@article{WhiteSpringerWiseetal.2022, author = {White, P. Lewis and Springer, Jan and Wise, Matt P. and Einsele, Hermann and L{\"o}ffler, Claudia and Seif, Michelle and Prommersberger, Sabrina and Backx, Matthijs and L{\"o}ffler, J{\"u}rgen}, title = {A clinical case of COVID-19-associated pulmonary aspergillosis (CAPA), illustrating the challenges in diagnosis (despite overwhelming mycological evidence)}, series = {Journal of Fungi}, volume = {8}, journal = {Journal of Fungi}, number = {1}, issn = {2309-608X}, doi = {10.3390/jof8010081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302438}, year = {2022}, abstract = {The COVID-19 pandemic has resulted in large numbers of patients requiring critical care management. With the established association between severe respiratory virus infection and invasive pulmonary aspergillosis (7.6\% for COVID-19-associated pulmonary aspergillosis (CAPA)), the pandemic places a significant number of patients at potential risk from secondary invasive fungal disease. We described a case of CAPA with substantial supporting mycological evidence, highlighting the need to employ strategic diagnostic algorithms and weighted definitions to improve the accuracy in diagnosing CAPA.}, language = {en} } @article{PrommersbergerHudecekNerreter2020, author = {Prommersberger, Sabrina and Hudecek, Michael and Nerreter, Thomas}, title = {Antibody-Based CAR T Cells Produced by Lentiviral Transduction}, series = {Current Protocols in Immunology}, volume = {128}, journal = {Current Protocols in Immunology}, number = {1}, doi = {10.1002/cpim.93}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215497}, year = {2020}, abstract = {One promising approach to treat hematologic malignancies is the usage of patient-derived CAR T cells. There are continuous efforts to improve the function of these cells, to optimize their receptor, and to use them for the treatment of additional types of cancer and especially solid tumors. In this protocol, an easy and reliable approach for CAR T cell generation is described. T cells are first isolated from peripheral blood (here: leukoreduction system chambers) and afterwards activated for one day with anti-CD3/CD28 Dynabeads. The gene transfer is performed by lentiviral transduction and gene transfer rate can be verified by flowcytometric analysis. Six days after transduction, the stimulatory Dynabeads are removed. T cells are cultured in interleukin-2 conditioned medium for several days for expansion. There is an option to expand CAR T cells further by co-incubation with irradiated, antigen-expressing feeder cell lines. The CAR T cells are ready to use after 10 (without feeder cell expansion) to 24 days (with feeder cell expansion).}, language = {en} } @article{MunawarZhouPrommersbergeretal.2023, author = {Munawar, Umair and Zhou, Xiang and Prommersberger, Sabrina and Nerreter, Silvia and Vogt, Cornelia and Steinhardt, Maximilian J. and Truger, Marietta and Mersi, Julia and Teufel, Eva and Han, Seungbin and Haertle, Larissa and Banholzer, Nicole and Eiring, Patrick and Danhof, Sophia and Navarro-Aguadero, Miguel Angel and Fernandez-Martin, Adrian and Ortiz-Ruiz, Alejandra and Barrio, Santiago and Gallardo, Miguel and Valeri, Antonio and Castellano, Eva and Raab, Peter and Rudert, Maximilian and Haferlach, Claudia and Sauer, Markus and Hudecek, Michael and Martinez-Lopez, J. and Waldschmidt, Johannes and Einsele, Hermann and Rasche, Leo and Kort{\"u}m, K. Martin}, title = {Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma}, series = {Communications Biology}, volume = {6}, journal = {Communications Biology}, doi = {10.1038/s42003-023-05683-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357609}, year = {2023}, abstract = {The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.}, language = {en} }