@article{ChristlKraft1988, author = {Christl, Manfred and Kraft, A.}, title = {Tricyclo[3.1.1.0\(^{2,6}\)]hexandion (the Valen of o-Benzochinons), Bicyclo[2.1.1]hexan-2,3-dion and Valene of a Chinoxalins, of Phenazins and of a Benzophenazine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58462}, year = {1988}, abstract = {No abstract available}, subject = {Organische Chemie}, language = {en} } @article{ChristlFreundHennebergeretal.1988, author = {Christl, Manfred and Freund, S. and Henneberger, H. and Kraft, A. and Hauck, J. and Irngartinger, H.}, title = {Several Polycyclic Valence Isomers of Dimethyl [14]Annulene-1,8-dicarboxylate. Reactivity of a "Nonconjugated" Bis(bicyclo[1.1.0]butane)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58413}, year = {1988}, abstract = {Diels-Alder reaction of dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (5) with benzvalene (4), norbornene, and norbornadiene afforded the azo compounds 7 and 8. Theseare derivatives of 2,3-diazabicyclo[2.2.2]oct-2-ene as is azo compound 3, which had been obtained previously from 5 and 2 equiv of benzvalene (4). The photochemical extrusion of nitrogen from 3, 7, and 8 has been studied. Whereas 7 and 8 on direct irradiation in benzene gave rise exclusively to the bicyclo[2.2.0]hexane derivatives 9 and 10, respectively, from 3 in addition to the bicyclo[2.2.0]hexane 11, the diolefin 1l was formed. Diolefin 12 has cisdouble bonds in the nine-membered ring and is fixed in a boat conformation in a manner so that the two bicyclobutane systems approach each other very closely. This geometry suggests the unusual ring opening of the intermediate 1,4-cyclohexanediyl diradical from a boat conformation, which arises by inversion of the primarily generated boat conformation. Sensitized photolysis of 3 as weilasthat of ll produced the saturated isomer 13 of 11 and 12. The proximity of the bicyclobutane systems in 1l causes unprecedented reactions leading to cage compounds. When ll was heated at 90 °C, a rearrangement to the pentacyclic product 10 took place. Utilization of tetradeuteriated substrate ll-d4 supported a pathway with two diradical intermediates. Behaving in a convcntional manncr, bicyclobutane 9 and bis(bicyclobutane) 11 took up 1 and 2 equiv of thiophenol most probably in a radical-chain addition to give the thioethers 28 and 19, respectively. In contrast, bis(bicyclobutane) ll was converted by 1 equiv of thiophenol into cagc compound 30 in a process involving both the strained a systems. Heating at 80 °C subjected 30 to a reversible Copc rearrangement, resulting in a 6:1 mixture of 31 and 30. When it was treated with bromine, 11 was transformed to cage compound 38. This addition is believed to proceed via a cationic intermediate. The structure of cage compound 10 was established by a singlc-crystal X-ray analysis of dialcohol 11 prepared from 20 and methyllithium.}, subject = {Organische Chemie}, language = {en} } @article{MarkgrafCortDavisetal.1991, author = {Markgraf, J. H. and Cort, J. R. and Davis, H. A. and Lindeman, N. I. and Myers, C. R. and Kraft, A. and Christl, Manfred}, title = {Strained Heterocyclic Systems. 20. Basicities of Bicyclic Quinoxalines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58584}, year = {1991}, abstract = {No abstract available}, subject = {Organische Chemie}, language = {en} }