@article{HoffmannSchmidtKeimetal.2011, author = {Hoffmann, Linda S and Schmidt, Peter M and Keim, Yvonne and Hoffmann, Carsten and Schmidt, Harald H H W and Stasch, Johannes-Peter}, title = {Fluorescence Dequenching Makes Haem-Free Soluble Guanylate Cyclase Detectable in Living Cells}, series = {PLOS ONE}, volume = {6}, journal = {PLOS ONE}, number = {8}, doi = {10.1371/journal.pone.0023596}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139631}, pages = {e23596}, year = {2011}, abstract = {In cardiovascular disease, the protective NO/sGC/cGMP signalling-pathway is impaired due to a decreased pool of NO-sensitive haem-containing sGC accompanied by a reciprocal increase in NO-insensitive haem-free sGC. However, no direct method to detect cellular haem-free sGC other than its activation by the new therapeutic class of haem mimetics, such as BAY 58-2667, is available. Here we show that fluorescence dequenching, based on the interaction of the optical active prosthetic haem group and the attached biarsenical fluorophor FlAsH can be used to detect changes in cellular sGC haem status. The partly overlap of the emission spectrum of haem and FlAsH allows energy transfer from the fluorophore to the haem which reduces the intensity of FlAsH fluorescence. Loss of the prosthetic group, e. g. by oxidative stress or by replacement with the haem mimetic BAY 58-2667, prevented the energy transfer resulting in increased fluorescence. Haem loss was corroborated by an observed decrease in NO-induced sGC activity, reduced sGC protein levels, and an increased effect of BAY 58-2667. The use of a haem-free sGC mutant and a biarsenical dye that was not quenched by haem as controls further validated that the increase in fluorescence was due to the loss of the prosthetic haem group. The present approach is based on the cellular expression of an engineered sGC variant limiting is applicability to recombinant expression systems. Nevertheless, it allows to monitor sGC's redox regulation in living cells and future enhancements might be able to extend this approach to in vivo conditions.}, language = {en} } @phdthesis{Schlippverh:Woelfel2011, author = {Schlipp [verh.: W{\"o}lfel], Angela}, title = {Characterization of anti-beta1-adrenoceptor antibodies with F{\"o}rster resonance energy transfer microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67162}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Dilated cardiomyopathy (DCM) represents an important subgroup of patients suffering from heart failure. The disease is supposed to be associated with autoimmune mechanisms in about one third of the cases. In the latter patients functionally active conformational autoantibodies directed against the second extracellular loop of the β1-adrenergic receptor (AR, β1ECII-aabs) have been detected. Such antibodies chronically stimulate the β1-AR thereby inducing the adrenergic signaling cascade in cardiomyocytes, which, in the long run, contributes to heart failure progression. We analyzed the production of cAMP after aab-mediated β1-AR activation in vitro using a fluorescence resonance energy transfer (FRET) assay. This assay is based on HEK293 cells stably expressing human β1-AR as well as the cAMP-sensor Epac1-camps. The assay showed a concentration-dependent increase in intracellular cAMP upon stimulation with the full agonist (-) isoproterenol. This response was comparable to results obtained in isolated adult murine cardiomyocytes and was partially blockable by a selective β1-AR antagonist. In the same assay poly- and monoclonal anti-β1ECII-abs (induced in different animals) could activate the adrenergic signaling cascade, whereas isotypic control abs had no effect on intracellular cAMP levels. Using the same method, we were able to detect functionally activating aabs in the serum of heart failure patients with ischemic and hypertensive heart disease as well as patients with DCM, but not in sera of healthy control subjects. In patients with DCM we observed an inverse correlation between the stimulatory potential of anti-β1-aabs and left ventricular pump function. To adopt this assay for the detection of functionally activating anti-β1ECII-aabs in clinical routine we attempted to establish an automated large-scale approach. Neither flow cytometry nor FRET detection with a fluorescence plate reader provided an acceptable signal-to-noise ratio. It was possible to detect (-) isoproterenol in a concentration-dependent manner using two different FRET multiwell microscopes. However, due to focus problems large-scale detection of activating anti-β1ECII-abs could not be implemented. Neutralization of anti-β1-aabs with the corresponding epitope-mimicking peptides is a possible therapeutic approach to treat aab-associated autoimmune DCM. Using our FRET assay we could demonstrate a reduction in the stimulatory potential of anti-β1ECII-abs after in vitro incubation with β1ECII-mimicking peptides. Cyclic (and to a lesser extent linear) peptides in 40-fold molar excess acted as efficient ab-scavengers in vitro. Intravenously injected cyclic peptides in a rat model of DCM also neutralized functionally active anti-β1ECII-abs efficiently in vivo. For a detailed analysis of the receptor-epitope targeted by anti-β1ECII-abs we used sequentially alanine-mutated β1ECII-mimicking cyclic peptides. Our data revealed that the disulfide bridge between the cysteine residues C209 and C215 of the human β1-AR appears essential for the formation of the ab-epitope. Substitution of further amino acids relevant for ab-binding in the cyclic scavenger peptide by alanine reduced its affinity to the ab and the receptor-activating potential was blocked less efficiently. In contrast, the non-mutant cyclic peptide almost completely blocked ab-induced receptor activation. Using this ala-scan approach we were able to identify a "NDPK"-epitope as essential for ab binding to the β1ECII. In summary, neutralization of conformational activating anti-β1ECII-(a)abs by cyclic peptides is a plausible therapeutic concept in heart failure that should be further exploited based on the here presented data.}, subject = {Adrenerger Rezeptor}, language = {en} } @phdthesis{Saxena2011, author = {Saxena, Ambrish}, title = {Role of the novel protein tyrosine phosphatase AUM for cell adhesion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Cell adhesion and migration are essential for development and homeostasis. Adhesion to the extracellular matrix occurs at specialized plasma membrane domains where transmembrane adhesion receptors, signaling proteins such as kinases and phosphatases, and a large number of adaptor proteins interact with the cytoskeleton in a tightly regulated and synchronized fashion. Whereas altered cell adhesion and migration are known to be important in cardiovascular disease and malignant tumors, the target proteins and molecular interactions that regulate these complex processes still remain incompletely understood. Whereas numerous kinases are known to regulate cell adhesion dynamics, information about the involved protein phosphatases is still very limited. A newly emerging phosphatase family contains the unconventional active site sequence DXDX(T/V) and belongs to the haloacid dehalogenase (HAD) superfamily of hydrolases. Our laboratory has recently discovered AUM, a novel phosphatase that belongs to this poorly characterized enzyme family. Initial findings pointed toward a potential involvement of AUM in the regulation of cell adhesion to the extracellular matrix. The objective of the present study was to study the potential role of AUM in cell adhesion. We could show that cells stably depleted of AUM are characterized by accelerated adhesion on immobilized fibronectin. To confirm these findings, we used an siRNA-based approach for the acute depletion of AUM and observed a similar phenomenon. Rescue experiments were performed with stably AUM-depleted cells to ensure that the above mentioned effects are indeed AUM specific. We observed that the re-addition of AUM normalizes cellular adhesion kinetics on fibronectin. These results clearly show that AUM exerts important functions in cell-matrix adhesion. To investigate the molecular basis of these effects, we have characterized integrin expression patterns using flow cytometry. Interestingly, fibronectin-stimulated AUM-depleted cells are characterized by an increase in the cell surface expression of conformationally active 1-integrins. Consistent with the important role of 1-integrins in the regulation of RhoA activity, we also observed a specific increase in RhoA-GTP, but not Rac1-GTP-levels during cell adhesion to fibronectin. Consistent with these findings and with the important role of RhoA for focal adhesion maturation, AUM depleted cells showed more elongated and more centripetally oriented focal adhesions as compared to control cells when spread on fibronectin. Taken together, this study has revealed an important role of AUM for cell-matrix adhesion. Our findings strongly suggest that AUM functions as a negative regulator of 1-integrins and RhoA-dependent cytoskeletal dynamics during cell adhesion.}, subject = {Proteintyrosinphosphatase}, language = {en} } @article{FoertschHuppMaetal.2011, author = {F{\"o}rtsch, Christina and Hupp, Sabrina and Ma, Jiangtao and Mitchell, Timothy J. and Maier, Elke and Benz, Roland and Iliev, Asparouh I.}, title = {Changes in Astrocyte Shape Induced by Sublytic Concentrations of the Cholesterol-Dependent Cytolysin Pneumolysin Still Require Pore-Forming Capacity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69084}, year = {2011}, abstract = {Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin's pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20-40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic) population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin's lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton reorganization is suggested.}, subject = {Toxikologie}, language = {en} } @phdthesis{Vogl2011, author = {Vogl, Silvia}, title = {Investigation of individual differences in the metabolic elimination of drugs by the polymorphic enzymes CYP2C9, 2C19 and 2D6 based on metabolite profiling by LC-MS/MS}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67216}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Mit der vorliegenden Studie sollte zu dem wichtigen Forschungsfeld der Pharmakogenetik beigetragen werden, indem zum einen eine einfache und sichere kombinierte Ph{\"a}notypisierung der drei zuvor erw{\"a}hnten CYPs (CYP2D6, CYP2C9 und CYP2C19) entwickelt, und zum anderen die Vorhersagekraft des Genotyps f{\"u}r den gemessenen Ph{\"a}notyp n{\"a}her untersucht werden sollte. Es ist uns gelungen eine sichere, einfache, schnelle und kombinierte Ph{\"a}notypisierung der beiden wichtigen Monooxygenasen CYP2D6 und CYP2C9 zu etablieren. Zun{\"a}chst wurden dazu Wechselwirkungsstudien mit den ausgew{\"a}hlten Testsubstanzen Dextromethorphan (DEX, CYP2D6), Flurbiprofen (FLB, CYP2C9) und Omeprazole (OME, CYP2C19) durchgef{\"u}hrt. Es konnte gezeigt werden, dass DEX und FLB als Kombination verabreicht werden k{\"o}nnen. Die Gabe von OME gemeinsam mit FLB ver{\"a}ndert jedoch das Ergebnis der CYP2C9 Ph{\"a}notypisierung. Dies ist eine neue Erkenntnis, denn noch 2004 wurde ein Ph{\"a}notypisierungscocktail ver{\"o}ffentlicht, der die Kombination von FLB und OME enthielt. Bei der genannten Studie wurden jedoch, unseres Wissens nach, keine Wechselwirkungsstudien zu den einzelnen Testsubstanz-Kombinationen durchgef{\"u}hrt. Die von uns entwickelte Ph{\"a}notypisierungsmethode wurde durch Wechselwirkungsstudien verifiziert. Sie ist jedoch auch in anderen Bereichen den bisher ver{\"o}ffentlichten ph{\"a}notypisierungscocktails {\"u}berlegen. Zum einen wurden nur sehr kleine Dosen sicherer Testsubstanzen verwendet. Dies wurde durch Entwicklung neuer, sensitiver LC-MS/MS Methoden erm{\"o}glicht. Zum anderen ist diese neue Prozedur schnell und nicht-invasiv durchf{\"u}hrbar. Nach Verabreichung der Testsubstanz muss der Urin nur f{\"u}r zwei Stunden gesammelt werden. Zudem weisen unsere Ergebnisse darauf hin, dass die normalerweise durchgef{\"u}hrte, aufwendige Glucuronidspaltung des CYP2D6 abh{\"a}ngigen DEX-Metaboliten, Dextrorphan, vermutlich vernachl{\"a}ssigt werden kann. Die wichtigsten Ergebnisse dieser Studie sind jedoch die Einblicke, die in die Vorhersagekraft der CYP2D6 und CYP2C9 Genotypen f{\"u}r die entsprechenden Ph{\"a}notypen gewonnen werden konnten. Fast 300 ph{\"a}notypisierte Kaukasier wurden auch in Hinsicht auf die wichtigsten varianten Allele von CYP2D6, CYP2C9 und CYP2C19 mithilfe bekannter und neu etablierter Methoden genotypisiert. Aufgrund der parallelen Ph{\"a}no- und Genotypisierung konnten Geno- und Ph{\"a}notyp direkt korreliert werden. Mit linearen Modellen war es m{\"o}glich, allen detektierten varianten CYP2D6- und CYP2C9-Allelen Aktivit{\"a}tskoeffizienten zuzuweisen. Diese k{\"o}nnen nun verwendet werden, um den Beitrag der einzelnen Allele zur resultierenden Enzymaktivit{\"a}t zu bestimmen, wodurch sich die Vorhersage dieser Aktivit{\"a}t ausgehend vom Genotyp verbessern lassen sollte. Besonders f{\"u}r CYP2D6 erm{\"o}glicht das neue Korrelationsmodel pr{\"a}zisere Vorhersagen des Ph{\"a}notyps als bisher ver{\"o}ffentlichte Modelle. Zusammengefasst leistet diese Studie durch die Entwicklung eines sicheren und einfachen Ph{\"a}notypisierungsprozesses f{\"u}r CYP2D6 und CYP2C9 und durch die Bestimmung von Aktivit{\"a}tskoeffizienten f{\"u}r alle einbezogenen CYP2D6 und CYP2C9 Allele und der damit verbundenen pr{\"a}ziseren Vorhersage des Ph{\"a}notyps ausgehend vom Genotyp einen wesentlichen Beitrag zum Forschungsfeld der Pharmakogenetik.}, subject = {Pharmakogenetik}, language = {en} } @phdthesis{Moro2011, author = {Moro, Sabrina}, title = {Identification of target proteins of furan reactive metabolites in rat liver}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57617}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Furan was recently found to be present in a variety of food items that undergo heat treatment. It is known to act as a potent hepatotoxin and liver carcinogen in rodents. In a 2-year bioassay, chronic furan administration to rats was shown to cause hepatocellular adenomas and carcinomas and very high incidences of cholangiocarcinomas even at the lowest furan dose tested (2.0 mg/kg bw). However, the mechanisms of furan-induced tumor formation are poorly understood. Furan is metabolized by cytochrome P450 (CYP) enzymes, predominantly CYP2E1, to its major metabolite cis-2-butene-1,4-dial (BDA). BDA is thought to be the key mediator of furan toxicity and carcinogenicity and was shown to react with cellular nucleophiles such as nucleosides and amino acid residues in vitro. It is well known that covalent protein binding may lead to cytotoxicity, but the cellular mechanisms involved remain to be elucidated. Since covalent binding of reactive intermediates to a target protein may result in loss of protein function and subsequent damage to the cell, the aim of this study was to identify furan target proteins to establish their role in the pathogenesis of furan-associated liver toxicity and carcinogenicity. In order to identify target proteins of furan reactive metabolites, male F344/N rats were administered [3,4-14C]-furan. Liquid scintillation counting of protein extracts revealed a dose-dependent increase of radioactivity covalently bound to liver proteins. After separation of the liver protein extracts by two-dimensional gel electrophoresis and subsequent detection of radioactive spots by fluorography, target proteins of reactive furan intermediates were identified by mass spectrometry and database search via Mascot. A total of 61 putative target proteins were consistently found to be adducted in 3 furan-treated rats. The identified proteins represent - among others - enzymes, transport proteins, structural proteins and chaperones. Pathway mapping tools revealed that target proteins are predominantly located in the cytosol and mitochondria and participate in glucose metabolism, mitochondrial β-oxidation of fatty acids, and amino acid degradation. These findings together with the fact that ATP synthase β subunit was also identified as a putative target protein strongly suggest that binding of furan reactive metabolites to proteins may result in mitochondrial injury, impaired cellular energy production, and altered redox state, which may contribute to cell death. Moreover, several proteins involved in the regulation of redox homeostasis represent putative furan target proteins. Loss of function of these proteins by covalent binding of furan reactive metabolites may impair cellular defense mechanisms against oxidative stress, which may also result in cell death. Besides the potential malfunction of whole pathways due to loss of functions of several participating proteins, loss of function of individual proteins which are involved in various cellular processes such as transport processes across the mitochondrial membranes, cell signaling, DNA methylation, blood coagulation, and bile acid transport may also contribute to furan-induced cytotoxicity and carcinogenicity. Covalent binding of reactive metabolites to cellular proteins may result in accumulation of high amounts of unfolded or damaged proteins in the endoplasmic reticulum (ER). In response to this ER stress, the cell can activate the unfolded protein response (UPR) to repair or degrade damaged proteins. To address whether binding of furan reactive metabolites to cellular proteins triggers activation of the UPR, semiquantitative PCR and TaqMan® real-time PCR were performed. In the case of UPR activation, semiquantitative PCR should show enhanced splicing of X-box binding protein-1 (XBP1) mRNA (transcription factor and key regulator of the UPR) and TaqMan® real-time PCR should determine an increased expression of UPR target genes. However, our data showed no evidence for activation of the UPR in the livers of rats treated either with a single hepatotoxic dose or with a known carcinogenic dose for 4 weeks. This suggests either that furan administration does not induce ER stress through accumulation of damaged proteins or that activation of the UPR is disrupted. Consistent with the latter, glucose-regulated protein 78 (GRP78), identified as a target protein in our study, represents an important mediator involved in activation of the UPR whose inhibition was shown to impair induction of the UPR. Thus, adduct formation and inactivation of GRP78 by furan metabolites may disturb activation of the UPR. In addition to impaired activation of UPR, protein repair and degradation functions may be altered, because several proteins involved in these processes also represent target proteins of furan and thus may show impaired functionality. Taken together...}, subject = {Furan}, language = {en} }