164553}, year = {2016}, abstract = {Background Differential RNA-Seq (dRNA-Seq) is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts. Although the transcriptomes of diverse bacterial species have been characterized by dRNA-Seq, the transcriptome analysis of archaeal species is still rather limited. Therefore, we used dRNA-Seq to characterize the primary transcriptome of the model archaeon Haloferax volcanii. Results Three independent cultures of Hfx. volcanii grown under optimal conditions to the mid-exponential growth phase were used to determine the primary transcriptome and map the 5′-ends of the transcripts. In total, 4749 potential TSSs were detected. A position weight matrix (PWM) was derived for the promoter predictions, and the results showed that 64 \% of the TSSs were preceded by stringent or relaxed basal promoters. Of the identified TSSs, 1851 belonged to protein-coding genes. Thus, fewer than half (46 \%) of the 4040 protein-coding genes were expressed under optimal growth conditions. Seventy-two percent of all protein-coding transcripts were leaderless, which emphasized that this pathway is the major pathway for translation initiation in haloarchaea. A total of 2898 of the TSSs belonged to potential non-coding RNAs, which accounted for an unexpectedly high fraction (61 \%) of all transcripts. Most of the non-coding TSSs had not been previously described (2792) and represented novel sequences (59 \% of all TSSs). A large fraction of the potential novel non-coding transcripts were cis-antisense RNAs (1244 aTSSs). A strong negative correlation between the levels of antisense transcripts and cognate sense mRNAs was found, which suggested that the negative regulation of gene expression via antisense RNAs may play an important role in haloarchaea. The other types of novel non-coding transcripts corresponded to internal transcripts overlapping with mRNAs (1153 iTSSs) and intergenic small RNA (sRNA) candidates (395 TSSs). Conclusion This study provides a comprehensive map of the primary transcriptome of Hfx. volcanii grown under optimal conditions. Fewer than half of all protein-coding genes have been transcribed under these conditions. Unexpectedly, more than half of the detected TSSs belonged to several classes of non-coding RNAs. Thus, RNA-based regulation appears to play a more important role in haloarchaea than previously anticipated.}, language = {en} } @article{HeidrichBauriedlBarquistetal.2017, author = {Heidrich, Nadja and Bauriedl, Saskia and Barquist, Lars and Li, Lei and Schoen, Christoph and Vogel, J{\"o}rg}, title = {The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {10}, doi = {10.1093/nar/gkx168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170828}, pages = {6147-6167}, year = {2017}, abstract = {Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of -35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.}, language = {en} } @article{GarciaBetancurGoniMorenoHorgeretal.2017, author = {Garc{\´i}a-Betancur, Juan-Carlos and Go{\~n}i-Moreno, Angel and Horger, Thomas and Schott, Melanie and Sharan, Malvika and Eikmeier, Julian and Wohlmuth, Barbara and Zernecke, Alma and Ohlsen, Knut and Kuttler, Christina and Lopez, Daniel}, title = {Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e28023}, doi = {10.7554/eLife.28023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170346}, year = {2017}, abstract = {A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.}, language = {en} } @article{MielichSuessWagnerMietrachetal.2017, author = {Mielich-S{\"u}ss, Benjamin and Wagner, Rabea M. and Mietrach, Nicole and Hertlein, Tobias and Marincola, Gabriella and Ohlsen, Knut and Geibel, Sebastian and Lopez, Daniel}, title = {Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {11}, doi = {10.1371/journal.ppat.1006728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170035}, pages = {e1006728}, year = {2017}, abstract = {Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen.}, language = {en} } @article{MuellerDolowschiakSellinetal.2016, author = {M{\"u}ller, Anna A. and Dolowschiak, Tamas and Sellin, Mikael E. and Felmy, Boas and Verbree, Carolin and Gadient, Sandra and Westermann, Alexander J. and Vogel, J{\"o}rg and LeibundGut-Landmann, Salome and Hardt, Wolf-Dietrich}, title = {An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1005723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167429}, pages = {e1005723}, year = {2016}, abstract = {Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and -injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf\(^{-/-}\) ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens.}, language = {en} } @article{HershkoShalevOdenheimerBergmanElgrablyWeissetal.2016, author = {Hershko-Shalev, Tal and Odenheimer-Bergman, Ahuva and Elgrably-Weiss, Maya and Ben-Zvi, Tamar and Govindarajan, Sutharsan and Seri, Hemda and Papenfort, Kai and Vogel, J{\"o}rg and Altuvia, Shoshy}, title = {Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166717}, pages = {e1005975}, year = {2016}, abstract = {While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein.}, language = {en} } @article{ReadMillsJohnsonetal.2016, author = {Read, Hannah M. and Mills, Grant and Johnson, Sarah and Tsai, Peter and Dalton, James and Barquist, Lars and Print, Cristin G. and Patrick, Wayne M. and Wiles, Siouxsie}, title = {The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, number = {e2130}, doi = {10.7717/peerj.2130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166576}, year = {2016}, abstract = {Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments.}, language = {en} } @article{SchneiderDobrindtMiddendorfetal.2011, author = {Schneider, Gy{\"o}rgy and Dobrindt, Ulrich and Middendorf, Barbara and Hochhut, Bianca and Szij{\´a}rt{\´o}, Valeria and Em{\´o}dy, Levente and Hacker, J{\"o}rg}, title = {Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic \(Escherichia\) \(coli\) \(in\) \(vitro\) support the role of conjugation for horizontal transfer of genomic islands}, series = {BMC Microbiology}, volume = {11}, journal = {BMC Microbiology}, doi = {10.1186/1471-2180-11-210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140975}, pages = {210}, year = {2011}, abstract = {Background: A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs) - including pathogenicity islands (PAIs) - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial) islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT). Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far. Results: To study mobilisation of such large genomic regions in prototypic uropathogenic E. coli (UPEC) strain 536, PAI II(536) was supplemented with the mob(RP4) region, an origin of replication (oriV(R6K)), an origin of transfer (oriT(RP4)) and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II(536) construct occured from strain 536 into an E. coli K-12 recipient. In transconjugants, PAI II(536) existed either as a cytoplasmic circular intermediate (CI) or integrated site-specifically into the recipient's chromosome at the leuX tRNA gene. This locus is the chromosomal integration site of PAI II(536) in UPEC strain 536. From the E. coli K-12 recipient, the chromosomal PAI II(536) construct as well as the CIs could be successfully remobilised and inserted into leuX in a PAI II(536) deletion mutant of E. coli 536. Conclusions: Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands.}, language = {en} } @article{WestermannVenturiniSellinetal.2019, author = {Westermann, Alexander J. and Venturini, Elisa and Sellin, Mikael E. and F{\"o}rstner, Konrad U. and Hardt, Wolf-Dietrich and Vogel, J{\"o}rg}, title = {The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium}, series = {mBio}, volume = {10}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02504-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177722}, pages = {e02504-18}, year = {2019}, abstract = {FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.}, language = {en} } @article{JarickBertscheStahletal.2018, author = {Jarick, Marcel and Bertsche, Ute and Stahl, Mark and Schultz, Daniel and Methling, Karen and Lalk, Michael and Stigloher, Christian and Steger, Mirco and Schlosser, Andreas and Ohlsen, Knut}, title = {The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {13693}, doi = {10.1038/s41598-018-32109-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177333}, year = {2018}, abstract = {The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.}, language = {en} } @article{FoerstnerReuscherHaberzettletal.2018, author = {F{\"o}rstner, Konrad U and Reuscher, Carina M and Haberzettl, Kerstin and Weber, Lennart and Klug, Gabriele}, title = {RNase E cleavage shapes the transcriptome of Rhodobacter sphaeroides and strongly impacts phototrophic growth}, series = {Life Science Alliance}, volume = {1}, journal = {Life Science Alliance}, number = {4}, doi = {10.26508/lsa.201800080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177139}, pages = {e201800080}, year = {2018}, abstract = {Bacteria adapt to changing environmental conditions by rapid changes in their transcriptome. This is achieved not only by adjusting rates of transcription but also by processing and degradation of RNAs. We applied TIER-Seq (transiently inactivating an endoribonuclease followed by RNA-Seq) for the transcriptome-wide identification of RNase E cleavage sites and of 5′ RNA ends, which are enriched when RNase E activity is reduced in Rhodobacter sphaeroides. These results reveal the importance of RNase E for the maturation and turnover of mRNAs, rRNAs, and sRNAs in this guanine-cytosine-rich α-proteobacterium, some of the latter have well-described functions in the oxidative stress response. In agreement with this, a role of RNase E in the oxidative stress response is demonstrated. A remarkably strong phenotype of a mutant with reduced RNase E activity was observed regarding the formation of photosynthetic complexes and phototrophic growth, whereas there was no effect on chemotrophic growth.}, language = {en} } @article{YuVogelFoerstner2018, author = {Yu, Sung-Huan and Vogel, J{\"o}rg and F{\"o}rstner, Konrad U.}, title = {ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes}, series = {GigaScience}, volume = {7}, journal = {GigaScience}, doi = {10.1093/gigascience/giy096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178942}, year = {2018}, abstract = {To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/.}, language = {en} } @article{GentschevMuellerAdelfingeretal.2011, author = {Gentschev, Ivaylo and M{\"u}ller, Meike and Adelfinger, Marion and Weibel, Stephanie and Grummt, Friedrich and Zimmermann, Martina and Bitzer, Michael and Heisig, Martin and Zhang, Qian and Yu, Yong A. and Chen, Nanhai G. and Stritzker, Jochen and Lauer, Ulrich M. and Szalay, Aladar A.}, title = {Efficient Colonization and Therapy of Human Hepatocellular Carcinoma (HCC) Using the Oncolytic Vaccinia Virus Strain GLV-1h68}, series = {PLOS ONE}, volume = {6}, journal = {PLOS ONE}, number = {7}, doi = {10.1371/journal.pone.0022069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135319}, pages = {e22069}, year = {2011}, abstract = {Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection (i.v.) of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13 pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man.}, language = {en} } @article{SchierackKletaTedinetal.2011, author = {Schierack, Peter and Kleta, Sylvia and Tedin, Karsten and Babila, Julius Tachu and Oswald, Sibylle and Oelschlaeger, Tobias A. and Hiemann, Rico and Paetzold, Susanne and Wieler, Lothar H.}, title = {E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0014712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135298}, pages = {e14712}, year = {2011}, abstract = {Background: The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. Methodology/Principal Findings: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra-and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. Conclusions: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.}, language = {en} } @article{HertleinSturmKircheretal.2011, author = {Hertlein, Tobias and Sturm, Volker and Kircher, Stefan and Basse-L{\"u}sebrink, Thomas and Haddad, Daniel and Ohlsen, Knut and Jakob, Peter}, title = {Visualization of Abscess Formation in a Murine Thigh Infection Model of \(Staphylococcus\) \(aureus\) by (19)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0018246}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142846}, pages = {e18246}, year = {2011}, abstract = {Background: During the last years, (19)F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance: We introduce (19)F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis.}, language = {en} } @article{CullLimaPradoGodinhoFernandesRodriguesetal.2014, author = {Cull, Benjamin and Lima Prado Godinho, Joseane and Fernandes Rodrigues, Juliany Cola and Frank, Benjamin and Schurigt, Uta and Williams, Roderick AM and Coombs, Graham H and Mottram, Jeremy C}, title = {Glycosome turnover in Leishmania major is mediated by autophagy}, series = {Autophagy}, volume = {10}, journal = {Autophagy}, number = {12}, doi = {10.4161/auto.36438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150277}, pages = {2143-2157}, year = {2014}, abstract = {Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15\% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes.}, language = {en} } @article{BergmillerPenaMillerBoehmetal.2011, author = {Bergmiller, Tobias and Pena-Miller, Rafael and Boehm, Alexander and Ackermann, Martin}, title = {Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD}, series = {BMC Microbiology}, volume = {11}, journal = {BMC Microbiology}, number = {118}, doi = {10.1186/1471-2180-11-118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142324}, pages = {1-12}, year = {2011}, abstract = {Background: The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. Results: We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (p) ppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (p) ppGpp abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. Conclusions: Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (p) ppGpp, and to a termination of cell division. The combination of single-cell time-lapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes.}, language = {en} } @article{ChenYuZhangetal.2011, author = {Chen, Nanhai G. and Yu, Yong A. and Zhang, Qian and Szalay, Aladar A.}, title = {Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice}, series = {Journal of Translational Medicine}, volume = {9}, journal = {Journal of Translational Medicine}, number = {164}, doi = {10.1186/1479-5876-9-164}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142268}, pages = {1-11}, year = {2011}, abstract = {Background: We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, beta-galactosidase, and beta-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV 1h68. This strain shows tumor specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice Methods: A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV 1h68 with short non coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts. Results: we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice. Conclusions: These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the purpose of insertional mutagenesis did modulate the efficiency of virus replication together with antitumor efficacy as well as virulence. Replication efficiency of oncolytic VACV in cell cultures can predict the virulence and therapeutic efficacy in nude mice. These findings may be essential for rational design of safe and potent VACV strains for vaccination and virotherapy of cancer in humans and animals.}, language = {en} } @phdthesis{Lerch2018, author = {Lerch, Maike Franziska}, title = {Characterisation of a novel non-coding RNA and its involvement in polysaccharide intercellular adhesin (PIA)-mediated biofilm formation of \(Staphylococcus\) \(epidermidis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155777}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognised as an important cause of health care-associated infections due to catheterisation, and livestock-associated infections. The colonisation of indwelling medical devices is achieved by the formation of biofilms, which are large cell-clusters surrounded by an extracellular matrix. This extracellular matrix consists mainly of PIA (polysaccharide intercellular adhesin), which is encoded by the icaADBC-operon. The importance of icaADBC in clinical strains provoking severe infections initiated numerous investigations of this operon and its regulation within the last two decades. The discovery of a long transcript being located next to icaADBC, downstream of the regulator gene icaR, led to the hypothesis of a possible involvement of this transcript in the regulation of biofilm formation (Eckart, 2006). Goal of this work was to characterise this transcript, named ncRNA IcaZ, in molecular detail and to uncover its functional role in S. epidermidis. The ~400 nt long IcaZ is specific for ica-positive S. epidermidis and is transcribed in early- and mid-exponential growth phase as primary transcript. The promotor sequence and the first nucleotides of icaZ overlap with the 3' UTR of the preceding icaR gene, whereas the terminator sequence is shared by tRNAThr-4, being located convergently to icaZ. Deletion of icaZ resulted in a macroscopic biofilm-negative phenotype with highly diminished PIA-biofilm. Biofilm composition was analysed in vitro by classical crystal violet assays and in vivo by confocal laser scanning microscopy under flow conditions to display biofilm formation in real-time. The mutant showed clear defects in initial adherence and decreased cell-cell adherence, and was therefore not able to form a proper biofilm under flow in contrast to the wildtype. Restoration of PIA upon providing icaZ complementation from plasmids revealed inconsistent results in the various mutant backgrounds. To uncover the functional role of IcaZ, transcriptomic and proteomic analysis was carried out, providing some hints on candidate targets, but the varying biofilm phenotypes of wildtype and icaZ mutants made it difficult to identify direct IcaZ mRNA targets. Pulse expression of icaZ was then used as direct fishing method and computational target predictions were executed with candidate mRNAs from aforesaid approaches. The combined data of these analyses suggested an involvement of icaR in IcaZ-mediated biofilm control. Therefore, RNA binding assays were established for IcaZ and icaR mRNA. A positive gel shift was maintained with icaR 3' UTR and with 5'/3' icaR mRNA fusion product, whereas no gel shift was obtained with icaA mRNA. From these assays, it was assumed that IcaZ regulates icaR mRNA expression in S. epidermidis. S. aureus instead lacks ncRNA IcaZ and its icaR mRNA was shown to undergo autoregulation under so far unknown circumstances by intra- or intermolecular binding of 5' UTR and 3' UTR (Ruiz de los Mozos et al., 2013). Here, the Shine-Dalgarno sequence is blocked through 5'/3' UTR base pairing and RNase III, an endoribonuclease, degrades icaR mRNA, leading to translational blockade. In this work, icaR mRNA autoregulation was therefore analysed experimentally in S. epidermidis and results showed that this specific autoregulation does not take place in this organism. An involvement of RNase III in the degradation process could not be verified here. GFP-reporter plasmids were generated to visualise the interaction, but have to be improved for further investigations. In conclusion, IcaZ was found to interact with icaR mRNA, thereby conceivably interfering with translation initiation of repressor IcaR, and thus to promote PIA synthesis and biofilm formation. In addition, the environmental factor ethanol was found to induce icaZ expression, while only weak or no effects were obtained with NaCl and glucose. Ethanol, actually is an ingredient of disinfectants in hospital settings and known as efficient effector for biofilm induction. As biofilm formation on medical devices is a critical factor hampering treatment of S. epidermidis infections in clinical care, the results of this thesis do not only contribute to better understanding of the complex network of biofilm regulation in staphylococci, but may also have practical relevance in the future.}, subject = {Biofilm}, language = {en} }