@article{UeceylerValetKafkeetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Valet, Michael and Kafke, Waldemar and T{\"o}lle, Thomas R. and Sommer, Claudia}, title = {Local and Systemic Cytokine Expression in Patients with Postherpetic Neuralgia}, doi = {10.1371/journal.pone.0105269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113041}, year = {2014}, abstract = {Background Postherpetic neuralgia (PHN) is the painful complication of a varicella zoster virus reactivation. We investigated the systemic and local gene expression of pro- and anti-inflammatory cytokine expression in patients with PHN. Methods Thirteen patients with PHN at the torso (Th4-S1) were recruited. Skin punch biopsies were obtained from the painful and the contralateral painless body area for intraepidermal nerve fiber density (IENFD) and cytokine profiling. Additionally, blood was withdrawn for systemic cytokine expression and compared to blood values of healthy controls. We analyzed the gene expression of selected pro- and anti-inflammatory cytokines (tumor necrosis factor-alpha [TNF] and interleukins [IL]-1β, IL-2, and IL-8). Results IENFD was lower in affected skin compared to unaffected skin (p<0.05), while local gene expression of pro- and anti-inflammatory cytokines did not differ except for two patients who had 7fold higher IL-6 and 10fold higher IL-10 gene expression in the affected skin compared to the contralateral unaffected skin sample. Also, the systemic expression of cytokines in patients with PHN and in healthy controls was similar. Conclusion While the systemic and local expression of the investigated pro- and anti-inflammatory cytokines was not different from controls, this may have been influenced by study limitations like the low number of patients and different disease durations. Furthermore, other cytokines or pain mediators need to be considered.}, language = {en} } @article{UeceylerSommer2014, author = {{\"U}{\c{c}}eyler, Nurcan and Sommer, Claudia}, title = {High-Dose Capsaicin for the Treatment of Neuropathic Pain: What We Know and What We Need to Know}, series = {Pain and Therapy}, volume = {3}, journal = {Pain and Therapy}, number = {2}, issn = {2193-651X}, doi = {10.1007/s40122-014-0027-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120669}, pages = {73-84}, year = {2014}, abstract = {Neuropathic pain is a frequent and disabling condition with diverse underlying etiologies and is often difficult to treat. Systemic drug treatment is often limited in efficacy. Furthermore, adverse effects may be a limiting factor when trying to reach the necessary dose. Analgesics that can be applied topically have the potential to largely overcome this problem. They may be of particular advantage in localized neuropathic pain syndromes such as postherpetic neuralgia or small fiber neuropathy. Capsaicin, the pungent component of chili peppers, is a natural ligand of the transient receptor potential vanilloid 1 channel and has long been used as topically applicable cream with concentrations of 0.025 to 0.075\%. In 2009, a high-concentration transdermal capsaicin 8\% patch (Qutenza ; Acorda Therapeutics, Inc., Ardsley, NY, USA; Astellas Pharma Europe Ltd., Chertsey, Surrey, UK) was introduced for the treatment of peripheral neuropathic pain syndromes other than of diabetic origin in adults. It has since been widely used in diverse neuropathic pain disorders. In this review article, we summarize current knowledge on Qutenza, its advantages and problems, and expose unmet needs.}, language = {en} } @article{UeceylerKewenigKafkeetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Kewenig, Susanne and Kafke, Waldemar and Kittel-Schneider, Sarah and Sommer, Claudia}, title = {Skin cytokine expression in patients with fibromyalgia syndrome is not different from controls}, doi = {10.1186/s12883-014-0185-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110624}, year = {2014}, abstract = {Background Fibromyalgia syndrome (FMS) is a chronic pain syndrome of unknown etiology. There is increasing evidence for small nerve fiber impairment in a subgroup of patients with FMS. We investigated whether skin cytokine and delta opioid receptor (DOR) gene expression in FMS patients differs from controls as one potential contributor to small nerve fiber sensitization. Methods We investigated skin punch biopsies of 25 FMS patients, ten patients with monopolar depression but no pain, and 35 healthy controls. Biopsies were obtained from the lateral upper thigh and lower calf. Gene expression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF), interleukin (IL)-6, and IL-8 and of the anti-inflammatory cytokine IL-10 was analyzed using quantitative real-time PCR and normalizing data to 18sRNA as housekeeping gene. Additionally, we assessed DOR gene expression. Results All cytokines and DOR were detectable in skin samples of FMS patients, patients with depression, and healthy controls without intergroup difference. Also, gene expression was not different in skin of the upper and lower leg within and between the groups and in FMS patient subgroups. Conclusions Skin cytokine and DOR gene expression does not differ between patients with FMS and controls. Our results do not support a role of the investigated cytokines in sensitization of peripheral nerve fibers as a potential mechanism of small fiber pathology in FMS.}, language = {en} } @article{UeceylerHomolaGonzalezetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Homola, Gy{\"o}rgy A. and Gonz{\´a}lez, Hans Guerrero and Kramer, Daniela and Wanner, Christoph and Weidemann, Frank and Solymosi, L{\´a}szl{\´o} and Sommer, Claudia}, title = {Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease}, doi = {10.1371/journal.pone.0087054}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112614}, year = {2014}, abstract = {A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males - females; normal - impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13\%) and 5/57 (9\%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1\%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87\%, specificity: 86\%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity.}, language = {en} } @phdthesis{Zusan2014, author = {Zusan, Andreas}, title = {The Effect of Morphology on the Photocurrent Generation in Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117852}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organic solar cells have great potential to become a low-cost and clean alternative to conventional photovoltaic technologies based on the inorganic bulk material silicon. As a highly promising concept in the field of organic photovoltaics, bulk heterojunction (BHJ) solar cells consist of a mixture of an electron donating and an electron withdrawing component. Their degree of intermixing crucially affects the generation of photocurrent. In this work, the effect of an altered blend morphology on polaron pair dissociation, charge carrier transport, and nongeminate recombination is analyzed by the charge extraction techniques time delayed collection field (TDCF) and open circuit corrected transient charge extraction (OTRACE). Different comparative studies cover a broad range of material systems, including polymer and small-molecule donors in combination with different fullerene acceptors. The field dependence of polaron pair dissociation is analyzed in blends based on the polymer pBTTT-C16, allowing a systematic tuning of the blend morphology by varying the acceptor type and fraction. The effect of both excess photon energy and intercalated phases are minor compared to the influence of excess fullerene, which reduces the field dependence of photogeneration. The study demonstrates that the presence of neat fullerene domains is the major driving force for efficient polaron pair dissociation that is linked to the delocalization of charge carriers. Furthermore, the influence of the processing additive diiodooctane (DIO) is analyzed using the photovoltaic blends PBDTTT-C:PC71BM and PTB7:PC71BM. The study reveals amulti-tiered alteration of the blend morphology of PBDTTT-C based blends upon a systematic increase of the amount of DIO. Domains on the hundred nanometers length scale in the DIO-free blend are identified as neat fullerene agglomerates embedded in an intermixed matrix. With the addition of the additive, 0.6\% and 1\% DIO already substantially reduces the size of these domains until reaching the optimum 3\% DIO mixture, where a 7.1\% power conversion efficiency is obtained. It is brought into connection with the formation of interpenetrating polymer and fullerene phases. Similar to PBDTTT-C, the morphology of DIO-free PTB7:PC71BM blends is characterized by large fullerene domains being decreased in size upon the addition of 3\% DIO. OTRACE measurements reveal a reduced Langevin-type, super-second order recombination in both blends. It is demonstrated that the deviation from bimolecular recombination kinetics cannot be fully attributed to the carrier density dependence of the mobility but is rather related to trapping in segregated PC71BM domains. Finally, with regard to small-molecule donors, a higher yield of photogeneration and balanced transport properties are identified as the dominant factors enhancing the efficiency of vacuum deposited MD376:C60 relative to its solution processed counterpart MD376:PC61BM. The finding is explained by a higher degree of dimerization of the merocyanine dye MD376 and a stronger donor-acceptor interaction at the interface in the case of the vacuum deposited blend.}, subject = {Organische Solarzelle}, language = {en} } @article{ZukherNovikovaTikhonovetal.2014, author = {Zukher, Inna and Novikova, Maria and Tikhonov, Anton and Nesterchuk, Mikhail V. and Osterman, Ilya A. and Djordjevic, Marko and Sergiev, Petr V. and Sharma, Cynthia M. and Severinov, Konstantin}, title = {Ribosome-controlled transcription termination is essential for the production of antibiotic microcin C}, series = {Nucleic Acids Research}, volume = {42}, journal = {Nucleic Acids Research}, number = {19}, issn = {0305-1048}, doi = {10.1093/nar/gku880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114839}, pages = {11891-11902}, year = {2014}, abstract = {Microcin C (McC) is a peptide-nucleotide antibiotic produced by Escherichia coli cells harboring a plasmid-borne operon mccABCDE. The heptapeptide MccA is converted into McC by adenylation catalyzed by the MccB enzyme. Since MccA is a substrate for MccB, a mechanism that regulates the MccA/MccB ratio likely exists. Here, we show that transcription from a promoter located upstream of mccA directs the synthesis of two transcripts: a short highly abundant transcript containing the mccA ORF and a longer minor transcript containing mccA and downstream ORFs. The short transcript is generated when RNA polymerase terminates transcription at an intrinsic terminator located in the intergenic region between the mccA and mccB genes. The function of this terminator is strongly attenuated by upstream mcc sequences. Attenuation is relieved and transcription termination is induced when ribosome binds to the mccA ORF. Ribosome binding also makes the mccA RNA exceptionally stable. Together, these two effects-ribosome induced transcription termination and stabilization of the message-account for very high abundance of the mccA transcript that is essential for McC production. The general scheme appears to be evolutionary conserved as ribosome-induced transcription termination also occurs in a homologous operon from Helicobacter pylori.}, language = {en} } @article{ZugmaierToppAlekaretal.2014, author = {Zugmaier, G. and Topp, M. S. and Alekar, S. and Viardot, A. and Horst, H.-A. and Neumann, S. and Stelljes, M. and Bargou, R. C. and Goebeler, M. and Wessiepe, D. and Degenhard, E. and Goekbuget, N. and Klinger, M.}, title = {Long-term follow-up of serum immunoglobulin levels in blinatumomab-treated patients with minimal residual disease-positive B-precursor acute lymphoblastic leukemia}, series = {Blood Cancer Journal}, volume = {4}, journal = {Blood Cancer Journal}, number = {e244}, issn = {2044-5385}, doi = {10.1038/bcj.2014.64}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115433}, year = {2014}, abstract = {No abstract available.}, language = {en} } @phdthesis{Zude2014, author = {Zude, Ingmar}, title = {Characterization of virulence-associated traits of Escherichia coli bovine mastitis isolates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100934}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Bacterial mastitis is caused by invasion of the udder, bacterial multiplication and induction of inflammatory responses in the bovine mammary gland. Disease severity and the cause of disease are influenced by environmental factors, the cow's immune response as well as bacterial traits. Escherichia coli (E. coli) is one of the main causes of acute bovine mastitis, but although pathogenic E. coli strains can be classified into different pathotypes, E. coli causing mastitis cannot unambiguously be distinguished from commensal E. coli nor has a common set of virulence factors been described for mastitis isolates. This project focussed on the characterization of virulence- associated traits of E. coli mastitis isolates in comprehensive analyses under conditions either mimicking initial pathogenesis or conditions that E. coli mastitis isolates should encounter while entering the udder. Virulence-associated traits as well as fitness traits of selected bovine mastitis or faecal E. coli strains were identified and analyzed in comparative phenotypic assays. Raw milk whey was introduced to test bacterial fitness in native mammary secretion known to confer antimicrobial effects. Accordingly, E. coli isolates from bovine faeces represented a heterogeneous group of which some isolates showed reduced ability to survive in milk whey whereas others phenotypically resembled mastitis isolates that represented a homogeneous group in that they showed similar survival and growth characteristics in milk whey. In contrast, mastitis isolates did not exhibit such a uniform phenotype when challenged with iron shortage, lactose as sole carbon source and lingual antimicrobial peptide (LAP) as a main defensin of milk. Reduced bacterial fitness could be related to LAP suggesting that bacterial adaptation to an intramammary lifestyle requires resistance to host defensins present in mammary secretions, at least LAP. E. coli strain 1303 and ECC-1470 lack particular virulence genes associated to mastitis isolates. To find out whether differences in gene expression may contribute to the ability of E. coli variants to cause mastitis, the transcriptome of E. coli model mastitis isolates 1303 and ECC-1470 were analyzed to identify candidate genes involved in bacterium-host interaction, fitness or even pathogenicity during bovine mastitis. DNA microarray analysis was employed to assess the transcriptional response of E. coli 1303 and ECC-1470 upon cocultivation with MAC-T immortalized bovine mammary gland epithelial cells to identify candidate genes involved in bacterium-host interaction. Additionally, the cell adhesion and invasion ability of E. coli strain 1303 and ECC-1470 was investigated. The transcriptonal response to the presence of host cells rather suggested competition for nutrients and oxygen between E. coli and MAC-T cells than marked signs of adhesion and invasion. Accordingly, mostly fitness traits that may also contribute to efficient colonization of the E. coli primary habitat, the gut, have been utilized by the mastitis isolates under these conditions. In this study, RNA-Seq was employed to assess the bacterial transcriptional response to milk whey. According to our transcriptome data, the lack of positively deregulated and also of true virulence-associated determinants in both of the mastitis isolates indicated that E. coli might have adapted by other means to the udder (or at least mammary secretion) as an inflammatory site. We identified traits that promote bacterial growth and survival in milk whey. The ability to utilize citrate promotes fitness and survival of E. coli that are thriving in mammary secretions. According to our results, lactoferrin has only weak impact on E. coli in mammary secretions. At the same time bacterial determinants involved in iron assimilation were negatively regulated, suggesting that, at least during the first hours, iron assimilation is not a challenge to E. coli colonizing the mammary gland. It has been hypothesized that cellular iron stores cause temporary independency to extracellular accessible iron. According to our transcriptome data, this hypothesis was supported and places iron uptake systems beyond the speculative importance that has been suggested before, at least during early phases of infection. It has also been shown that the ability to resist extracytoplasmic stress, by oxidative conditions as well as host defensins, is of substantial importance for bacterial survival in mammary secretions. In summary, the presented thesis addresses important aspects of host-pathogen interaction and bacterial conversion to hostile conditions during colonization of the mastitis inflammatory site, the mammary gland.}, subject = {Escherichia coli}, language = {en} } @article{ZinmanInzucchiLachinetal.2014, author = {Zinman, Bernard and Inzucchi, Silvio E. and Lachin, John M. and Wanner, Christoph and Ferrari, Roberto and Fitchett, David and Bluhmki, Erich and Hantel, Stefan and Kempthorne-Rawson, Joan and Newman, Jennifer and Johansen, Odd Erik and Woerle, Hans-Juergen and Broedl, Uli C.}, title = {Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME (TM))}, series = {Cardiovascular Diabetology}, volume = {13}, journal = {Cardiovascular Diabetology}, number = {102}, issn = {1475-2840}, doi = {10.1186/1475-2840-13-102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116036}, year = {2014}, abstract = {Background: Evidence concerning the importance of glucose lowering in the prevention of cardiovascular (CV) outcomes remains controversial. Given the multi-faceted pathogenesis of atherosclerosis in diabetes, it is likely that any intervention to mitigate this risk must address CV risk factors beyond glycemia alone. The SGLT-2 inhibitor empagliflozin improves glucose control, body weight and blood pressure when used as monotherapy or add-on to other antihyperglycemic agents in patients with type 2 diabetes. The aim of the ongoing EMPA-REG OUTCOME (TM) trial is to determine the long-term CV safety of empagliflozin, as well as investigating potential benefits on macro-/microvascular outcomes. Methods: Patients who were drug naive (HbA(1c) >= 7.0\% and <= 9.0\%), or on background glucose-lowering therapy (HbA(1c) >= 7.0\% and <= 10.0\%), and were at high risk of CV events, were randomized (1:1:1) and treated with empagliflozin 10 mg, empagliflozin 25 mg, or placebo (double blind, double dummy) superimposed upon the standard of care. The primary outcome is time to first occurrence of CV death, non-fatal myocardial infarction, or non-fatal stroke. CV events will be prospectively adjudicated by an independent Clinical Events Committee. The trial will continue until >= 691 confirmed primary outcome events have occurred, providing a power of 90\% to yield an upper limit of the adjusted 95\% CI for a hazard ratio of <1.3 with a one-sided a of 0.025, assuming equal risks between placebo and empagliflozin (both doses pooled). Hierarchical testing for superiority will follow for the primary outcome and key secondary outcomes (time to first occurrence of CV death, non-fatal myocardial infarction, non-fatal stroke or hospitalization for unstable angina pectoris) where non-inferiority is achieved. Results: Between Sept 2010 and April 2013, 592 clinical sites randomized and treated 7034 patients (41\% from Europe, 20\% from North America, and 19\% from Asia). At baseline, the mean age was 63 +/- 9 years, BMI 30.6 +/- 5.3 kg/m(2), HbA1c 8.1 +/- 0.8\%, and eGFR 74 +/- 21 ml/min/1.73 m(2). The study is expected to report in 2015. Discussion: EMPA REG OUTCOME (TM) will determine the CV safety of empagliflozin in a cohort of patients with type 2 diabetes and high CV risk, with the potential to show cardioprotection.}, language = {en} } @phdthesis{Zieschang2014, author = {Zieschang, Fabian}, title = {Energy and Electron Transfer Studies of Triarylamine-based Dendrimers and Cascades}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work the synthesis of dendritic macromolecules and small redox cascades was reported and studies of their energy and electron transfer properties discussed. The chromophores in the dendrimers and the redox cascades are linked via triazoles, which were built up by CuAAC. Thereby, a synthetic concept based on building blocks was implemented, which allowed the exchange of all basic components. Resulting structures include dendrimers composed exclusively of TAAs (G1-G3), dendrimers with an incorporated spirobifluorene core (spiro-G1 and spiro-G2) and the donor-acceptor dendrimer D-A-G1, in which the terminal groups are exchanged by NDIs. Furthermore, a series of model compounds was synthesised in order to achieve a better understanding of the photophysical processes in the dendrimers. A modification of the synthetic concept for dendrimers enabled the synthesis of a series of donor-acceptor triads (T-Me, T-Cl and T-CN) consisting of two TAA donors and one NDI acceptor unit. The intermediate TAA chromophore ensured a downhill redox gradient from the NDI to the terminal TAA, which was proved by cyclic voltammetry measurements. The redox potential of the intermediate TAA was adjusted by different redox determining substituents in the "free" p-position of the TAA. Additionally, two dyads (Da and Db) were synthesised which differ in the junction of the triazole to the TAA or the NDI, respectively. In these cascades a nodal-plane along the N-N-axes in the NDI and a large twist angle between the NDI and the N-aryl substituent guaranteed a small electronic coupling. The photophysical investigations of the dendrimers focused on the homo-energy transfer properties in the TAA dendrimers G1-G3. Steady-state emission spectroscopy revealed that the emission takes place from a charge transfer state. The polar excited state resulted in a strong Stokes shift of the emission, which in turn led to a small spectral overlap integral between the absorption of the acceptor and the emission of the donor in the solvent relaxed state. According to the F{\"o}rster theory, the overlap integral strongly determines the energy transfer rate. Fluorescence up-conversion measurements showed a strong and rapid initial fluorescence anisotropy decay and a much slower decrease on the longer time scale. The experiment revealed a fast energy transfer in the first 2 ps followed by a much slower energy hopping. Time resolved emission spectra (TRES) of the model compound M indicated a solvent relaxation on the same time scale as the fast energy transfer. The F{\"o}rster estimation of energy transfer rates in G1 explains fast energy transfer in the vibrotionally relaxed state before solvent relaxation starts. Thereby, the emission spectrum of G1 in cyclohexane served as the time zero spectrum. Thus, solvent relaxation and fast energy transfer compete in the first two ps after excitation and it is crucial to discriminate between energy transfer in the Franck-Condon and in the solvent relaxed state. Furthermore, this finding demonstrates that fast energy transfer occurs even in charge transfer systems where a large Stokes shift prevents an effective spectral overlap integral if there is a sufficient overlap integral in before solvent relaxation. Energy transfer upon excitation was also observed in the spiro dendrimers spiro-G1 and spiro-G2 and identified by steady-state emission anisotropy measurements. It was assumed that the energy in spiro-G1 is completely distributed over the entire molecule while the energy in spiro-G2 is probably distributed over only one individual branch. This finding was based on a more polarised emission of spiro-G2 compared to spiro-G1. This issue has to be ascertained by e.g. time resolved emission anisotropy measurements in further energy transfer studies. Concerning the electron transfer properties of TAA-triazole systems the radical cations of G1-G2, spiro-G1 and spiro-G2 and of the model compound M were investigated by steady-state absorption spectroscopy. Experiments showed that the triazole bridge exhibits small electronic communication between the adjacent chromophores but still possesses sufficient electronic coupling to allow an effective electron transfer from one chromophore to the other. Due to the high density of chromophores, their D-A-D structure and their superficial centrosymmetry, the presented dendrimers are prospective candidates for two-photon absorption applications. The dyads, triads and the donor-acceptor dendrimer D-A-G1 were investigated regarding their photoinduced electron transfer properties and the effects that dominate charge separation and charge recombination in these systems. The steady-state absorption spectra of all cascades elucidated a superposition of the absorption characteristics of the individual subunits and spectra indicated that the chromophores do not interact in the electronic ground state. Time resolved transient absorption spectroscopy of the cascades was performed in the fs- and ns-time regime in MeCN and toluene as solvent. Measurements revealed that upon with 28200 cm-1 (355) nm and 26300 cm-1 (380 nm), respectively, an electron is transferred from the TAA towards the NDI unit yielding a CS state. In the triads at first a CS1 state is populated, in which the NDI is reduced and the intermediate TAA1 is oxidised. Subsequently, an additional electron transfer from the terminal TAA2 to TAA1 led to the fully CS2 state. Fully CS states of the dyads and triads exhibit lifetimes in the ns-time regime. In contrast for Db in MeCN, a lifetime of 43 ps was observed for the CS state together with the population of a 3NDI state. The signals of the other CS states decay biexponentially, which is a result of the presence of the 1CS and the 3CS states. While magnetic field dependent measurements of Db did not show an effect due to the large singlet-triplet splitting, T-CN exhibited a strong magnetic field dependence which is an evidence for the 1CS/3CS assignment. Further analysis of the singlet-triplet dynamics are required and are currently in progress. Charge recombination occurred in the Marcus inverted region for compounds solved in toluene and in the Marcus normal region for MeCN as solvent. However, a significant inverted region effect was observed only for Db. Triads are probably characterised by charge recombination rates in the inverted and in the normal region near to the vertex of the Marcus parabola. Hence the inverted region effect is not pronounced and the rate charge recombination rates are all in the same magnitude. However, compared to the charge recombination rate of Db the enlarged spatial distance between the terminal TAA and the NDI in the fully CS2 states in the triads resulted in reduced charge recombination rates by ca. one order of magnitude. More important than a small charge recombination rate is an overall lifetime of the CS states and this lifetime can significantly be enhanced by the population of the 3CS state. The reported results reveal that a larger singlet-triplet splitting in the dyads led to a CS state lifetime in the us time regime while a lifetime in the ns-time regime was observed in cases of the triads. Moreover, the singlet-triplet splitting was found to be solvent dependent in the triads, which is a promising starting point for further investigations concerning singlet-triplet splitting. The donor-acceptor dendrimer D-A-G1 showed similar characteristics to the dyads. The generation of a CS state is assumed due to a clear NDI radical anion band in the transient absorption spectrum. Noteworthy, the typical transient absorption band of the TAA radical cation is absent for D A-G1 in toluene. Bixon-Jortner analysis yielded a similar electronic coupling in D-A-G1 compared to the dyads. However, the charge recombination rate is smaller than of Db due to a more energetic CS state, which in the inverted region slows down charge recombination. In combination a singlet-triplet splitting similar to the dyads prolongs the CS state lifetime up to 14 us in diluted solution. Both effects result in an even better performance of D-A-G1 concerning energy conversion. D A-G1 is therefore a promising key structure for further studies on light harvesting applications. In a prospective study a second generation donor-acceptor dendrimer D-A-G2 might be an attractive structure accessible by "click reaction" of 13 and 8. D-A-G2 is expected to exhibit a downhill oriented gradient of CS states as assumed from the CV studies on G1-G3.}, subject = {Sternpolymere}, language = {en} } @phdthesis{Zhang2014, author = {Zhang, Yi}, title = {Regulation of Agrobacterial Oncogene Expression in Host Plants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102578}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Virulent Agrobacterium tumefaciens strains transfer and integrate a DNA region of the tumor-inducing (Ti) plasmid, the T-DNA, into the plant genome and thereby cause crown gall disease. The most essential genes required for crown gall development are the T-DNA-encoded oncogenes, IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) for auxin, and Ipt (isopentenyl transferase) for cytokinin biosynthesis. When these oncogenes are expressed in the host cell, the levels of auxin and cytokinin increase and cause cell proliferation. The aim of this study was to unravel the molecular mechanisms, which regulate expression of the agrobacterial oncogenes in plant cells. Transcripts of the three oncogenes were expressed in Arabidopsis thaliana crown galls induced by A. tumefaciens strain C58 and the intergenic regions (IGRs) between their coding sequences (CDS) were proven to have promoter activity in plant cells. These promoters possess eukaryotic sequence structures and contain cis-regulatory elements for the binding of plant transcription factors. The high-throughput protoplast transactivation (PTA) system was used and identified the Arabidopsis thaliana transcription factors WRKY18, WRKY40, WRKY60 and ARF5 to activate the Ipt oncogene promoter. No transcription factor promoted the activity of the IaaH and IaaM promoters, despite the fact that the sequences contained binding elements for type B ARR transcription factors. Likewise, the treatment of Arabidopsis mesophyll protoplasts with cytokinin (trans-zeatin) and auxin (1-NAA) exerted no positive effect on IaaH and IaaM promoter activity. In contrast, the Ipt promoter strongly responded to a treatment with auxin and only modestly to cytokinin. The three Arabidopsis WRKYs play a role in crown gall development as the wrky mutants developed smaller crown galls than wild-type plants. The WRKY40 and WRKY60 genes responded very quickly to pathogen infection, two and four hours post infection, respectively. Transcription of the WRKY18 gene was induced upon buffer infiltration, which implicates a response to wounding. The three WRKY proteins interacted with ARF5 and with each other in the plant nucleus, but only WRKY40 together with ARF5 increased activation of the Ipt promoter. Moreover, ARF5 activated the Ipt promoter in an auxin-dependent manner. The severe developmental phenotype of the arf5 mutant prevented studies on crown gall development, nevertheless, the reduced crown gall growth on the transport inhibitor response 1 (TIR1) tir1 mutant, lacking the auxin sensor, suggested that auxin signaling is required for optimal crown gall development. In conclusion, A. tumefaciens recruits the pathogen defense related WRKY40 pathway to activate Ipt expression in T-DNA-transformed plant cells. IaaH and IaaM gene expression seems not to be controlled by transcriptional activators, but the increasing auxin levels are signaled via ARF5. The auxin-depended activation of ARF5 boosts expression of the Ipt gene in combination with WRKY40 to increase cytokinin levels and induce crown gall development.}, subject = {Agrobacterium tumefaciens}, language = {en} } @article{ZhangVanCrombruggenHoltappelsetal.2014, author = {Zhang, Nan and Van Crombruggen, Koen and Holtappels, Gabriele and Lan, Feng and Katotomichelakis, Michail and Zhang, Luo and H{\"o}gger, Petra and Bachert, Claus}, title = {Suppression of Cytokine Release by Fluticasone Furoate vs. Mometasone Furoate in Human Nasal Tissue Ex-Vivo}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {4}, doi = {10.1371/journal.pone.0093754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116779}, pages = {e93754}, year = {2014}, abstract = {Background: Topical glucocorticosteroids are the first line therapy for airway inflammation. Modern compounds with higher efficacy have been developed, but head-to-head comparison studies are sparse. Objective: To compare the activity of two intranasal glucocorticoids, fluticasone furoate (FF) and mometasone furoate (MF) with respect to the inhibition of T helper (Th)1, Th2 and Th17 cytokine release in airway mucosa. Methods: We used an ex-vivo human nasal mucosal tissue model and employed pre-and post-Staphylococcus aureus enterotoxin B (SEB)-challenge incubations with various time intervals and drug concentrations to mimic typical clinical situations of preventive or therapeutic use. Results: At a fixed concentration of 10(-10) M, FF had significantly higher suppressive effects on interferon (IFN)-gamma,interleukin (IL)-2 and IL-17 release, but not IL-5 or tumor necrosis factor (TNF)-alpha, vs. MF. While the maximal suppressive activity was maintained when FF was added before or after tissue stimulation, the cytokine suppression capacity of MF appeared to be compromised when SEB-induced cell activation preceded the addition of the drug. In a pre-challenge incubation setting with removal of excess drug concentrations, MF approached inhibition of IL-5 and TNF-alpha after 6 and 24 hours while FF maximally blocked the release of these cytokines right after pre-incubation. Furthermore, FF suppressed a wider range of T helper cytokines compared to MF. Conclusion: The study demonstrates the potential of our human mucosal model and shows marked differences in the ability to suppress the release of various cytokines in pre-and post-challenge settings between FF and MF mimicking typical clinical situations of preventive or therapeutic use.}, language = {en} } @article{ZhanStanciauskasStigloheretal.2014, author = {Zhan, Hong and Stanciauskas, Ramunas and Stigloher, Christian and Dizon, Kevin K. and Jospin, Maelle and Bessereau, Jean-Luis and Pinaud, Fabien}, title = {In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, number = {4974}, doi = {10.1038/ncomms5974}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121125}, year = {2014}, abstract = {Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans). In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca(2+) channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals.}, language = {en} } @article{Zernecke2014, author = {Zernecke, Alma}, title = {Distinct functions of specialized dendritic cell subsets in atherosclerosis and the road ahead}, series = {Scientifica}, volume = {2014}, journal = {Scientifica}, doi = {10.1155/2014/952625}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120241}, pages = {952625}, year = {2014}, abstract = {Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs) and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.}, language = {en} } @phdthesis{ZeeshangebMajeed2014, author = {Zeeshan [geb. Majeed], Saman}, title = {Implementation of Bioinformatics Methods for miRNA and Metabolic Modelling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102900}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Dynamic interactions and their changes are at the forefront of current research in bioinformatics and systems biology. This thesis focusses on two particular dynamic aspects of cellular adaptation: miRNA and metabolites. miRNAs have an established role in hematopoiesis and megakaryocytopoiesis, and platelet miRNAs have potential as tools for understanding basic mechanisms of platelet function. The thesis highlights the possible role of miRNAs in regulating protein translation in platelet lifespan with relevance to platelet apoptosis and identifying involved pathways and potential key regulatory molecules. Furthermore, corresponding miRNA/target mRNAs in murine platelets are identified. Moreover, key miRNAs involved in aortic aneurysm are predicted by similar techniques. The clinical relevance of miRNAs as biomarkers, targets, resulting later translational therapeutics, and tissue specific restrictors of genes expression in cardiovascular diseases is also discussed. In a second part of thesis we highlight the importance of scientific software solution development in metabolic modelling and how it can be helpful in bioinformatics tool development along with software feature analysis such as performed on metabolic flux analysis applications. We proposed the "Butterfly" approach to implement efficiently scientific software programming. Using this approach, software applications were developed for quantitative Metabolic Flux Analysis and efficient Mass Isotopomer Distribution Analysis (MIDA) in metabolic modelling as well as for data management. "LS-MIDA" allows easy and efficient MIDA analysis and, with a more powerful algorithm and database, the software "Isotopo" allows efficient analysis of metabolic flows, for instance in pathogenic bacteria (Salmonella, Listeria). All three approaches have been published (see Appendices).}, subject = {miRNS}, language = {en} } @phdthesis{Zarife2014, author = {Zarife, Rami}, title = {Integrative Warning Concept for Multiple Driver Assistance Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101118}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {More warning Advanced Driver Assistance Systems (ADAS) will be integrated into the European vehicles in the coming years, due to the ongoing progress on the way to automated driving and Euro NCAP requirements. Furthermore, upcoming technologies like Car-2-X will extend the sensory horizon of ADAS and enable the possibility to warn drivers earlier against various hazards than today. Regarding this progress, increasing numbers of different ADAS warnings will be communicated to the driver. In this context, an important question is how multiple ADAS warnings can be integrated into the Human Machine Interface (HMI) of vehicles and which warning elements are needed to ensure warning acceptance, efficiency and understandability seen from the driver's point of view. Two driving simulator studies were conducted and the effects of specific warning elements examined to develop a concept for the integration of upcoming warning ADAS, which focuses on early collision warnings. The implemented early warnings were defined with a warning onset of approximately two seconds before the last possible warning onset. Main questions were whether and how drivers profit from warning direction cues and/or warning object cues for their response to a hazard, and how these cues affect the acceptance of an integrated warning ADAS approach. Furthermore, it was analyzed whether a generalized warning can be used for a cluster of different ADAS concerning the group "warning of collisions". Therefore critical scenarios in rural and urban surroundings were evaluated, including frontal and lateral (intersections) scenarios. Unnecessary warnings and false alarms have also been taken into account. The results indicate that early warning direction cues have a high potential to assist drivers with an ADAS warning cluster which covers warning of collisions. In contrast, warning object cues seem to be less important for the drivers' performance and acceptance regarding early collision warnings. According to these findings, this thesis provides recommendations which warning elements should be included into future ADAS warnings in favor of an integrated warning approach.}, subject = {Fahrerassistenz}, language = {en} } @article{YoungClementsLangetal.2014, author = {Young, Joanna C. and Clements, Abigail and Lang, Alexander E. and Garnett, James A. and Munera, Diana and Arbeloa, Ana and Pearson, Jaclyn and Hartland, Elizabeth L. and Matthews, Stephen J. and Mousnier, Aurelie and Barry, David J. and Way, Michael and Schlosser, Andreas and Aktories, Klaus and Frankel, Gad}, title = {The Escherichia coli effector EspJ blocks Src kinase activity via amidation and ADP ribosylation}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, number = {5887}, doi = {10.1038/ncomms6887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121157}, year = {2014}, abstract = {The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck-WIP-N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose.}, language = {en} } @article{YilmazAksoyCamlitepeetal.2014, author = {Yilmaz, Ayse and Aksoy, Volkan and Camlitepe, Yilmaz and Giurfa, Martin}, title = {Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants}, series = {Frontiers in Behavioral Neuroscience}, volume = {8}, journal = {Frontiers in Behavioral Neuroscience}, doi = {10.3389/fnbeh.2014.00205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119595}, pages = {205}, year = {2014}, abstract = {Insects have evolved physiological adaptations and behavioral strategies that allow them to cope with a broad spectrum of environmental challenges and contribute to their evolutionary success. Visual performance plays a key role in this success. Correlates between life style and eye organization have been reported in various insect species. Yet, if and how visual ecology translates effectively into different visual discrimination and learning capabilities has been less explored. Here we report results from optical and behavioral analyses performed in two sympatric ant species, Formica cunicularia and Camponotus aethiops. We show that the former are diurnal while the latter are cathemeral. Accordingly, F. cunicularia workers present compound eyes with higher resolution, while C. aethiops workers exhibit eyes with lower resolution but higher sensitivity. The discrimination and learning of visual stimuli differs significantly between these species in controlled dual-choice experiments: discrimination learning of small-field visual stimuli is achieved by F. cunicularia but not by C. aethiops, while both species master the discrimination of large-field visual stimuli. Our work thus provides a paradigmatic example about how timing of foraging activities and visual environment match the organization of compound eyes and visually-driven behavior. This correspondence underlines the relevance of an ecological/evolutionary framework for analyses in behavioral neuroscience.}, language = {en} } @phdthesis{Xu2014, author = {Xu, Zhihao}, title = {Cooperative Formation Controller Design for Time-Delay and Optimality Problems}, isbn = {978-3-923959-96-9}, doi = {10.25972/OPUS-10555}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105555}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {This dissertation presents controller design methodologies for a formation of cooperative mobile robots to perform trajectory tracking and convoy protection tasks. Two major problems related to multi-agent formation control are addressed, namely the time-delay and optimality problems. For the task of trajectory tracking, a leader-follower based system structure is adopted for the controller design, where the selection criteria for controller parameters are derived through analyses of characteristic polynomials. The resulting parameters ensure the stability of the system and overcome the steady-state error as well as the oscillation behavior under time-delay effect. In the convoy protection scenario, a decentralized coordination strategy for balanced deployment of mobile robots is first proposed. Based on this coordination scheme, optimal controller parameters are generated in both centralized and decentralized fashion to achieve dynamic convoy protection in a unified framework, where distributed optimization technique is applied in the decentralized strategy. This unified framework takes into account the motion of the target to be protected, and the desired system performance, for instance, minimal energy to spend, equal inter-vehicle distance to keep, etc. Both trajectory tracking and convoy protection tasks are demonstrated through simulations and real-world hardware experiments based on the robotic equipment at Department of Computer Science VII, University of W{\"u}rzburg.}, subject = {Optimalwertregelung}, language = {en} } @phdthesis{Xu2014, author = {Xu, Jiajia}, title = {A high-complexity lentiviral shRNA screen identifies synthetic lethal interactions with deregulated N-Myc in neuroblastoma cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In contrast to c-Myc, a deregulated expression of the MYCN gene is restricted to human neuroendocrine tumours. In most cases, the excessive activity of N-Myc results from a MYCN amplification. In neuroblastoma, amplification of MYCN is a predictor of poor prognosis and resistance to therapy. The inability to target the N-Myc protein directly necessitates the search for alternative targets. This project aimed at identifying genes specifically required for growth and survival of cells that express high levels of N-Myc using high-throughput shRNA screening combined with next generation sequencing. The identification and analysis of these genes will shed light on functional interaction partners of N-Myc. We screened a shRNA library containing 18,327 shRNAs and identified 148 shRNAs, which were selectively depleted in the presence of active N-Myc. In addition, shRNAs targeting genes that are involved in p53 and ARF turnover and apoptosis were depleted in the cell population during the screen. These processes are known to affect N-Myc-mediated apoptosis. Consequently, these results biologically validated the screen. The 148 shRNAs that showed a significant synthetic lethal interaction with high levels of N-Myc expression were further analysed using the bioinformatics program DAVID. We found an enrichment of shRNAs that target genes involved in specific biological processes. For example, we validated synthetic lethal interactions for genes such as, THOC1, NUP153 and LARP7, which play an important role in the process of RNA polymerase II-mediated transcription elongation. We also validated genes that are involved in the neddylation pathway. In the screen we identified Cullin 3, which is a component of the BTB-CUL3-Rbx1 ubiquitin ligase that is involved in the turnover of Cyclin E. Depletion of cullin 3 and activation of N-Myc was found to synergistically increase Cyclin E expression to supraphysiological levels, inducing S-phase arrest and a strong DNA damage response. Together with results from a proteomics analysis of N-Myc associated proteins, our results lead us to the following hypothesis: In a neuroblastoma cell, the high levels of N-Myc result in a conflict between RNA polymerase II and the replication machinery during S-phase. The newly identified interaction partners of N- Myc are required to solve this conflict. Consequently, loss of the interaction leads to a massive DNA damage and the induction of apoptosis. In addition, inhibition or depletion of the essential components of the neddylation pathway also results in an unresolvable problem during S-phase.}, subject = {Neuroblastom}, language = {en} }