@phdthesis{Zusan2014, author = {Zusan, Andreas}, title = {The Effect of Morphology on the Photocurrent Generation in Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117852}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organic solar cells have great potential to become a low-cost and clean alternative to conventional photovoltaic technologies based on the inorganic bulk material silicon. As a highly promising concept in the field of organic photovoltaics, bulk heterojunction (BHJ) solar cells consist of a mixture of an electron donating and an electron withdrawing component. Their degree of intermixing crucially affects the generation of photocurrent. In this work, the effect of an altered blend morphology on polaron pair dissociation, charge carrier transport, and nongeminate recombination is analyzed by the charge extraction techniques time delayed collection field (TDCF) and open circuit corrected transient charge extraction (OTRACE). Different comparative studies cover a broad range of material systems, including polymer and small-molecule donors in combination with different fullerene acceptors. The field dependence of polaron pair dissociation is analyzed in blends based on the polymer pBTTT-C16, allowing a systematic tuning of the blend morphology by varying the acceptor type and fraction. The effect of both excess photon energy and intercalated phases are minor compared to the influence of excess fullerene, which reduces the field dependence of photogeneration. The study demonstrates that the presence of neat fullerene domains is the major driving force for efficient polaron pair dissociation that is linked to the delocalization of charge carriers. Furthermore, the influence of the processing additive diiodooctane (DIO) is analyzed using the photovoltaic blends PBDTTT-C:PC71BM and PTB7:PC71BM. The study reveals amulti-tiered alteration of the blend morphology of PBDTTT-C based blends upon a systematic increase of the amount of DIO. Domains on the hundred nanometers length scale in the DIO-free blend are identified as neat fullerene agglomerates embedded in an intermixed matrix. With the addition of the additive, 0.6\% and 1\% DIO already substantially reduces the size of these domains until reaching the optimum 3\% DIO mixture, where a 7.1\% power conversion efficiency is obtained. It is brought into connection with the formation of interpenetrating polymer and fullerene phases. Similar to PBDTTT-C, the morphology of DIO-free PTB7:PC71BM blends is characterized by large fullerene domains being decreased in size upon the addition of 3\% DIO. OTRACE measurements reveal a reduced Langevin-type, super-second order recombination in both blends. It is demonstrated that the deviation from bimolecular recombination kinetics cannot be fully attributed to the carrier density dependence of the mobility but is rather related to trapping in segregated PC71BM domains. Finally, with regard to small-molecule donors, a higher yield of photogeneration and balanced transport properties are identified as the dominant factors enhancing the efficiency of vacuum deposited MD376:C60 relative to its solution processed counterpart MD376:PC61BM. The finding is explained by a higher degree of dimerization of the merocyanine dye MD376 and a stronger donor-acceptor interaction at the interface in the case of the vacuum deposited blend.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Gieseking2014, author = {Gieseking, Bj{\"o}rn}, title = {Excitation Dynamics and Charge Carrier Generation in Organic Semiconductors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101625}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The transport of optically excited states, called excitons, as well as their conversion into charges define the two major steps allowing for the operation of organic photovoltaic (OPV) devices. Hence, a deep understanding of these processes, the involved mechanisms as well as possible loss channels is crucial for further improving the efficiency of organic solar cells. For studying the aforementioned processes spectroscopic methods like absorption and emission measurements are useful tools. As many of the processes take place on a sub-nanosecond (ns) timescale ultrafast spectroscopic methods are required. Due to this reason two experiments based on a femtosecond laser system were built and employed in this work, namely picosecond (ps) time-resolved photoluminescence (PL) and transient absorption (TA) spectroscopy. By analyzing the PL decay dynamics in the prototypical organic semiconductor rubrene, the feasibility of a new approach for improving the efficiency of organic solar cells by harvesting triplet excitons generated by singlet fission was examined. Singlet fission describes a process where two triplet excitons are generated via a photoexcited singlet exciton precursor state if the energy of the two triplets is comparable with the energy of the singlet. For this purpose the influence of characteristic length scales on the exciton dynamics in different rubrene morphologies exhibiting an increasing degree of confinement was analyzed. The results show that the quenching at interfacial states efficiently suppresses the desired fission process if these states are reached by excitons during migration. Since interfacial states are expected to play a significant role in thin film solar cells and are easily accessible for the migrating excitons, the results have to be considered for triplet-based OPV. While the aforementioned approach is only investigated for model systems so far, the efficiency of disordered organic bulk heterojunction (BHJ) solar cells could be significantly enhanced in the last couple of years by employing new and more complex copolymer donor materials. However, little is known about the photophysics and in particular the excitation dynamics of these systems. By carrying out a systematic optical study on the prominent copolymer PCDTBT and its building blocks we were able to identify the nature of the two characteristic absorption bands and the coupling mechanism between these levels. The latter mechanism is based on an intrachain partial charge transfer between two functional subunits and our time-resolved measurements indicate that this coupling governs the photophysical properties of solar cells based on these copolymers. The efficient coupling of functional subunits can be seen as a key aspect that guarantees for the success of the copolymer approach. Another important issue concerns the optimization of the morphology of BHJ solar cells. It arises from the discrepancy between the exciton diffusion length \mbox{(\$\approx\$ 10 nm)} and the absorption length of solar irradiation (\$\approx\$ 100 nm). Due to this reason, even for devices based on new copolymer materials, processing parameters affecting the morphology like annealing or employing processing additives are of major importance. In our combined optical, electrical and morphological study for solar cells based on the high-efficient copolymer PBDTTT-C we find a direct correlation between additive content and intermixing of the active layer. The observed maximum in device efficiency can be attributed to a morphology guaranteeing for an optimized balance between charge generation and transport. Our results highlight the importance of understanding the influence of processing parameters on the morphology of the BHJ and thus on the efficiency of the device.}, subject = {Organische Solarzelle}, language = {en} }