@article{MaudetSourisceDraginetal.2013, author = {Maudet, Claire and Sourisce, Ad{\`e}le and Dragin, Lo{\"i}c and Lahouassa, Hichem and Rain, Jean-Christopher and Bouaziz, Serge and Ramirez, Bertha C{\´e}cilia and Margottin-Goguet, Florence}, title = {HIV-1 Vpr Induces the Degradation of ZIP and sZIP, Adaptors of the NuRD Chromatin Remodeling Complex, by Hijacking DCAF1/VprBP}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {10}, issn = {1932-6203}, doi = {10.1371/journal.pone.0077320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128316}, pages = {e77320}, year = {2013}, abstract = {The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered.}, language = {en} } @article{FellerThomKochetal.2013, author = {Feller, Tatjana and Thom, Pascal and Koch, Natalie and Spiegel, Holger and Addai-Mensah, Otchere and Fischer, Rainer and Reimann, Andreas and Pradel, Gabriele and Fendel, Rolf and Schillberg, Stefan and Scheuermayer, Matthias and Schinkel, Helga}, title = {Plant-Based Production of Recombinant Plasmodium Surface Protein Pf38 and Evaluation of its Potential as a Vaccine Candidate}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {11}, issn = {1932-6203}, doi = {10.1371/journal.pone.0079920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128221}, pages = {e79920}, year = {2013}, abstract = {Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and \(MSP1_{19}\). Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1:11.000 and 1:39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using \(\alpha Pf38\) antibodies demonstrated strong inhibition \((\geq 60 \\% ) \) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by \(\alpha Pf38\) antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine.}, language = {en} } @phdthesis{Westermann2014, author = {Westermann, Alexander J.}, title = {Dual RNA-seq of pathogen and host}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The infection of a eukaryotic host cell by a bacterial pathogen is one of the most intimate examples of cross-kingdom interactions in biology. Infection processes are highly relevant from both a basic research as well as a clinical point of view. Sophisticated mechanisms have evolved in the pathogen to manipulate the host response and vice versa host cells have developed a wide range of anti-microbial defense strategies to combat bacterial invasion and clear infections. However, it is this diversity and complexity that makes infection research so challenging to technically address as common approaches have either been optimized for bacterial or eukaryotic organisms. Instead, methods are required that are able to deal with the often dramatic discrepancy between host and pathogen with respect to various cellular properties and processes. One class of cellular macromolecules that exemplify this host-pathogen heterogeneity is given by their transcriptomes: Bacterial transcripts differ from their eukaryotic counterparts in many aspects that involve both quantitative and qualitative traits. The entity of RNA transcripts present in a cell is of paramount interest as it reflects the cell's physiological state under the given condition. Genome-wide transcriptomic techniques such as RNA-seq have therefore been used for single-organism analyses for several years, but their applicability has been limited for infection studies. The present work describes the establishment of a novel transcriptomic approach for infection biology which we have termed "Dual RNA-seq". Using this technology, it was intended to shed light particularly on the contribution of non-protein-encoding transcripts to virulence, as these classes have mostly evaded previous infection studies due to the lack of suitable methods. The performance of Dual RNA-seq was evaluated in an in vitro infection model based on the important facultative intracellular pathogen Salmonella enterica serovar Typhimurium and different human cell lines. Dual RNA-seq was found to be capable of capturing all major bacterial and human transcript classes and proved reproducible. During the course of these experiments, a previously largely uncharacterized bacterial small non-coding RNA (sRNA), referred to as STnc440, was identified as one of the most strongly induced genes in intracellular Salmonella. Interestingly, while inhibition of STnc440 expression has been previously shown to cause a virulence defect in different animal models of Salmonellosis, the underlying molecular mechanisms have remained obscure. Here, classical genetics, transcriptomics and biochemical assays proposed a complex model of Salmonella gene expression control that is orchestrated by this sRNA. In particular, STnc440 was found to be involved in the regulation of multiple bacterial target mRNAs by direct base pair interaction with consequences for Salmonella virulence and implications for the host's immune response. These findings exemplify the scope of Dual RNA-seq for the identification and characterization of novel bacterial virulence factors during host infection.}, subject = {Transkriptomanalyse}, language = {en} } @article{BerghoffKonzerManketal.2013, author = {Berghoff, Bork A. and Konzer, Anne and Mank, Nils N. and Looso, Mario and Rische, Tom and F{\"o}rstner, Konrad U. and Kr{\"u}ger, Marcus and Klug, Gabriele}, title = {Integrative "Omics"-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {6}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003576}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127587}, pages = {e1003576}, year = {2013}, abstract = {Bacteria constantly face stress conditions and therefore mount specific responses to ensure adaptation and survival. Stress responses were believed to be predominantly regulated at the transcriptional level. In the phototrophic bacterium Rhodobacter sphaeroides the response to singlet oxygen is initiated by alternative sigma factors. Further adaptive mechanisms include post-transcriptional and post-translational events, which have to be considered to gain a deeper understanding of how sophisticated regulation networks operate. To address this issue, we integrated three layers of regulation: (1) total mRNA levels at different time-points revealed dynamics of the transcriptome, (2) mRNAs in polysome fractions reported on translational regulation (translatome), and (3) SILAC-based mass spectrometry was used to quantify protein abundances (proteome). The singlet oxygen stress response exhibited highly dynamic features regarding short-term effects and late adaptation, which could in part be assigned to the sigma factors RpoE and RpoH2 generating distinct expression kinetics of corresponding regulons. The occurrence of polar expression patterns of genes within stress-inducible operons pointed to an alternative of dynamic fine-tuning upon stress. In addition to transcriptional activation, we observed significant induction of genes at the post-transcriptional level (translatome), which identified new putative regulators and assigned genes of quorum sensing to the singlet oxygen stress response. Intriguingly, the SILAC approach explored the stress-dependent decline of photosynthetic proteins, but also identified 19 new open reading frames, which were partly validated by RNA-seq. We propose that comparative approaches as presented here will help to create multi-layered expression maps on the system level ("expressome"). Finally, intense mass spectrometry combined with RNA-seq might be the future tool of choice to re-annotate genomes in various organisms and will help to understand how they adapt to alternating conditions.}, language = {en} } @article{MuellerWindhofMaximovetal.2013, author = {M{\"u}ller, Sara and Windhof, Indra M. and Maximov, Vladimir and Jurkowski, Tomasz and Jeltsch, Albert and F{\"o}rstner, Konrad U. and Sharma, Cynthia M. and Gr{\"a}f, Ralph and Nellen, Wolfgang}, title = {Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA)}, series = {Nucleic Acids Research}, volume = {41}, journal = {Nucleic Acids Research}, number = {18}, issn = {1362-4962}, doi = {10.1093/nar/gkt634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123149}, pages = {8615-8627}, year = {2013}, abstract = {Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in \(tRNA^{Asp(GUC)}\) in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified \(tRNA^{Glu(CUC/UUC)}\) and \(tRNA^{Gly(GCC)}\) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.}, language = {en} } @article{GholamiChenBelinetal.2013, author = {Gholami, Sepideh and Chen, Chun-Hao and Belin, Laurence J. and Lou, Emil and Fujisawa, Sho and Antonacci, Caroline and Carew, Amanda and Chen, Nanhai G. and De Brot, Marina and Zanzonico, Pat B. and Szalay, Aladar A. and Fong, Yuman}, title = {Vaccinia virus GLV-1h153 is a novel agent for detection and effective local control of positive surgical margins for breast cancer}, series = {Breast Cancer Research}, volume = {15}, journal = {Breast Cancer Research}, number = {R26}, doi = {10.1186/bcr3404}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122140}, year = {2013}, abstract = {Introduction: Surgery is currently the definitive treatment for early-stage breast cancer. However, the rate of positive surgical margins remains unacceptably high. The human sodium iodide symporter (hNIS) is a naturally occurring protein in human thyroid tissue, which enables cells to concentrate radionuclides. The hNIS has been exploited to image and treat thyroid cancer. We therefore investigated the potential of a novel oncolytic vaccinia virus GLV1h-153 engineered to express the hNIS gene for identifying positive surgical margins after tumor resection via positron emission tomography (PET). Furthermore, we studied its role as an adjuvant therapeutic agent in achieving local control of remaining tumors in an orthotopic breast cancer model. Methods: GLV-1h153, a replication-competent vaccinia virus, was tested against breast cancer cell lines at various multiplicities of infection (MOIs). Cytotoxicity and viral replication were determined. Mammary fat pad tumors were generated in athymic nude mice. To determine the utility of GLV-1h153 in identifying positive surgical margins, 90\% of the mammary fat pad tumors were surgically resected and subsequently injected with GLV-1h153 or phosphate buffered saline (PBS) in the surgical wound. Serial Focus 120 microPET images were obtained six hours post-tail vein injection of approximately 600 mu Ci of I-124-iodide. Results: Viral infectivity, measured by green fluorescent protein (GFP) expression, was time-and concentrationdependent. All cell lines showed less than 10\% of cell survival five days after treatment at an MOI of 5. GLV-1h153 replicated efficiently in all cell lines with a peak titer of 27 million viral plaque forming units (PFU) ( < 10,000-fold increase from the initial viral dose) by Day 4. Administration of GLV-1h153 into the surgical wound allowed positive surgical margins to be identified via PET scanning. In vivo, mean volume of infected surgically resected residual tumors four weeks after treatment was 14 mm(3) versus 168 mm(3) in untreated controls (P < 0.05). Conclusions: This is the first study to our knowledge to demonstrate a novel vaccinia virus carrying hNIS as an imaging tool in identifying positive surgical margins of breast cancers in an orthotopic murine model. Moreover, our results suggest that GLV-1h153 is a promising therapeutic agent in achieving local control for positive surgical margins in resected breast tumors.}, language = {en} } @article{NeumannOhlsenDonatetal.2015, author = {Neumann, Yvonne and Ohlsen, Knut and Donat, Stefanie and Engelmann, Susanne and Kusch, Harald and Albrecht, Dirk and Cartron, Michael and Hurd, Alexander and Foster, Simon J.}, title = {The effect of skin fatty acids on Staphylococcus aureus}, series = {Archives of Microbiology}, volume = {197}, journal = {Archives of Microbiology}, doi = {10.1007/s00203-014-1048-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121657}, pages = {245-67}, year = {2015}, abstract = {Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS}, language = {en} } @article{VembarScherfSiegel2014, author = {Vembar, Shruti S. and Scherf, Artur and Siegel, T. Nicolai}, title = {Noncoding RNAs as emerging regulators of Plasmodium falciparum virulence gene expression}, series = {Current Opinion in Microbiology}, volume = {20}, journal = {Current Opinion in Microbiology}, number = {100}, issn = {1369-5274}, doi = {10.1016/j.mib.2014.06.013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121416}, pages = {153-61}, year = {2014}, abstract = {The eukaryotic unicellular pathogen Plasmodium falciparum tightly regulates gene expression, both during development and in adaptation to dynamic host environments. This regulation is evident in the mutually exclusive expression of members of clonally variant virulence multigene families. While epigenetic regulators have been selectively identified at active or repressed virulence genes, their specific recruitment remains a mystery. In recent years, noncoding RNAs (ncRNAs) have emerged as lynchpins of eukaryotic gene regulation; by binding to epigenetic regulators, they provide target specificity to otherwise non-specific enzyme complexes. Not surprisingly, there is great interest in understanding the role of ncRNA in P. falciparum, in particular, their contribution to the mutually exclusive expression of virulence genes. The current repertoire of P. falciparum ncRNAs includes, but is not limited to, subtelomeric ncRNAs, virulence gene-associated ncRNAs and natural antisense RNA transcripts. Continued improvement in high-throughput sequencing methods is sure to expand this repertoire. Here, we summarize recent advances in P. falciparum ncRNA biology, with an emphasis on ncRNA-mediated epigenetic modes of gene regulation.}, language = {en} } @article{JaegerFoerstnerSharmaetal.2014, author = {J{\"a}ger, Dominik and F{\"o}rstner, Konrad U. and Sharma, Cynthia M. and Santangelo, Thomas J. and Reeve, John N.}, title = {Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis}, series = {BMC Genomics}, volume = {15}, journal = {BMC Genomics}, number = {684}, issn = {1471-2164}, doi = {10.1186/1471-2164-15-684}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120966}, year = {2014}, abstract = {Background Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Results Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified >2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20\% have 5'-UTRs from 50 to 300 nt long and ~14\% are leaderless. Approximately 50\% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤50\%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. Conclusion The results identify >2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon.}, language = {en} } @article{GlaserSchurigtSuzukietal.2015, author = {Glaser, Jan and Schurigt, Uta and Suzuki, Brian M. and Caffrey, Connor R. and Holzgrabe, Ulrike}, title = {Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl}, series = {Molecules}, volume = {20}, journal = {Molecules}, doi = {10.3390/molecules200610873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125712}, pages = {10873-10883}, year = {2015}, abstract = {Bornyl caffeate (1) was previously isolated by us from Valeriana (V.) wallichii rhizomes and identified as an anti-leishmanial substance. Here, we screened a small compound library of synthesized derivatives 1-30 for activity against schistosomula of Schistosoma (S.) mansoni. Compound 1 did not show any anti-schistosomal activity. However, strong phenotypic changes, including the formation of vacuoles, degeneration and death were observed after in vitro treatment with compounds 23 (thymyl cinnamate) and 27 (eugenyl cinnamate). Electron microscopy analysis of the induced vacuoles in the dying parasites suggests that 23 and 27 interfere with autophagy.}, language = {en} } @article{SchneiderKleinMielichSuessetal.2015, author = {Schneider, Johannes and Klein, Teresa and Mielich-S{\"u}ss, Benjamin and Koch, Gudrun and Franke, Christian and Kuipers, Oskar P. and Kov{\´a}cs, {\´A}kos T. and Sauer, Markus and Lopez, Daniel}, title = {Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125577}, pages = {e1005140}, year = {2015}, abstract = {Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.}, language = {en} } @article{MasicValenciaHernandezHazraetal.2015, author = {Masic, Anita and Valencia Hernandez, Ana Maria and Hazra, Sudipta and Glaser, Jan and Holzgrabe, Ulrike and Hazra, Banasri and Schurigt, Uta}, title = {Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0142386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125354}, pages = {e0142386}, year = {2015}, abstract = {Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches.}, language = {en} } @article{FrankMarcudeOliveiraAlmeidaPetersenetal.2015, author = {Frank, Benjamin and Marcu, Ana and de Oliveira Almeida Petersen, Antonio Luis and Weber, Heike and Stigloher, Christian and Mottram, Jeremy C. and Scholz, Claus J{\"u}rgen and Schurigt, Uta}, title = {Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210}, series = {Parasites \& Vectors}, volume = {8}, journal = {Parasites \& Vectors}, number = {404}, doi = {10.1186/s13071-015-0974-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124997}, year = {2015}, abstract = {Background Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix® chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. Conclusions Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients.}, language = {en} } @article{AmichKrappmann2012, author = {Amich, Jorge and Krappmann, Sven}, title = {Deciphering metabolic traits of the fungal pathogen Aspergillus fumigatus: redundancy vs. essentiality}, series = {Frontiers in Microbiology}, volume = {3}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2012.00414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123669}, pages = {414}, year = {2012}, abstract = {Incidence rates of infections caused by environmental opportunistic fungi have risen over recent decades. Aspergillus species have emerged as serious threat for the immunecompromised, and detailed knowledge about virulence-determining traits is crucial for drug target identification. As a prime saprobe, A. fumigatus has evolved to efficiently adapt to various stresses and to sustain nutritional supply by osmotrophy, which is characterized by extracellular substrate digestion followed by efficient uptake of breakdown products that are then fed into the fungal primary metabolism. These intrinsic metabolic features are believed to be related with its virulence ability. The plethora of genes that encode underlying effectors has hampered their in-depth analysis with respect to pathogenesis. Recent developments in Aspergillus molecular biology allow conditional gene expression or comprehensive targeting of gene families to cope with redundancy. Furthermore, identification of essential genes that are intrinsically connected to virulence opens accurate perspectives for novel targets in antifungal therapy.}, language = {en} } @article{SiegelHonZhangetal.2014, author = {Siegel, T. Nicolai and Hon, Chung-Chau and Zhang, Qinfeng and Lopez-Rubio, Jose-Juan and Scheidig-Benatar, Christine and Martins, Rafeal M. and Sismeiro, Odile and Copp{\´e}e, Jean-Yves}, title = {Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum}, series = {BMC Genomics}, volume = {15}, journal = {BMC Genomics}, doi = {10.1186/1471-2164-15-150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119892}, pages = {150}, year = {2014}, abstract = {Background Advances in high-throughput sequencing have led to the discovery of widespread transcription of natural antisense transcripts (NATs) in a large number of organisms, where these transcripts have been shown to play important roles in the regulation of gene expression. Likewise, the existence of NATs has been observed in Plasmodium but our understanding towards their genome-wide distribution remains incomplete due to the limited depth and uncertainties in the level of strand specificity of previous datasets. Results To gain insights into the genome-wide distribution of NATs in P. falciparum, we performed RNA-ligation based strand-specific RNA sequencing at unprecedented depth. Our data indicate that 78.3\% of the genome is transcribed during blood-stage development. Moreover, our analysis reveals significant levels of antisense transcription from at least 24\% of protein-coding genes and that while expression levels of NATs change during the intraerythrocytic developmental cycle (IDC), they do not correlate with the corresponding mRNA levels. Interestingly, antisense transcription is not evenly distributed across coding regions (CDSs) but strongly clustered towards the 3′-end of CDSs. Furthermore, for a significant subset of NATs, transcript levels correlate with mRNA levels of neighboring genes. Finally, we were able to identify the polyadenylation sites (PASs) for a subset of NATs, demonstrating that at least some NATs are polyadenylated. We also mapped the PASs of 3443 coding genes, yielding an average 3′ untranslated region length of 523 bp. Conclusions Our strand-specific analysis of the P. falciparum transcriptome expands and strengthens the existing body of evidence that antisense transcription is a substantial phenomenon in P. falciparum. For a subset of neighboring genes we find that sense and antisense transcript levels are intricately linked while other NATs appear to be regulated independently of mRNA transcription. Our deep strand-specific dataset will provide a valuable resource for the precise determination of expression levels as it separates sense from antisense transcript levels, which we find to often significantly differ. In addition, the extensive novel data on 3′ UTR length will allow others to perform searches for regulatory motifs in the UTRs and help understand post-translational regulation in P. falciparum.}, language = {en} } @article{AdelfingerGentschevdeGuibertetal.2014, author = {Adelfinger, Marion and Gentschev, Ivaylo and de Guibert, Julio Grimm and Weibel, Stephanie and Langbein-Laugwitz, Johanna and H{\"a}rtl, Barbara and Escobar, Hugo Murua and Nolte, Ingo and Chen, Nanhai G. and Aguilar, Richard J. and Yu, Yong A. and Zhang, Qian and Frentzen, Alexa and Szalay, Aladar A.}, title = {Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0104337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119387}, pages = {e104337}, year = {2014}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model.}, language = {en} } @article{LiWongNongetal.2014, author = {Li, Lei and Wong, Hin-chung and Nong, Wenyan and Cheung, Man Kit and Law, Patrick Tik Wan and Kam, Kai Man and Kwan, Hoi Shan}, title = {Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus}, series = {BMC Genomics}, volume = {15}, journal = {BMC Genomics}, number = {1135}, issn = {1471-2164}, doi = {10.1186/1471-2164-15-1135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118080}, year = {2014}, abstract = {Background: Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before. Results: Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp webcite) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium. Conclusions: We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium. "}, language = {en} } @article{ReynoldsCliffeFoerstneretal.2014, author = {Reynolds, David and Cliffe, Laura and F{\"o}rstner, Konrad U. and Hon, Chung-Chau and Siegel, T. Nicolai and Sabatini, Robert}, title = {Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei}, series = {Nucleic Acids Research}, volume = {42}, journal = {Nucleic Acids Research}, number = {15}, doi = {10.1093/nar/gku714}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117863}, pages = {9717-9729}, year = {2014}, abstract = {Base J, beta-d-glucosyl-hydroxymethyluracil, is an epigenetic modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. J is enriched at sites involved in RNA polymerase ( RNAP) II initiation and termination. Reduction of J in Leishmania tarentolae via growth in BrdU resulted in cell death and indicated a role of J in the regulation of RNAP II termination. To further explore J function in RNAP II termination among kinetoplastids and avoid indirect effects associated with BrdU toxicity and genetic deletions, we inhibited J synthesis in Leishmania major and Trypanosoma brucei using DMOG. Reduction of J in L. major resulted in genome-wide defects in transcription termination at the end of polycistronic gene clusters and the generation of antisense RNAs, without cell death. In contrast, loss of J in T. brucei did not lead to genome-wide termination defects; however, the loss of J at specific sites within polycistronic gene clusters led to altered transcription termination and increased expression of downstream genes. Thus, J regulation of RNAP II transcription termination genome-wide is restricted to Leishmania spp., while in T. brucei it regulates termination and gene expression at specific sites within polycistronic gene clusters.}, language = {en} } @article{JunGholamiSongetal.2014, author = {Jun, Kyong-Hwa and Gholami, Spedideh and Song, Tae-Jin and Au, Joyce and Haddad, Dana and Carson, Joshua and Chen, Chun-Hao and Mojica, Kelly and Zanzonico, Pat and Chen, Nanhai G. and Zhang, Qian and Szalay, Aladar and Fong, Yuman}, title = {A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter}, series = {Journal of Experimental \& Clinical Cancer Research}, volume = {33}, journal = {Journal of Experimental \& Clinical Cancer Research}, number = {2}, issn = {1756-9966}, doi = {10.1186/1756-9966-33-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117716}, year = {2014}, abstract = {Background: Gastric cancers have poor overall survival despite recent advancements in early detection methods, endoscopic resection techniques, and chemotherapy treatments. Vaccinia viral therapy has had promising therapeutic potential for various cancers and has a great safety profile. We investigated the therapeutic efficacy of a novel genetically-engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, GLV-1 h153, on gastric cancers and its potential utility for imaging with Tc-99m pertechnetate scintigraphy and I-124 positron emission tomography (PET). Methods: GLV-1 h153 was tested against five human gastric cancer cell lines using cytotoxicity and standard viral plaque assays. In vivo, subcutaneous flank tumors were generated in nude mice with human gastric cancer cells, MKN-74. Tumors were subsequently injected with either GLV-1 h153 or PBS and followed for tumor growth. Tc-99m pertechnetate scintigraphy and I-124 microPET imaging were performed. Results: GFP expression, a surrogate for viral infectivity, confirmed viral infection by 24 hours. At a multiplicity of infection (MOI) of 1, GLV-1 h153 achieved > 90\% cytotoxicity in MNK-74, OCUM-2MD3, and AGS over 9 days, and >70\% cytotoxicity in MNK-45 and TMK-1. In vivo, GLV-1 h153 was effective in treating xenografts (p < 0.001) after 2 weeks of treatment. GLV-1 h153-infected tumors were readily imaged by Tc-99m pertechnetate scintigraphy and I-124 microPET imaging 2 days after treatment. Conclusions: GLV-1 h153 is an effective oncolytic virus expressing the hNIS protein that can efficiently regress gastric tumors and allow deep-tissue imaging. These data encourages its continued investigation in clinical settings.}, language = {en} } @article{BielaszewskaSchillerLammersetal.2014, author = {Bielaszewska, Martina and Schiller, Roswitha and Lammers, Lydia and Bauwens, Andreas and Fruth, Angelika and Middendorf, Barbara and Schmidt, M. Alexander and Tarr, Phillip I. and Dobrindt, Ulrich and Karch, Helge and Mellmann, Alexander}, title = {Heteropathogenic virulence and phylogeny reveal phased pathogenic metamorphosis in Escherichia coli O2:H6}, series = {EMBO Molecular Medicine}, volume = {6}, journal = {EMBO Molecular Medicine}, number = {3}, issn = {1757-4684}, doi = {10.1002/emmm.201303133}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117254}, pages = {347-357}, year = {2014}, abstract = {Extraintestinal pathogenic and intestinal pathogenic (diarrheagenic) Escherichia coli differ phylogenetically and by virulence profiles. Classic theory teaches simple linear descent in this species, where non-pathogens acquire virulence traits and emerge as pathogens. However, diarrheagenic Shiga toxin-producing E.coli (STEC) O2:H6 not only possess and express virulence factors associated with diarrheagenic and uropathogenic E.coli but also cause diarrhea and urinary tract infections. These organisms are phylogenetically positioned between members of an intestinal pathogenic group (STEC) and extraintestinal pathogenic E.coli. STEC O2:H6 is, therefore, a 'heteropathogen,' and the first such hybrid virulent E.coli identified. The phylogeny of these E.coli and the repertoire of virulence traits they possess compel consideration of an alternate view of pathogen emergence, whereby one pathogroup of E.coli undergoes phased metamorphosis into another. By understanding the evolutionary mechanisms of bacterial pathogens, rational strategies for counteracting their detrimental effects on humans can be developed.}, language = {en} }