@phdthesis{DeğirmencineePoelloth2023, author = {Değirmenci [n{\´e}e P{\"o}lloth], Laura}, title = {Sugar perception and sugar receptor function in the honeybee (\(Apis\) \(mellifera\))}, doi = {10.25972/OPUS-32187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321873}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In the eusocial insect honeybee (Apis mellifera), many sterile worker bees live together with a reproductive queen in a colony. All tasks of the colony are performed by the workers, undergoing age-dependent division of labor. Beginning as hive bees, they take on tasks inside the hive such as cleaning or the producing of larval food, later developing into foragers. With that, the perception of sweetness plays a crucial role for all honeybees whether they are sitting on the honey stores in the hive or foraging for food. Their ability to sense sweetness is undoubtedly necessary to develop and evaluate food sources. Many of the behavioral decisions in honeybees are based on sugar perception, either on an individual level for ingestion, or for social behavior such as the impulse to collect or process nectar. In this context, honeybees show a complex spectrum of abilities to perceive sweetness on many levels. They are able to perceive at least seven types of sugars and decide to collect them for the colony. Further, they seem to distinguish between these sugars or at least show clear preferences when collecting them. Additionally, the perception of sugar is not rigid in honeybees. For instance, their responsiveness towards sugar changes during the transition from in-hive bees (e.g. nurses) to foraging and is linked to the division of labor. Other direct or immediate factors changing responsiveness to sugars are stress, starvation or underlying factors, such as genotype. Interestingly, the complexity in their sugar perception is in stark contrast to the fact that honeybees seem to have only three predicted sugar receptors. In this work, we were able to characterize the three known sugar receptors (AmGr1, AmGr2 and AmGr3) of the honeybee fully and comprehensively in oocytes (Manuscript II, Chapter 3 and Manuscript III, Chapter 4). We could show that AmGr1 is a broad sugar receptor reacting to sucrose, glucose, maltose, melezitose and trehalose (which is the honeybees' main blood sugar), but not fructose. AmGr2 acts as its co-receptor altering AmGr1's specificity, AmGr3 is a specific fructose receptor and we proved the heterodimerization of all receptors. With my studies, I was able to reproduce and compare the ligand specificity of the sugar receptors in vivo by generating receptor mutants with CRISPR/Cas9. With this thesis, I was able to define AmGr1 and AmGr3 as the honeybees' basis receptors already capable to detect all sugars of its known taste spectrum. In the expression analysis of my doctoral thesis (Manuscript I, Chapter 2) I demonstrated that both basis receptors are expressed in the antennae and the brain of nurse bees and foragers. This thesis assumes that AmGr3 (like the Drosophila homologue) functions as a sensor for fructose, which might be the satiety signal, while AmGr1 can sense trehalose as the main blood sugar in the brain. Both receptors show a reduced expression in the brain of foragers when compared with nurse bees. These results may reflect the higher concentrated diet of nurse bees in the hive. The higher number of receptors in the brain may allow nurse bees to perceive hunger earlier and to consume the food their sitting on. Forager bees have to be more persistent to hunger, when they are foraging, and food is not so accessible. The findings of reduced expression of the fructose receptor AmGr3 in the antennae of nurse bees are congruent with my other result that nurse bees are also less responsive to fructose at the antennae when compared to foragers (Manuscript I, Chapter 2). This is possible, since nurse bees sit more likely on ripe honey which contains not only higher levels of sugars but also monosaccharides (such as fructose), while foragers have to evaluate less-concentrated nectar. My investigations of the expression of AmGr1 in the antennae of honeybees found no differences between nurse bees and foragers, although foragers are more responsive to the respective sugar sucrose (Manuscript I, Chapter 2). Considering my finding that AmGr2 is the co-receptor of AmGr1, it can be assumed that AmGr1 and the mediated sucrose taste might not be directly controlled by its expression, but indirectly by its co-receptor. My thesis therefore clearly shows that sugar perception is associated with division of labor in honeybees and appears to be directly or indirectly regulated via expression. The comparison with a characterization study using other bee breeds and thus an alternative protein sequence of AmGr1 shows that co-expression of different AmGr1 versions with AmGr2 alters the sugar response differently. Therefore, this thesis provides first important indications that alternative splicing could also represent an important regulatory mechanism for sugar perception in honeybees. Further, I found out that the bitter compound quinine lowers the reward quality in learning experiments for honeybees (Manuscript IV, Chapter 5). So far, no bitter receptor has been found in the genome of honeybees and this thesis strongly assumes that bitter substances such as quinine inhibit sugar receptors in honeybees. With this finding, my work includes other molecules as possible regulatory mechanism in the honeybee sugar perception as well. We showed that the inhibitory effect is lower for fructose compared to sucrose. Considering that sugar signals might be processed as differently attractive in honeybees, this thesis concludes that the sugar receptor inhibition via quinine in honeybees might depend on the receptor (or its co-receptor), is concentration-dependent and based on the salience or attractiveness and concentration of the sugar present. With my thesis, I was able to expand the knowledge on honeybee's sugar perception and formulate a complex, comprehensive overview. Thereby, I demonstrated the multidimensional mechanism that regulates the sugar receptors and thus the sugar perception of honeybees. With this work, I defined AmGr1 and AmGr3 as the basis of sugar perception and enlarged these components to the co-receptor AmGr2 and the possible splice variants of AmGr1. I further demonstrated how those sugar receptor components function, interact and that they are clearly involved in the division of labor in honeybees. In summary, my thesis describes the mechanisms that enable honeybees to perceive sugar in a complex way, even though they inhere a limited number of sugar receptors. My data strongly suggest that honeybees overall might not only differentiate sugars and their diet by their general sweetness (as expected with only one main sugar receptor). The found sugar receptor mechanisms and their interplay further suggest that honeybees might be able to discriminate directly between monosaccharides and disaccharides or sugar molecules and with that their diet (honey and nectar).}, subject = {Biene}, language = {en} } @phdthesis{KayaZeeb2023, author = {Kaya-Zeeb, Sinan David}, title = {Octopaminergic Signaling in the Honeybee Flight Muscles : A Requirement for Thermogenesis}, doi = {10.25972/OPUS-31408}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-314089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {For all animals the cold represents a dreadful danger. In the event of severe heat loss, animals fall into a chill coma. If this state persists, it is inevitably followed by death. In poikilotherms (e.g. insects), the optimal temperature range is narrow compared to homeotherms (e.g. mammals), resulting in a critical core temperature being reached more quickly. As a consequence, poikilotherms either had to develop survival strategies, migrate or die. Unlike the majority of insects, the Western honeybee (Apis mellifera) is able to organize itself into a superorganism. In this process, worker bees warm and cool the colony by coordinated use of their flight muscles. This enables precise control of the core temperature in the hive, analogous to the core body temperature in homeothermic animals. However, to survive the harsh temperatures in the northern hemisphere, the thermogenic mechanism of honeybees must be in constant readiness. This mechanism is called shivering thermogenesis, in which honeybees generate heat using their flight muscles. My thesis presents the molecular and neurochemical background underlying shivering thermogenesis in worker honeybees. In this context, I investigated biogenic amine signaling. I found that the depletion of vesicular monoamines impairs thermogenesis, resulting in a decrease in thoracic temperature. Subsequent investigations involving various biogenic amines showed that octopamine can reverse this effect. This clearly indicates the involvement of the octopaminergic system. Proceeding from these results, the next step was to elucidate the honeybee thoracic octopaminergic system. This required a multidisciplinary approach to ultimately provide profound insights into the function and action of octopamine at the flight muscles. This led to the identification of octopaminergic flight muscle controlling neurons, which presumably transport octopamine to the flight muscle release sites. These neurons most likely innervate octopamine β receptors and their activation may stimulate intracellular glycolytic pathways, which ensure sufficient energy supply to the muscles. Next, I examined the response of the thoracic octopaminergic system to cold stress conditions. I found that the thoracic octopaminergic system tends towards an equilibrium, even though the initial stress response leads to fluctuations of octopamine signaling. My results indicate the importance of the neuro-muscular octopaminergic system and thus the need for its robustness. Moreover, cold sensitivity was observed for the expression of one transcript of the octopamine receptor gene AmOARβ2. Furthermore, I found that honeybees without colony context show a physiological disruption within the octopaminergic system. This disruption has profound effects on the honeybees protection against the cold. I could show how important the neuro-muscular octopaminergic system is for thermogenesis in honeybees. In this context, the previously unknown neurochemical modulation of the honeybee thorax has now been revealed. I also provide a broad basis to conduct further experiments regarding honeybee thermogenesis and muscle physiology.}, subject = {Octopamin}, language = {en} } @phdthesis{Rutschmann2023, author = {Rutschmann, Benjamin}, title = {Occurrence and population density of wild-living honey bees in Europe and the impact of different habitat types on their foraging and overwintering success}, doi = {10.25972/OPUS-28673}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286732}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The original habitat of native European honey bees (\(Apis\) \(mellifera\)) is forest, but currently there is a lack of data about the occurrence of wild honey bee populations in Europe. Prior to being kept by humans in hives, honey bees nested as wild species in hollow trees in temperate forests. However, in the 20th century, intensification of silviculture and agriculture with accompanying losses of nesting sites and depletion of food resources caused population declines in Europe. When the varroa mite (Varroa destructor), an invasive ectoparasite from Asia, was introduced in the late 1970s, wild honey bees were thought to be eradicated in Europe. Nevertheless, sporadic, mostly anecdotal, reports from ornithologists or forest ecologists indicated that honey bee colonies still occupy European forest areas. In my thesis I hypothesize that near-natural deciduous forests may provide sufficient large networks of nesting sites representing refugia for wild-living honey bees. Using two special search techniques, i.e. the tracking of flight routes of honey bee foragers (the "beelining" method) and the inspection of known cavity trees, I collected for the first time data on the occurrence and density of wild-living honey bees in forest areas in Germany (CHAPTER 3). I found wild-living honey bee colonies in the Hainich national park at low densities in two succeeding years. In another forest region, I checked known habitat trees containing black woodpecker cavities for occupation by wild-living honey bee colonies. It turned out that honey bees regularly use these cavities and occur in similar densities in both studied forest regions, independent of the applied detection method. Extrapolating these densities to all German forest areas, I estimate several thousand wild-living colonies in Germany that potentially interact in different ways with the forest environment. I conclude that honey bees regularly colonize forest areas in Germany and that networks of mapped woodpecker cavities offer unique possibilities to study the ecology of wild-living honey bees over several years. While their population status is ambiguous and the density of colonies low, the fact that honey bees can still be found in forests poses questions about food supply in forest environments. Consequently, I investigated the suitability of woodlands as a honey bee foraging habitat (CHAPTER 4). As their native habitat, forests are assumed to provide important pollen and nectar sources for honey bee colonies. However, resource supply might be spatially and temporally restricted and landscape-scale studies in European forest regions are lacking. Therefore, I set up twelve honey bee colonies in observation hives at locations with varying degree of forest cover. Capitalizing on the unique communication behaviour, the waggle dance, I examined the foraging distances and habitat preferences of honey bees over almost an entire foraging season. Moreover, by connecting this decoded dance information with colony weight recordings, I could draw conclusions about the contribution of the different habitat types to honey yield. Foraging distances generally increased with the amount of forest in the surrounding landscape. Yet, forest cover did not have an effect on colony weight. Compared to expectations based on the proportions of different habitats in the surroundings, colonies foraged more frequently in cropland and grasslands than in deciduous and coniferous forests, especially in late summer when pollen foraging in the forest is most difficult. In contrast, colonies used forests for nectar/honeydew foraging in early summer during times of colony weight gain emphasizing forests as a temporarily significant source of carbohydrates. Importantly, my study shows that the ecological and economic value of managed forest as habitat for honey bees and other wild pollinators can be significantly increased by the continuous provision of floral resources, especially for pollen foraging. The density of these wild-living honey bee colonies and their survival is driven by several factors that vary locally, making it crucial to compare results in different regions. Therefore, I investigated a wild-living honey bee population in Galicia in north-western Spain, where colonies were observed to reside in hollow electric poles (CHAPTER 5). The observed colony density only in these poles was almost twice as high as in German forest areas, suggesting generally more suitable resource conditions for the bees in Galicia. Based on morphometric analyses of their wing venation patterns, I assigned the colonies to the native evolutionary lineage (M-lineage) where the particularly threatened subspecies \(Apis\) \(mellifera\) \(iberiensis\) also belongs to. Averaged over two consecutive years, almost half of the colonies survived winter (23 out of 52). Interestingly, semi-natural areas both increased abundance and subsequent colony survival. Colonies surrounded by more semi-natural habitat (and therefore less intensive cropland) had an elevated overwintering probability, indicating that colonies need a certain amount of semi-natural habitat in the landscape to survive. Due to their ease of access these power poles in Galicia are, ideally suited to assess the population demography of wild-living Galician honey bee colonies through a long-term monitoring. In a nutshell, my thesis indicates that honey bees in Europe always existed in the wild. I performed the first survey of wild-living bee density yet done in Germany and Spain. My thesis identifies the landscape as a major factor that compromises winter survival and reports the first data on overwintering rates of wild-living honey bees in Europe. Besides, I established methods to efficiently detect wild-living honey bees in different habitat. While colonies can be found all over Europe, their survival and viability depend on unpolluted, flower rich habitats. The protection of near-natural habitat and of nesting sites is of paramount importance for the conservation of wild-living honey bees in Europe.  }, subject = {Biene}, language = {en} } @phdthesis{Schilcher2023, author = {Schilcher, Felix}, title = {Regulation of the nurse-forager transition in honeybees (\(Apis\) \(mellifera\))}, doi = {10.25972/OPUS-28935}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289352}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Honeybees are among the few animals that rely on eusociality to survive. While the task of queen and drones is only reproduction, all other tasks are accomplished by sterile female worker bees. Different tasks are mostly divided by worker bees of different ages (temporal polyethism). Young honeybees perform tasks inside the hive like cleaning and nursing. Older honeybees work at the periphery of the nest and fulfill tasks like guarding the hive entrance. The oldest honeybees eventually leave the hive to forage for resources until they die. However, uncontrollable circumstances might force the colony to adapt or perish. For example, the introduced Varroa destructor mite or the deformed wing virus might erase a lot of in-hive bees. On the other hand, environmental events might kill a lot of foragers, leaving the colony with no new food intake. Therefore, adaptability of task allocation must be a priority for a honeybee colony. In my dissertation, I employed a wide range of behavioral, molecular biological and analytical techniques to unravel the underlying molecular and physiological mechanisms of the honeybee division of labor, especially in conjunction with honeybee malnourishment. The genes AmOARα1, AmTAR1, Amfor and vitellogenin have long been implied to be important for the transition from in-hive tasks to foraging. I have studied in detail expression of all of these genes during the transition from nursing to foraging to understand how their expression patterns change during this important phase of life. My focus lay on gene expression in the honeybee brain and fat body. I found an increase in the AmOARα1 and the Amforα mRNA expression with the transition from in-hive tasks to foraging and a decrease in expression of the other genes in both tissues. Interestingly, I found the opposite pattern of the AmOARα1 and AmTAR1 mRNA expression in the honeybee fat body during orientation flights. Furthermore, I closely observed juvenile hormone titers and triglyceride levels during this crucial time. Juvenile hormone titers increased with the transition from in-hive tasks to foraging and triglyceride levels decreased. Furthermore, in-hive bees and foragers also differ on a behavioral and physiological level. For example, foragers are more responsive towards light and sucrose. I proposed that modulation via biogenic amines, especially via octopamine and tyramine, can increase or decrease the responsiveness of honeybees. For that purpose, in-hive bees and foragers were injected with both biogenic amines and the receptor response was quantified 1 using electroretinography. In addition, I studied the behavioral response of the bees to light using a phototaxis assay. Injecting octopamine increased the receptor response and tyramine decreased it. Also, both groups of honeybees showed an increased phototactic response when injected with octopamine and a decreased response when injected with tyramine, independent of locomotion. Additionally, nutrition has long been implied to be a driver for division of labor. Undernourished honeybees are known to speed up their transition to foragers, possibly to cope with the missing resources. Furthermore, larval undernourishment has also been implied to speed up the transition from in-hive bees to foragers, due to increasing levels of juvenile hormone titers in adult honeybees after larval starvation. Therefore, I reared honeybees in-vitro to compare the hatched adult bees of starved and overfed larvae to bees reared under the standard in-vitro rearing diet. However, first I had to investigate whether the in-vitro rearing method affects adult honeybees. I showed effects of in-vitro rearing on behavior, with in-vitro reared honeybees foraging earlier and for a shorter time than hive reared honeybees. Yet, nursing behavior was unaffected. Afterwards, I investigated the effects of different larval diets on adult honeybee workers. I found no effects of malnourishment on behavioral or physiological factors besides a difference in weight. Honeybee weight increased with increasing amounts of larval food, but the effect seemed to vanish after a week. These results show the complexity and adaptability of the honeybee division of labor. They show the importance of the biogenic amines octopamine and tyramine and of the corresponding receptors AmOARα1 and AmTAR1 in modulating the transition from inhive bees to foragers. Furthermore, they show that in-vitro rearing has no effects on nursing behavior, but that it speeds up the transition from nursing to foraging, showing strong similarities to effects of larval pollen undernourishment. However, larval malnourishment showed almost no effects on honeybee task allocation or physiology. It seems that larval malnourishment can be easily compensated during the early lifetime of adult honeybees.}, subject = {Biene}, language = {en} } @phdthesis{Schmalz2023, author = {Schmalz, Fabian Dominik}, title = {Processing of behaviorally relevant stimuli at different levels in the bee brain}, doi = {10.25972/OPUS-28882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system. In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others. This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs. The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor. The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations. Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region.}, subject = {Biene}, language = {en} }