@article{BadrMcFlederWuetal.2022, author = {Badr, Mohammad and McFleder, Rhonda L. and Wu, Jingjing and Knorr, Susanne and Koprich, James B. and H{\"u}nig, Thomas and Brotchie, Jonathan M. and Volkmann, Jens and Lutz, Manfred B. and Ip, Chi Wang}, title = {Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson's disease mice}, series = {Journal of Neuroinflammation}, volume = {19}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-022-02685-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300580}, year = {2022}, abstract = {Background Regulatory CD4\(^+\)CD25\(^+\)FoxP3\(^+\) T cells (Treg) are a subgroup of T lymphocytes involved in maintaining immune balance. Disturbance of Treg number and impaired suppressive function of Treg correlate with Parkinson's disease severity. Superagonistic anti-CD28 monoclonal antibodies (CD28SA) activate Treg and cause their expansion to create an anti-inflammatory environment. Methods Using the AAV1/2-A53T-α-synuclein Parkinson's disease mouse model that overexpresses the pathogenic human A53T-α-synuclein (hαSyn) variant in dopaminergic neurons of the substantia nigra, we assessed the neuroprotective and disease-modifying efficacy of a single intraperitoneal dose of CD28SA given at an early disease stage. Results CD28SA led to Treg expansion 3 days after delivery in hαSyn Parkinson's disease mice. At this timepoint, an early pro-inflammation was observed in vehicle-treated hαSyn Parkinson's disease mice with elevated percentages of CD8\(^+\)CD69\(^+\) T cells in brain and increased levels of interleukin-2 (IL-2) in the cervical lymph nodes and spleen. These immune responses were suppressed in CD28SA-treated hαSyn Parkinson's disease mice. Early treatment with CD28SA attenuated dopaminergic neurodegeneration in the SN of hαSyn Parkinson's disease mice accompanied with reduced brain numbers of activated CD4\(^+\), CD8\(^+\) T cells and CD11b\(^+\) microglia observed at the late disease-stage 10 weeks after AAV injection. In contrast, a later treatment 4 weeks after AAV delivery failed to reduce dopaminergic neurodegeneration. Conclusions Our data indicate that immune modulation by Treg expansion at a timepoint of overt inflammation is effective for treatment of hαSyn Parkinson's disease mice and suggest that the concept of early immune therapy could pose a disease-modifying option for Parkinson's disease patients.}, language = {en} } @article{GrotemeyerMcFlederWuetal.2022, author = {Grotemeyer, Alexander and McFleder, Rhonda Leah and Wu, Jingjing and Wischhusen, J{\"o}rg and Ip, Chi Wang}, title = {Neuroinflammation in Parkinson's disease - putative pathomechanisms and targets for disease-modification}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.878771}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274665}, year = {2022}, abstract = {Parkinson's disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD.}, language = {en} } @article{IpIsaiasKuscheTekinetal.2016, author = {Ip, Chi Wang and Isaias, Ioannis U. and Kusche-Tekin, Burak B. and Klein, Dennis and Groh, Janos and O´Leary, Aet and Knorr, Susanne and Higuchi, Takahiro and Koprich, James B. and Brotchie, Jonathan M. and Toyka, Klaus V. and Reif, Andreas and Volkmann, Jens}, title = {Tor1a+/- mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury}, series = {Acta Neuropathologica Communications}, volume = {4}, journal = {Acta Neuropathologica Communications}, number = {108}, doi = {10.1186/s40478-016-0375-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147839}, year = {2016}, abstract = {Isolated generalized dystonia is a central motor network disorder characterized by twisted movements or postures. The most frequent genetic cause is a GAG deletion in the Tor1a (DYT1) gene encoding torsinA with a reduced penetrance of 30-40 \% suggesting additional genetic or environmental modifiers. Development of dystonia-like movements after a standardized peripheral nerve crush lesion in wild type (wt) and Tor1a+/- mice, that express 50 \% torsinA only, was assessed by scoring of hindlimb movements during tail suspension, by rotarod testing and by computer-assisted gait analysis. Western blot analysis was performed for dopamine transporter (DAT), D1 and D2 receptors from striatal and quantitative RT-PCR analysis for DAT from midbrain dissections. Autoradiography was used to assess the functional DAT binding in striatum. Striatal dopamine and its metabolites were analyzed by high performance liquid chromatography. After nerve crush injury, we found abnormal posturing in the lesioned hindlimb of both mutant and wt mice indicating the profound influence of the nerve lesion (15x vs. 12x relative to control) resembling human peripheral pseudodystonia. In mutant mice the phenotypic abnormalities were increased by about 40 \% (p < 0.05). This was accompanied by complex alterations of striatal dopamine homeostasis. Pharmacological blockade of dopamine synthesis reduced severity of dystonia-like movements, whereas treatment with L-Dopa aggravated these but only in mutant mice suggesting a DYT1 related central component relevant to the development of abnormal involuntary movements. Our findings suggest that upon peripheral nerve injury reduced torsinA concentration and environmental stressors may act in concert in causing the central motor network dysfunction of DYT1 dystonia.}, language = {en} } @article{IpKronerGrohetal.2012, author = {Ip, Chi Wang and Kroner, Antje and Groh, Janos and Huber, Marianne and Klein, Dennis and Spahn, Irene and Diem, Ricarda and Williams, Sarah K. and Nave, Klaus-Armin and Edgar, Julia M. and Martini, Rudolf}, title = {Neuroinflammation by Cytotoxic T-Lymphocytes Impairs Retrograde Axonal Transport in an Oligodendrocyte Mutant Mouse}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0042554}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134982}, pages = {e42554}, year = {2012}, abstract = {Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.}, language = {en} } @article{KarikariMcFlederRibechinietal.2022, author = {Karikari, Akua A. and McFleder, Rhonda L. and Ribechini, Eliana and Blum, Robert and Bruttel, Valentin and Knorr, Susanne and Gehmeyr, Mona and Volkmann, Jens and Brotchie, Jonathan M. and Ahsan, Fadhil and Haack, Beatrice and Monoranu, Camelia-Maria and Keber, Ursula and Yeghiazaryan, Rima and Pagenstecher, Axel and Heckel, Tobias and Bischler, Thorsten and Wischhusen, J{\"o}rg and Koprich, James B. and Lutz, Manfred B. and Ip, Chi Wang}, title = {Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice}, series = {Brain, Behavior, and Immunity}, volume = {101}, journal = {Brain, Behavior, and Immunity}, doi = {10.1016/j.bbi.2022.01.007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300600}, pages = {194 -- 210}, year = {2022}, abstract = {Background Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson's disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. Methods We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)\(^{-/-}\) mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4\(^{+}\)/CD8\(^{-}\), CD4\(^{-}\)/CD8\(^{+}\), or CD4\(^{+}\)/CD8\(^{+}\) (JHD\(^{-/-}\)) mice into the RAG-1\(^{-/-}\) mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. Results AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68-78) and surrounding the pathogenically relevant S129 (120-134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. Conclusions Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.}, language = {en} } @article{RauschenbergerBehnkeGrotemeyeretal.2022, author = {Rauschenberger, Lisa and Behnke, Jennifer and Grotemeyer, Alexander and Knorr, Susanne and Volkmann, Jens and Ip, Chi Wang}, title = {Age-dependent neurodegeneration and neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein mouse model of Parkinson's disease}, series = {Neurobiology of Disease}, volume = {171}, journal = {Neurobiology of Disease}, doi = {10.1016/j.nbd.2022.105798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300629}, year = {2022}, abstract = {The pathogenesis of Parkinson's disease (PD) is closely interwoven with the process of aging. Moreover, increasing evidence from human postmortem studies and from animal models for PD point towards inflammation as an additional factor in disease development. We here assessed the impact of aging and inflammation on dopaminergic neurodegeneration in the hm\(^{2}\)α-SYN-39 mouse model of PD that carries the human, A30P/A53T double-mutated α-synuclein gene. At 2-3 months of age, no significant differences were observed comparing dopaminergic neuron numbers of the substantia nigra (SN) pars compacta of hm\(^{2}\)α-SYN-39 mice with wildtype controls. At an age of 16-17 months, however, hm\(^{2}\)α-SYN-39 mice revealed a significant loss of dopaminergic SN neurons, of dopaminergic terminals in the striatum as well as a reduction of striatal dopamine levels compared to young, 2-3 months transgenic mice and compared to 16-17 months old wildtype littermates. A significant age-related correlation of infiltrating CD4+ and CD8\(^{+}\) T cell numbers with dopaminergic terminal loss of the striatum was found in hm\(^{2}\)α-SYN-39 mice, but not in wildtype controls. In the striatum of 16-17 months old wildtype mice a slightly elevated CD8\(^{+}\) T cell count and CD11b\(^{+}\) microglia cell count was observed compared to younger aged mice. Additional analyses of neuroinflammation in the nigrostriatal tract of wildtype mice did not yield any significant age-dependent changes of CD4\(^{+}\), CD8\(^{+}\) T cell and B220\(^{+}\) B cell numbers, respectively. In contrast, a significant age-dependent increase of CD8\(^{+}\) T cells, GFAP\(^{+}\) astrocytes as well as a pronounced increase of CD11b+ microglia numbers were observed in the SN of hm\(^{2}\)α-SYN-39 mice pointing towards a neuroinflammatory processes in this genetic mouse model for PD. The findings in the hm\(^{2}\)α-SYN-39 mouse model strengthen the evidence that T cell and glial cell responses are involved in the age-related neurodegeneration in PD. The slow and age-dependent progression of neurodegeneration and neuroinflammation in the hm\(^{2}\)α-SYN-39 PD rodent model underlines its translational value and makes it suitable for studying anti-inflammatory therapies.}, language = {en} } @article{RauschenbergerKnorrPisanietal.2021, author = {Rauschenberger, Lisa and Knorr, Susanne and Pisani, Antonio and Hallett, Mark and Volkmann, Jens and Ip, Chi Wang}, title = {Second hit hypothesis in dystonia: Dysfunctional cross talk between neuroplasticity and environment?}, series = {Neurobiology of Disease}, volume = {159}, journal = {Neurobiology of Disease}, doi = {10.1016/j.nbd.2021.105511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265028}, year = {2021}, abstract = {One of the great mysteries in dystonia pathophysiology is the role of environmental factors in disease onset and development. Progress has been made in defining the genetic components of dystonic syndromes, still the mechanisms behind the discrepant relationship between dystonic genotype and phenotype remain largely unclear. Within this review, the preclinical and clinical evidence for environmental stressors as disease modifiers in dystonia pathogenesis are summarized and critically evaluated. The potential role of extragenetic factors is discussed in monogenic as well as adult-onset isolated dystonia. The available clinical evidence for a "second hit" is analyzed in light of the reduced penetrance of monogenic dystonic syndromes and put into context with evidence from animal and cellular models. The contradictory studies on adult-onset dystonia are discussed in detail and backed up by evidence from animal models. Taken together, there is clear evidence of a gene-environment interaction in dystonia, which should be considered in the continued quest to unravel dystonia pathophysiology.}, language = {en} }