@article{BuraBeaupreLegareetal.2018, author = {Bura, Thomas and Beaupr{\´e}, Serge and L{\´e}gar{\´e}, Marc-Andr{\´e} and Ibraikulov, Olzhas A. and Leclerc, Nicolas and Leclerc, Mario}, title = {Theoretical calculations for highly selective Direct Heteroarylation Polymerization: new nitrile-substituted Dithienyl-Diketopyrrolopyrrole-based polymers}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules23092324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197648}, pages = {2324}, year = {2018}, abstract = {Direct Heteroarylation Polymerization (DHAP) is becoming a valuable alternative to classical polymerization methods being used to synthesize π-conjugated polymers for organic electronics applications. In previous work, we showed that theoretical calculations on activation energy (Ea) of the C-H bonds were helpful to rationalize and predict the selectivity of the DHAP. For readers' convenience, we have gathered in this work all our previous theoretical calculations on Ea and performed new ones. Those theoretical calculations cover now most of the widely utilized electron-rich and electron-poor moieties studied in organic electronics like dithienyl-diketopyrrolopyrrole (DT-DPP) derivatives. Theoretical calculations reported herein show strong modulation of the Ea of C-H bond on DT-DPP when a bromine atom or strong electron withdrawing groups (such as fluorine or nitrile) are added to the thienyl moiety. Based on those theoretical calculations, new cyanated dithienyl-diketopyrrolopyrrole (CNDT-DPP) monomers and copolymers were prepared by DHAP and their electro-optical properties were compared with their non-fluorinated and fluorinated analogues.}, language = {en} } @unpublished{LegarePranckeviciusBraunschweig2019, author = {L{\´e}gar{\´e}, Marc-Andr{\´e} and Pranckevicius, Conor and Braunschweig, Holger}, title = {Metallomimetic Chemistry of Boron}, series = {Chemical Reviews}, journal = {Chemical Reviews}, doi = {10.1021/acs.chemrev.8b00561}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186317}, year = {2019}, abstract = {The study of main-group molecules that behave and react similarly to transition-metal (TM) complexes has attracted significant interest in recent decades. Most notably, the attractive idea of replacing the all-too-often rare and costly metals from catalysis has motivated efforts to develop main-group-element-mediated reactions. Main-group elements, however, lack the electronic flexibility of TM complexes that arises from combinations of empty and filled d orbitals and that seem ideally suited to bind and activate many substrates. In this review, we look at boron, an element that despite its nonmetal nature, low atomic weight, and relative redox staticity has achieved great milestones in terms of TM-like reactivity. We show how in interelement cooperative systems, diboron molecules, and hypovalent complexes the fifth element can acquire a truly metallomimetic character. As we discuss, this character is powerfully demonstrated by the reactivity of boron-based molecules with H2, CO, alkynes, alkenes and even with N2.}, language = {en} } @article{LiuLegareSeufertetal.2020, author = {Liu, Siyuan and L{\´e}gar{\´e}, Marc-Andr{\´e} and Seufert, Jens and Prieschl, Dominic and Rempel, Anna and Englert, Lukas and Dellermann, Theresa and Paprocki, Valerie and Stoy, Andreas and Braunschweig, Holger}, title = {2,2′-Bipyridyl as a Redox-Active Borylene Abstraction Agent}, series = {Inorganic Chemistry}, volume = {59}, journal = {Inorganic Chemistry}, number = {15}, doi = {10.1021/acs.inorgchem.0c01383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215595}, pages = {10866-10873}, year = {2020}, abstract = {2,2′-Bipyridyl is shown to spontaneously abstract a borylene fragment (R-B:) from various hypovalent boron compounds. This process is a redox reaction in which the bipyridine is reduced and becomes a dianionic substituent bound to boron through its two nitrogen atoms. Various transition metal-borylene complexes and diboranes, as a well as a diborene, take part in this reaction. In the latter case, our results show an intriguing example of the homolytic cleavage of a B═B double bond.}, language = {en} }