@article{RauschenbergervonWardenburgSchaeferetal.2020, author = {Rauschenberger, Vera and von Wardenburg, Niels and Schaefer, Natascha and Ogino, Kazutoyo and Hirata, Hiromi and Lillesaar, Christina and Kluck, Christoph J. and Meinck, Hans-Michael and Borrmann, Marc and Weishaupt, Andreas and Doppler, Kathrin and Wickel, Jonathan and Geis, Christian and Sommer, Claudia and Villmann, Carmen}, title = {Glycine Receptor Autoantibodies Impair Receptor Function and Induce Motor Dysfunction}, series = {Annals of Neurology}, volume = {88}, journal = {Annals of Neurology}, number = {3}, doi = {10.1002/ana.25832}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216005}, pages = {544 -- 561}, year = {2020}, abstract = {Objective Impairment of glycinergic neurotransmission leads to complex movement and behavioral disorders. Patients harboring glycine receptor autoantibodies suffer from stiff-person syndrome or its severe variant progressive encephalomyelitis with rigidity and myoclonus. Enhanced receptor internalization was proposed as the common molecular mechanism upon autoantibody binding. Although functional impairment of glycine receptors following autoantibody binding has recently been investigated, it is still incompletely understood. Methods A cell-based assay was used for positive sample evaluation. Glycine receptor function was assessed by electrophysiological recordings and radioligand binding assays. The in vivo passive transfer of patient autoantibodies was done using the zebrafish animal model. Results Glycine receptor function as assessed by glycine dose-response curves showed significantly decreased glycine potency in the presence of patient sera. Upon binding of autoantibodies from 2 patients, a decreased fraction of desensitized receptors was observed, whereas closing of the ion channel remained fast. The glycine receptor N-terminal residues \(^{29}\)A to \(^{62}\)G were mapped as a common epitope of glycine receptor autoantibodies. An in vivo transfer into the zebrafish animal model generated a phenotype with disturbed escape behavior accompanied by a reduced number of glycine receptor clusters in the spinal cord of affected animals. Interpretation Autoantibodies against the extracellular domain mediate alterations of glycine receptor physiology. Moreover, our in vivo data demonstrate that the autoantibodies are a direct cause of the disease, because the transfer of human glycine receptor autoantibodies to zebrafish larvae generated impaired escape behavior in the animal model compatible with abnormal startle response in stiff-person syndrome or progressive encephalitis with rigidity and myoclonus patients.}, language = {en} } @article{StengelVuralBrunderetal.2019, author = {Stengel, Helena and Vural, Atay and Brunder, Anna-Michelle and Heinius, Annika and Appeltshauser, Luise and Fiebig, Bianca and Giese, Florian and Dresel, Christian and Papagianni, Aikaterini and Birklein, Frank and Weis, Joachim and Huchtemann, Tessa and Schmidt, Christian and K{\"o}rtvelyessy, Peter and Villmann, Carmen and Meinl, Edgar and Sommer, Claudia and Leypoldt, Frank and Doppler, Kathrin}, title = {Anti-pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {6}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {5}, doi = {10.1212/NXI.0000000000000603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202462}, year = {2019}, abstract = {Objective To identify and characterize patients with autoantibodies against different neurofascin (NF) isoforms. Methods Screening of a large cohort of patient sera for anti-NF autoantibodies by ELISA and further characterization by cell-based assays, epitope mapping, and complement binding assays. Results Two different clinical phenotypes became apparent in this study: The well-known clinical picture of subacute-onset severe sensorimotor neuropathy with tremor that is known to be associated with IgG4 autoantibodies against the paranodal isoform NF-155 was found in 2 patients. The second phenotype with a dramatic course of disease with tetraplegia and almost locked-in syndrome was associated with IgG3 autoantibodies against nodal and paranodal isoforms of NF in 3 patients. The epitope against which these autoantibodies were directed in this second phenotype was the common Ig domain found in all 3 NF isoforms. In contrast, anti-NF-155 IgG4 were directed against the NF-155-specific Fn3Fn4 domain. The description of a second phenotype of anti-NF-associated neuropathy is in line with some case reports of similar patients that were published in the last year. Conclusions Our results indicate that anti-pan-NF-associated neuropathy differs from anti-NF-155-associated neuropathy, and epitope and subclass play a major role in the pathogenesis and severity of anti-NF-associated neuropathy and should be determined to correctly classify patients, also in respect to possible differences in therapeutic response.}, language = {en} }