@phdthesis{Yang2021, author = {Yang, Tao}, title = {Functional insights into the role of a bacterial virulence factor and a host factor in Neisseria gonorrhoeae infection}, doi = {10.25972/OPUS-20895}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208959}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neisseria gonorrhoeae (GC) is a human specific pathogenic bacterium. Currently, N. gonorrhoeae developed resistance to virtually all the available antibiotics used for treatment. N. gonorrhoeae starts infection by colonizing the cell surface, followed by invasion of the host cell, intracellular persistence, transcytosis and exit into the subepithelial space. Subepithelial bacteria can reach the bloodstream and disseminate to other tissues causing systemic infections, which leads to serious conditions such as arthritis and pneumonia. A number of studies have well established the host-pathogen interactions during the initial adherence and invasion steps. However, the mechanism of intracellular survival and traversal is poorly understood so far. Hence, identification of novel bacterial virulence factors and host factors involved in the host-pathogen interaction is a crucial step in understanding disease development and uncovering novel therapeutic approaches. Besides, most of the previous studies about N. gonorrhoeae were performed in the conventional cell culture. Although they have provided insights into host-pathogen interactions, much information about the native infection microenvironment, such as cell polarization and barrier function, is still missing. This work focused on determining the function of novel bacterial virulence factor NGFG_01605 and host factor (FLCN) in gonococcal infection. NGFG_01605 was identified by Tn5 transposon library screening. It is a putative U32 protease. Unlike other proteins in this family, it is not secreted and has no ex vivo protease activity. NGFG_01605 knockout decreases gonococcal survival in the epithelial cell. 3D models based on T84 cell was developed for the bacterial transmigration assay. NGFG_01605 knockout does not affect gonococcal transmigration. The novel host factor FLCN was identified by shRNA library screening in search for factors that affected gonococcal adherence and/or internalization. We discovered that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for bacterial survival. Since programmed cell death is a host defence mechanism against intracellular pathogens, we further explored apoptosis and autophagy upon gonococcal infection and determined that FLCN did not affect apoptosis but inhibited autophagy. Moreover, we found that FLCN inhibited the expression of E-cadherin. Knockdown of E- cadherin decreased the autophagy flux and supported N. gonorrhoeae survival. Both non-polarized and polarized cells are present in the cervix, and additionally, E-cadherin represents different polarization properties on these different cells. Therefore, we established 3-D models to better understand the functions of FLCN. We discovered that FLCN was critical for N. gonorrhoeae survival in the 3-D environment as well, but not through inhibiting autophagy. Furthermore, FLCN inhibits the E-cadherin expression and disturbs its polarization in the 3-D models. Since N. gonorrhoeae can cross the epithelial cell barriers through both cell-cell junctions and transcellular migration, we further explored the roles FLCN and E-cadherin played in transmigration. FLCN delayed N. gonorrhoeae transmigration, whereas the knockdown of E-cadherin increased N. gonorrhoeae transmigration. In summary, we revealed roles of the NGFG_01605 and FLCN-E-cadherin axis play in N. gonorrhoeae infection, particularly in relation to intracellular survival and transmigration. This is also the first study that connects FLCN and human-specific pathogen infection.}, language = {en} } @phdthesis{Klein2021, author = {Klein, Thomas}, title = {Establishing an in vitro disease model for Fabry Disease using patient specific induced pluripotent stem cell-derived sensory neurons}, doi = {10.25972/OPUS-19970}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199705}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (GLA), leading to intracellular accumulations of globotriaosylceramide (Gb3). Acral burning pain, which can be triggered by heat, fever or physical activity is an early hallmark of FD and greatly reduces patients' quality of life. The pathophysiology of FD pain is unknown and research is hindered by the limited in vivo availability of suitable human biomaterial. To overcome this obstacle, we generated induced pluripotent stem cells (iPSC) from one female and two male patients with a differing pain phenotype, and developed a refined differentiation protocol for sensory neurons to increase reliability and survival of these neurons, serving as an in vitro disease model. Neurons were characterized for the correct neuronal subtype using immunocytochemistry, gene expression analysis, and for their functionality using electrophysiological measurements. iPSC and sensory neurons from the male patients showed Gb3 accumulations mimicking the disease phenotype, whereas no Gb3 depositions were detected in sensory neurons derived from the female cell line, likely caused by a skewed X-chromosomal inactivation in favor of healthy GLA. Using super-resolution imaging techniques we showed that Gb3 is localized in neuronal lysosomes of male patients and in a first experiment using dSTORM microscopy we were able to visualize the neuronal membrane in great detail. To test our disease model, we treated the neurons with enzyme replacement therapy (ERT) and analyzed its effect on the cellular Gb3 load, which was reduced in the male FD-lines, compared to non-treated cells. We also identified time-dependent differences of Gb3 accumulations, of which some seemed to be resistant to ERT. We also used confocal Ca2+ imaging to investigate spontaneous neuronal network activity, but analysis of the dataset proofed to be difficult, nonetheless showing a high potential for further investigations. We revealed that neurons from a patient with pain pain are more easily excitable, compared to cells from a patient without pain and a healthy control. We provide evidence for the potential of patient-specific iPSC to generate a neuronal in vitro disease model, showing the typical molecular FD phenotype, responding to treatment, and pointing towards underlying electrophysiological mechanisms causing different pain phenotypes. Our sensory neurons are suitable for state-of-the-art microscopy techniques, opening new possibilities for an in-depth analysis of cellular changes, caused by pathological Gb3 accumulations. Taken together, our system can easily be used to investigate the effect of the different mutations of GLA on a functional and a molecular level in affected neurons.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Vollmuth2021, author = {Vollmuth, Nadine}, title = {Role of the proto-oncogene c-Myc in the development of Chlamydia trachomatis}, doi = {10.25972/OPUS-20365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203655}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chlamydia trachomatis, an obligate intracellular human pathogen, is the world's leading cause of infection related blindness and the most common, bacterial sexually transmitted disease. In order to establish an optimal replicative niche, the pathogen extensively interferes with the physiology of the host cell. Chlamydia switches in its complex developmental cycle between the infectious non-replicative elementary bodies (EBs) and the non-infectious replicative reticulate bodies (RBs). The transformation to RBs, shortly after entering a host cell, is a crucial process in infection to start chlamydial replication. Currently it is unknown how the transition from EBs to RBs is initiated. In this thesis, we could show that, in an axenic media approach, L glutamine uptake by the pathogen is crucial to initiate the EB to RB transition. L-glutamine is converted to amino acids which are used by the bacteria to synthesize peptidoglycan. Peptidoglycan inturn is believed to function in separating dividing Chlamydia. The glutamine metabolism is reprogrammed in infected cells in a c-Myc-dependent manner, in order to accomplish the increased requirement for L-glutamine. Upon a chlamydial infection, the proto-oncogene c-Myc gets upregulated to promote host cell glutaminolysis via glutaminase GLS1 and the L-glutamine transporter SLC1A5/ASCT2. Interference with this metabolic reprogramming leads to limited growth of C. trachomatis. Besides the active infection, Chlamydia can persist over a long period of time within the host cell whereby chronic and recurrent infections establish. C. trachomatis acquire a persistent state during an immune attack in response to elevated interferon-γ (IFN-γ) levels. It has been shown that IFN-γ activates the catabolic depletion of L-tryptophan via indoleamine 2,3-dioxygenase (IDO), resulting in the formation of non-infectious atypical chlamydial forms. In this thesis, we could show that IFN-γ depletes the key metabolic regulator c-Myc, which has been demonstrated to be a prerequisite for chlamydial development and growth, in a STAT1-dependent manner. Moreover, metabolic analyses revealed that the pathogen de routs the host cell TCA cycle to enrich pyrimidine biosynthesis. Supplementing pyrimidines or a-ketoglutarate helps the bacteria to partially overcome the persistent state. Together, the results indicate a central role of c-Myc induced host glutamine metabolism reprogramming and L-glutamine for the development of C. trachomatis, which may provide a basis for anti-infectious strategies. Furthermore, they challenge the longstanding hypothesis of L-tryptophan shortage as the sole reason for IFN-γ induced persistence and suggest a pivotal role of c-Myc in the control of the C. trachomatis dormancy.}, language = {en} } @phdthesis{Mayer2021, author = {Mayer, Alexander E.}, title = {Protein kinase D3 signaling in the regulation of liver metabolism}, doi = {10.25972/OPUS-20797}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207978}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The liver plays a pivotal role in maintaining energy homeostasis. Hepatic carbohydrate and lipid metabolism are tightly regulated in order to adapt quickly to changes in nutrient availability. Postprandially, the liver lowers the blood glucose levels and stores nutrients in form of glycogen and triglycerides (TG). In contrast, upon fasting, the liver provides glucose, TG, and ketone bodies. However, obesity resulting from a discrepancy in food intake and energy expenditure leads to abnormal fat accumulation in the liver, which is associated with the development of hepatic insulin resistance, non-alcoholic fatty liver disease, and diabetes. In this context, hepatic insulin resistance is directly linked to the accumulation of diacylglycerol (DAG) in the liver. Besides being an intermediate product of TG synthesis, DAG serves as second messenger in response to G-protein coupled receptor signaling. Protein kinase D (PKD) family members are DAG effectors that integrate multiple metabolic inputs. However, the impact of PKD signaling on liver physiology has not been studied so far. In this thesis, PKD3 was identified as the predominantly expressed isoform in liver. Stimulation of primary hepatocytes with DAG as well as high-fat diet (HFD) feeding of mice led to an activation of PKD3, indicating its relevance during obesity. HFD-fed mice lacking PKD3 specifically in hepatocytes displayed significantly improved glucose tolerance and insulin sensitivity. However, at the same time, hepatic deletion of PKD3 in mice resulted in elevated liver weight as a consequence of increased hepatic lipid accumulation. Lack of PKD3 in hepatocytes promoted sterol regulatory element-binding protein (SREBP)-mediated de novo lipogenesis in vitro and in vivo, and thus increased hepatic triglyceride and cholesterol content. Furthermore, PKD3 suppressed the activation of SREBP by impairing the activity of the insulin effectors protein kinase B (AKT) and mechanistic target of rapamycin complexes (mTORC) 1 and 2. In contrast, liver-specific overexpression of constitutive active PKD3 promoted glucose intolerance and insulin resistance. Taken together, lack of PKD3 improves hepatic insulin sensitivity but promotes hepatic lipid accumulation. For this reason, manipulating PKD3 signaling might be a valid strategy to improve hepatic lipid content or insulin sensitivity. However, the exact molecular mechanism by which PKD3 regulates hepatocytes metabolism remains unclear. Unbiased proteomic approaches were performed in order to identify PKD3 phosphorylation targets. In this process, numerous potential targets of PKD3 were detected, which are implicated in different aspects of cellular metabolism. Among other hits, phenylalanine hydroxylase (PAH) was identified as a target of PKD3 in hepatocytes. PAH is the enzyme that is responsible for the conversion of phenylalanine to tyrosine. In fact, manipulation of PKD3 activity using genetic tools confirmed that PKD3 promotes PAH-dependent conversion of phenylalanine to tyrosine. Therefore, the data in this thesis suggests that PKD3 coordinates lipid and amino acid metabolism in the liver and contributes to the development of hepatic dysfunction.}, subject = {Metabolismus}, language = {en} } @phdthesis{Herz2021, author = {Herz, Michaela}, title = {Genome wide expression profiling of Echinococcus multilocularis}, doi = {10.25972/OPUS-20380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Alveolar echinococcosis, which is caused by the metacestode stage of the small fox tapeworm Echinococcus multilocularis, is a severe zoonotic disease with limited treatment options. For a better understanding of cestode biology the genome of E. multilocularis, together with other cestode genomes, was sequenced previously. While a few studies were undertaken to explore the E. multilocularis transcriptome, a comprehensive exploration of global transcription profiles throughout life cycle stages is lacking. This work represents the so far most comprehensive analysis of the E. multilocularis transcriptome. Using RNA-Seq information from different life cycle stages and experimental conditions in three biological replicates, transcriptional differences were qualitatively and quantitatively explored. The analyzed datasets are based on samples of metacestodes cultivated under aerobic and anaerobic conditions as well as metacestodes obtained directly from infected jirds. Other samples are stem cell cultures at three different time points of development as well as non-activated and activated protoscoleces, the larval stage that can develop into adult worms. In addition, two datasets of metacestodes under experimental conditions suitable for the detection of genes that are expressed in stem cells, the so-called germinative cells, and one dataset from a siRNA experiment were analyzed. Analysis of these datasets led to expression profiles for all annotated genes, including genes that are expressed in the tegument of metacestodes and play a role in host-parasite interactions and modulation of the host's immune response. Gene expression profiles provide also further information about genes that might be responsible for the infiltrative growth of the parasite in the liver. Furthermore, germinative cell-specific genes were identified. Germinative cells are the only proliferating cells in E. multilocularis and therefore of utmost importance for the development and growth of the parasite. Using a combination of germinative cell depletion and enrichment methods, genes with specific expression in germinative cells were identified. As expected, many of these genes are involved in translation, cell cycle regulation or DNA replication and repair. Also identified were transcription factors, many of which are involved in cell fate commitment. As an example, the gene encoding the telomerase reverse transcriptase (TERT) was studied further. Expression of E. multilocularis tert in germinative cells was confirmed experimentally. Cell culture experiments indicate that TERT is required for proliferation and development of the parasite, which makes TERT a potentially interesting drug target for chemotherapy of alveolar echinococcosis. Germinative cell specific genes in E. multilocularis also include genes of densoviral origin. More than 20 individual densovirus loci with information for non-structural and structural densovirus proteins were identified in the E. multilocularis genome. Densoviral elements were also detected in many other cestode genomes. Genomic integration of these elements suggests that densovirus-based vectors might be suitable tools for genetic manipulation of tapeworms. Interestingly, only three of more than 20 densovirus loci in the E. multilocularis genome are expressed. Since the canonical piRNA pathway is lacking in cestodes, this raises the question about potential silencing mechanisms. Exploration of RNA-Seq information indicated natural antisense transcripts as a potential gene regulation mechanism in E. multilocularis. Preliminary experiments further suggest DNA-methylation, which was previously shown to occur in platyhelminthes, as an interesting avenue to explore in future. The transcriptome datasets also contain information about genes that are expressed in differentiated cells, for example the serotonin transporter gene that is expressed in nerve cells. Cell culture experiments indicate that serotonin and serotonin transport play an important role in E. multilocularis proliferation, development and survival. Overall, this work provides a comprehensive transcription data atlas throughout the E. multilocularis life cycle. Identification of germinative cell-specific genes and genes important for host-parasite interactions will greatly facilitate future research. A global overview of gene expression profiles will also aide in the detection of suitable drug targets and the development of new chemotherapeutics against alveolar echinococcosis.}, subject = {Fuchsbandwurm}, language = {en} } @phdthesis{LiessneeEller2021, author = {Liess [n{\´e}e Eller], Anna Katharina Luise}, title = {Understanding the regulation of the ubiquitin-conjugating enzyme UBE2S}, doi = {10.25972/OPUS-20419}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The ubiquitination of proteins serves as molecular signal to control an enormous number of physiological processes and its dysregulation is connected to human diseases like cancer. The versatility of this signal stems from the diverse ways by which ubiquitin can be attached to its targets. Thus, specificity and tight regulation of the ubiquitination are pivotal requirements of ubiquitin signaling. Ubiquitin-conjugating enzymes (E2s) act at the heart of the ubiquitination cascade, transferring ubiquitin from a ubiquitin-activating enzyme (E1) to a ubiquitin ligase (E3) or substrate. When cooperating with a RING-type E3, ubiquitin-conjugating enzymes can determine linkage specificity in ubiquitin chain formation. Our understanding of the regulation of E2 activities is still limited at a structural level. The work described here identifies two regulation mechanisms in UBE2S, a cognate E2 of the human RING-type E3 anaphase-promoting complex/cyclosome (APC/C). UBE2S elongates ubiquitin chains on APC/C substrates in a Lys11 linkage-specific manner, thereby targeting these substrates for degradation and driving mitotic progression. In addition, UBE2S was found to have a role in DNA repair by enhancing non-homologous end-joining (NHEJ) and causing transcriptional arrest at DNA damage sites in homologous recombination (HR). Furthermore, UBE2S overexpression is a characteristic feature of many cancer types and is connected to poor prognosis and diminished response to therapy. The first regulatory mechanism uncovered in this thesis involves the intramolecular auto-ubiquitination of a particular lysine residue (Lys+5) close to the active site cysteine, presumably through conformational flexibility of the active site region. The Lys+5-linked ubiquitin molecule adopts a donor-like, 'closed' orientation towards UBE2S, thereby conferring auto-inhibition. Notably, Lys+5 is a major physiological ubiquitination site in ~25\% of the human E2 enzymes, thus providing regulatory opportunities beyond UBE2S. Besides the active, monomeric state and the auto-inhibited state caused by auto-ubiquitination, I discovered that UBE2S can adopt a dimeric state. The latter also provides an auto-inhibited state, in which ubiquitin transfer is blocked via the obstruction of donor binding. UBE2S dimerization is promoted by its unique C-terminal extension, suppresses auto-ubiquitination and thereby the proteasomal degradation of UBE2S. Taken together, the data provided in this thesis illustrate the intricate ways by which UBE2S activity is fine-tuned and the notion that structurally diverse mechanisms have evolved to restrict the first step in the catalytic cycle of E2 enzymes.}, subject = {E2}, language = {en} } @phdthesis{Dannhaeuser2021, author = {Dannh{\"a}user, Sven}, title = {Function of the Drosophila adhesion-GPCR Latrophilin/CIRL in nociception and neuropathy}, doi = {10.25972/OPUS-20158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201580}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Touch sensation is the ability to perceive mechanical cues which is required for essential behaviors. These encompass the avoidance of tissue damage, environmental perception, and social interaction but also proprioception and hearing. Therefore research on receptors that convert mechanical stimuli into electrical signals in sensory neurons remains a topical research focus. However, the underlying molecular mechanisms for mechano-metabotropic signal transduction are largely unknown, despite the vital role of mechanosensation in all corners of physiology. Being a large family with over 30 mammalian members, adhesion-type G protein-coupled receptors (aGPCRs) operate in a vast range of physiological processes. Correspondingly, diverse human diseases, such as developmental disorders, defects of the nervous system, allergies and cancer are associated with these receptor family. Several aGPCRs have recently been linked to mechanosensitive functions suggesting, that processing of mechanical stimuli may be a common feature of this receptor family - not only in classical mechanosensory structures. This project employed Drosophila melanogaster as the candidate to analyze the aGPCR Latrophilin/dCIRL function in mechanical nociception in vivo. To this end, we focused on larval sensory neurons and investigated molecular mechanisms of dCIRL activity using noxious mechanical stimuli in combination with optogenetic tools to manipulate second messenger pathways. In addition, we made use of a neuropathy model to test for an involvement of aGPCR signaling in the malfunctioning peripheral nervous system. To do so, this study investigated and characterized nocifensive behavior in dCirl null mutants (dCirlKO) and employed genetically targeted RNA-interference (RNAi) to cell-specifically manipulate nociceptive function. The results revealed that dCirl is transcribed in type II class IV peripheral sensory neurons - a cell type that is structurally similar to mammalian nociceptors and detects different nociceptive sensory modalities. Furthermore, dCirlKO larvae showed increased nocifensive behavior which can be rescued in cell specific reexpression experiments. Expression of bPAC (bacterial photoactivatable adenylate cyclase) in these nociceptive neurons enabled us to investigate an intracellular signaling cascade of dCIRL function provoked by light-induced elevation of cAMP. Here, the findings demonstrated that dCIRL operates as a down-regulator of nocifensive behavior by modulating nociceptive neurons. Given the clinical relevance of this results, dCirl function was tested in a chemically induced neuropathy model where it was shown that cell specific overexpression of dCirl rescued nocifensive behavior but not nociceptor morphology.}, subject = {Drosophila}, language = {en} } @phdthesis{Gruendl2021, author = {Gr{\"u}ndl, Marco}, title = {Biochemical characterization of the MMB-Hippo crosstalk and its physiological relevance for heart development}, doi = {10.25972/OPUS-21332}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213328}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The Myb-MuvB (MMB) complex plays an essential role in the time-dependent transcriptional activation of mitotic genes. Recently, our laboratory identified a novel crosstalk between the MMB-complex and YAP, the transcriptional coactivator of the Hippo pathway, to coregulate a subset of mitotic genes (Pattschull et al., 2019). Several genetic studies have shown that the Hippo-YAP pathway is essential to drive cardiomyocyte proliferation during cardiac development (von Gise et al., 2012; Heallen et al., 2011; Xin et al., 2011). However, the exact mechanisms of how YAP activates proliferation of cardiomyocytes is not known. This doctoral thesis addresses the physiological role of the MMB-Hippo crosstalk within the heart and characterizes the YAP-B-MYB interaction with the overall aim to identify a potent inhibitor of YAP. The results reported in this thesis indicate that complete loss of the MMB scaffold protein LIN9 in heart progenitor cells results in thinning of ventricular walls, reduced cardiomyocyte proliferation and early embryonic lethality. Moreover, genetic experiments using mice deficient in SAV1, a core component of the Hippo pathway, and LIN9-deficient mice revealed that the correct function of the MMB complex is critical for proliferation of cardiomyocytes due to Hippo-deficiency. Whole genome transcriptome profiling as well as genome wide binding studies identified a subset of Hippo-regulated cell cycle genes as direct targets of MMB. By proximity ligation assay (PLA), YAP and B-MYB were discovered to interact in embryonal cardiomyocytes. Biochemical approaches, such as co-immunoprecipitation assays, GST-pulldown assays, and µSPOT-based peptide arrays were employed to characterize the YAP-B-MYB interaction. Here, a PY motif within the N-terminus of B-MYB was found to directly interact with the YAP WW-domains. Consequently, the YAP WW-domains were important for the ability of YAP to drive proliferation in cardiomyocytes and to activate MMB target genes in differentiated C2C12 cells. The biochemical information obtained from the interaction studies was utilized to develop a novel competitive inhibitor of YAP called MY-COMP (Myb-YAP competition). In MY-COMP, the protein fragment of B-MYB containing the YAP binding domain is fused to a nuclear localization signal. Co-immunoprecipitation studies as well as PLA revealed that the YAP-B-MYB interaction is robustly blocked by expression of MY-COMP. Adenoviral overexpression of MY-COMP in embryonal cardiomyocytes suppressed entry into mitosis and blocked the pro-proliferative function of YAP. Strikingly, characterization of the cellular phenotype showed that ectopic expression of MY-COMP led to growth defects, nuclear abnormalities and polyploidization in HeLa cells. Taken together, the results of this thesis reveal the mechanism of the crosstalk between the Hippo signaling pathway and the MMB complex in the heart and form the basis for interference with the oncogenic activity of the Hippo coactivator YAP.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Becker2021, author = {Becker, Isabelle Carlotta}, title = {The role of megakaryocytes and platelets in vascular and osteogenic development}, doi = {10.25972/OPUS-21024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210241}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Platelets, small anucleate cell fragments in the blood stream, derive from large precursor cells, so-called megakaryocytes (MK) residing in the bone marrow (BM). In addition to their role in wound healing, platelets have been shown to play a significant role during inflammatory bleeding. Above all, the immunoreceptor tyrosine-based activation motif (ITAM) receptors GPVI as well as CLEC-2 have been identified as main regulators of vascular integrity. In addition to ITAM-bearing receptors, our group identified GPV as another potent regulator of hemostasis and thrombosis. Surprisingly, concomitant lack of GPV and CLEC-2 deteriorated blood-lymphatic misconnections observed in Clec2-/- mice resulting in severe edema formation and intestinal inflammation. Analysis of lymphatic and vascular development in embryonic mesenteries revealed severely defective blood-lymph-vessel separation, which translated into thrombocytopenia and increased vascular permeability due to reduced tight junction density in mesenteric blood vessels and consequent leakage of blood into the peritoneal cavity. Recently, platelet granule release has been proposed to ameliorate the progression of retinopathy of prematurity (ROP), a fatal disease in newborns leading to retinal degradation. The mechanisms governing platelet activation in this process remained elusive nonetheless, which prompted us to investigate a possible role of ITAM signaling. In the second part of this thesis, granule release during ROP was shown to be GPVI- and partly CLEC-2-triggered since blockade or loss of these receptors markedly deteriorated ROP progression. Proplatelet formation from MKs is highly dependent on a functional microtubule and actin cytoskeleton, the latter of which is regulated by several actin-monomer binding proteins including Cofilin1 and Twinfilin1 that have been associated with actin-severing at pointed ends. In the present study, a redundancy between both proteins especially important for the guided release of proplatelets into the bloodstream was identified, since deficiency in both proteins markedly impaired MK functionality mainly due to altered actin-microtubule crosstalk. Besides ITAM-triggered activation, platelets and MKs are dependent on inhibitory receptors, which prevent overshooting activation. We here identified macrothrombocytopenic mice with a mutation within Mpig6b encoding the ITIM-bearing receptor G6b-B. G6b-B-mutant mice developed a severe myelofibrosis associated with sex-specific bone remodeling defects resulting in osteosclerosis and -porosis in female mice. Moreover, G6b-B was shown to be indispensable for MK maturation as verified by a significant reduction in MK-specific gene expression in G6b-B-mutant MKs due to reduced GATA-1 activity.}, subject = {Megakaryozyt}, language = {en} } @phdthesis{Weigand2021, author = {Weigand, Isabel}, title = {Consequences of Protein Kinase A mutations in adrenocortical cells and tumours}, doi = {10.25972/OPUS-16064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160646}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Adrenal Cushing's Syndrome (CS) is a rare but life-threatening disease and therefore it is of great importance to understand the pathogenesis leading to adrenal CS. It is well accepted that Protein Kinase A (PKA) signalling mediates steroid secretion in adrenocortical cells. PKA is an inactive heterotetramer, consisting of two catalytic and two regulatory subunits. Upon cAMP binding to the regulatory subunits, the catalytic subunits are released and are able to phosphorylate their target proteins. Recently, activating somatic mutations affecting the catalytic subunit a of PKA have been identified in a sub-population of cortisol-producing adenomas (CPAs) associated with overt CS. Interestingly, the PKA regulatory subunit IIb has long been known to have significantly lower protein levels in a sub-group of CPAs compared to other adrenocortical tumours. Yet, it is unknown, why these CPAs lack the regulatory subunit IIb, neither are any functional consequences nor are the underlying regulation mechanisms leading to reduced RIIb levels known. The results obtained in this thesis show a clear connection between Ca mutations and reduced RIIb protein levels in CPAs but not in other adrenocortical tumours. Furthermore, a specific pattern of PKA subunit expression in the different zones of the normal adrenal gland is demonstrated. In addition, a Ca L206R mutation-mediated degradation of RIIb was observed in adrenocortical cells in vitro. RIIb degradation was found to be mediated by caspases and by performing mutagenesis experiments of the regulatory subunits IIb and Ia, S114 phosphorylation of RIIb was identified to make RIIb susceptible for degradation. LC-MS/MS revealed RIIb interaction partners to differ in the presence of either Ca WT and Ca L206R. These newly identified interaction partners are possibly involved in targeting RIIb to subcellular compartments or bringing it into spatial proximity of degrading enzymes. Furthermore, reducing RIIb protein levels in an in vitro system were shown to correlate with increased cortisol secretion also in the absence of PRKACA mutations. The inhibiting role of RIIb in cortisol secretion demonstrates a new function of this regulatory PKA subunit, improving the understanding of the complex regulation of PKA as key regulator in many cells.}, subject = {Cushing-Syndrom}, language = {en} } @phdthesis{Thomas2021, author = {Thomas, Sarah Katharina}, title = {Design of novel IL-4 antagonists employing site-specific chemical and biosynthetic glycosylation}, doi = {10.25972/OPUS-17517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175172}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The cytokines interleukin 4 (IL-4) and IL-13 are important mediators in the humoral immune response and play a crucial role in the pathogenesis of chronic inflammatory diseases, such as asthma, allergies, and atopic dermatitis. Hence, IL-4 and IL-13 are key targets for treatment of such atopic diseases. For cell signalling IL-4 can use two transmembrane receptor assemblies, the type I receptor consisting of receptors IL-4R and γc, and type II receptor consisting of receptors IL-4R and IL-13R1. The type II receptor is also the functional receptor of IL-13, receptor sharing being the molecular basis for the partially overlapping effects of IL-4 and IL-13. Since both cytokines require the IL-4R receptor for signal transduction, this allows the dual inhibition of both IL-4 and IL-13 by specifically blocking the receptor IL-4R. This study describes the design and synthesis of novel antagonistic variants of human IL-4. Chemical modification was used to target positions localized in IL-4 binding sites for γc and IL-13R1 but outside of the binding epitope for IL-4R. In contrast to existing studies, which used synthetic chemical compounds like polyethylene glycol for modification of IL-4, we employed glycan molecules as a natural alternative. Since glycosylation can improve important pharmacological parameters of protein therapeutics, such as immunogenicity and serum half-life, the introduced glycan molecules thus would not only confer a steric hindrance based inhibitory effect but simultaneously might improve the pharmacokinetic profile of the IL-4 antagonist. For chemical conjugation of glycan molecules, IL-4 variants containing additional cysteine residues were produced employing prokaryotic, as well as eukaryotic expression systems. The thiol-groups of the engineered cysteines thereby allow highly specific modification. Different strategies were developed enabling site-directed coupling of amine- or thiol- functionalized monosaccharides to introduced cysteine residues in IL-4. A linker-based coupling procedure and an approach requiring phenylselenyl bromide activation of IL-4 thiol-groups were hampered by several drawbacks, limiting their feasibility. Surprisingly, a third strategy, which involved refolding of IL-4 cysteine variants in the presence of thiol- glycans, readily allowed synthesis of IL-4 glycoconjugates in form of mixed disulphides in milligram amount. This approach, therefore, has the potential for large-scale synthesis of IL-4 antagonists with highly defined glycosylation. Obtaining a homogenous glycoconjugate with exactly defined glycan pattern would allow using the attached glycan structures for fine-tuning of pharmacokinetic properties of the IL-4 antagonist, such as absorption and metabolic stability. The IL-4 glycoconjugates generated in this work proved to be highly effective antagonists inhibiting IL-4 and/or IL-13 dependent responses in cell-based experiments and in in vitro binding studies. Glycoengineered IL-4 antagonists thus present valuable alternatives to IL-4 inhibitors used for treatment of atopic diseases such as the neutralizing anti-IL-4R antibody Dupilumab.}, subject = {Glykosylierung}, language = {en} } @phdthesis{Ruedenauer2021, author = {R{\"u}denauer, Fabian}, title = {Nutrition facts of pollen: nutritional quality and how it affects reception and perception in bees}, doi = {10.25972/OPUS-21254}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Nutrients belong to the key elements enabling life and influencing an organism's fitness. The intake of nutrients in the right amounts and ratios can increase fitness; strong deviations from the optimal intake target can decrease fitness. Hence, the ability to assess the nutritional profile of food would benefit animals. To achieve this, they need the according nutrient receptors, the ability to interpret the receptor information via perceptive mechanisms, and the ability to adjust their foraging behavior accordingly. Additionally, eventually existing correlations between the nutrient groups and single nutrient compounds in food could help them to achieve this adjustment. A prominent interaction between food and consumer is the interaction between flowering plants (angiosperms) and animal pollinators. Usually both of the interacting partners benefit from this mutualistic interaction. Plants are pollinated while pollinators get a (most of the times) nutritional reward in form of nectar and/or pollen. As similar interactions between plants and animals seem to have existed even before the emergence of angiosperms, these interactions between insects and angiosperms very likely have co-evolved right from their evolutionary origin. Therefore, insect pollinators with the ability to assess the nutritional profile may have shaped the nutritional profile of plant species depending on them for their reproduction via selection pressure. In Chapter I of this thesis the pollen nutritional profile of many plant species was analyzed in the context of their phylogeny and their dependence on insect pollinators. In addition, correlations between the nutrients were investigated. While the impact of phylogeny on the pollen protein content was little, the mutual outcome of both of the studies included in this chapter is that protein content of pollen is mostly influenced by the plant's dependence on insect pollinators. Several correlations found between nutrients within and between the nutrient groups could additionally help the pollinators to assess the nutrient profile of pollen. An important prerequisite for this assessment would be that the pollinators are able to differentiate between pollen of different plant species. Therefore, in Chapter II it was investigated whether bees have this ability. Specifically, it was investigated whether honeybees are able to differentiate between pollen of two different, but closely related plant species and whether bumblebees prefer one out of three pollen mixes, when they were fed with only one of them as larvae. Honeybees indeed were able to differentiate between the pollen species and bumblebees preferred one of the pollen mixes to the pollen mix they were fed as larvae, possibly due to its nutritional content. Therefore, the basis for pollen nutrient assessment is given in bees. However, there also was a slight preference for the pollen fed as larvae compared to another non-preferred pollen mix, at least hinting at the retention of larval memory in adult bumblebees. Chapter III looks into nutrient perception of bumblebees more in detail. Here it was shown that they are principally able to perceive amino acids and differentiate between them as well as different concentrations of the same amino acid. However, they do not seem to be able to assess the amino acid content in pollen or do not focus on it, but instead seem to focus on fatty acids, for which they could not only perceive concentration differences, but also were able to differentiate between. These findings were supported by feeding experiments in which the bumblebees did not prefer any of the pollen diets containing less or more amino acids but preferred pollen with less fatty acids. In no choice feeding experiments, bumblebees receiving a diet with high fatty acid content accepted undereating other nutrients instead of overeating fat, leading to increased mortality and the inability to reproduce. Hence, the importance of fat in pollen needs to be looked into further. In conclusion, this thesis shows that the co-evolution of flowering plants and pollinating insects could be even more pronounced than thought before. Insects do not only pressure the plants to produce high quality nectar, but also pressure those plants depending on insect pollination to produce high quality pollen. The reason could be the insects' ability to receive and perceive certain nutrients, which enables them to forage selectively leading to a higher reproductive success of plants with a pollinator-suitable nutritional pollen profile.}, subject = {Pollen}, language = {en} } @phdthesis{RuedtvonCollenberg2021, author = {R{\"u}dt von Collenberg, Cora Freifrau}, title = {The role of Ciliary Neurotrophic Factor in hippocampal synaptic plasticity and learning}, doi = {10.25972/OPUS-20664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206646}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ciliary neurotrophic factor (Cntf) acts as a differentiation and survival factor for different types of neurons and glial cells. It is expressed by peripheral Schwann cells and astrocytes in the central nervous system and mediates its effects via a receptor complex involving CntfRα, LifRß and gp130, leading to downstream activation of Stat3. Recent studies by our group have shown that Cntf modulates neuronal microtubule dynamics via Stat3/stathmin interaction. In a mouse model for motor neuron disease, i.e. pmn, Cntf is able to rescue axonal degeneration through Stat3/stathmin signaling. While these findings suggest a role of Cntf in controlling axonal functions in the neuromuscular system, additional data indicate that Cntf might also play a role in synaptic plasticity in the hippocampus. Electrophysiological recordings in hippocampal organotypic cultures and acute slices revealed a deficit in long-term potentiation (LTP) in Cntf -/- mice. This deficit was rescued by 24 h stimulation with Cntf, combined with an acute application of Cntf during LTP-measurements indicating that Cntf is both necessary and sufficient for hippocampal LTP, and possibly synaptic plasticity. Therefore, Cntf knockout mice were investigated to elucidate this possible role of Cntf in hippocampal LTP and synaptic plasticity. First, we validated the presence of Cntf in the target tissue: in the hippocampus, Cntf was localized in Gfap-positive astrocytes surrounding small blood vessels in the fissure and in meningeal areas close to the dentate gyrus. Laser micro-dissection and qPCR analysis showed a similar distribution of Cntf-coding mRNA validating the obtained immunofluorescent results. Despite the strong LTP deficit in organotypic cultures, in vivo behavior of Cntf -/- mice regarding hippocampus-dependent learning and anxiety-related paradigms was largely inconspicuous. However, western blot analysis of hippocampal organotypic cultures revealed a significant reduction of pStat3 levels in Cntf -/- cultures under baseline conditions, which in turn were elevated upon Cntf stimulation. In order to resolve and examine synaptic structures we turned to in vitro analysis of cultured hippocampal neurons which indicated that pStat3 is predominantly located in the presynapse. In line with these findings, presynapses of Cntf -/- cultures were reduced in size and when in contact to astrocytes, contained less pStat3 immunoreactivity compared to presynapses in wildtype cultures. In conclusion, our findings hypothesize that despite of a largely inconspicuous behavioral phenotype of Cntf -/- mice, Cntf appears to have an influence on pStat3 levels at hippocampal synapses. In a next step these two key questions need to be addressed experimentally: 1) is there a compensatory mechanism by members of the Cntf family, possibly downstream of pStat3, which explains the in vivo behavioral results of Cntf -/- mice and can likewise account for the largely inconspicuous phenotype in CNTF-deficient humans? 2) How exactly does Cntf influence LTP through Stat3 signaling? To unravel the underlying mechanism further experiments should therefore investigate whether microtubule dynamics downstream of Stat3 and stathmin signaling are involved in the Cntf-induced modulation of hippocampal synaptic plasticity, similar to as it was shown in motoneurons.}, subject = {Hippocampus}, language = {en} } @phdthesis{BergmannBueno2021, author = {Bergmann Bueno, Amauri}, title = {Ecophysiological adaptations of cuticular water permeability of plants to hot arid biomes}, doi = {10.25972/OPUS-16783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Arid environments cover almost one-third of the land over the world. Plant life in hot arid regions is prone to the water shortage and associated high temperatures. Drought-stressed plants close the stomata to reduce water loss. Under such conditions, the remaining water loss exclusively happens across the plant cuticle. The cuticular water permeability equals the minimum and inevitable water loss from the epidermal cells to the atmosphere under maximally stomatal closure. Thus, low cuticular water permeability is primordial for plant survival and viability under limited water source. The assumption that non-succulent xerophytes retard water loss due to the secretion of a heavier cuticle is often found in the literature. Intuitively, this seems to be plausible, but few studies have been conducted to evaluate the cuticular permeability of xerophilous plants. In chapter one, we investigated whether the cuticular permeability of Quercus coccifera L. grown in the aridest Mediterranean-subtype climate is indeed lower than that of individuals grown under temperate climate conditions. Also, the cuticular wax chemical compositions of plants grown in both habitats were qualitatively and quantitatively analysed by gas-chromatography. In few words, our findings showed that although the cuticular wax deposition increased in plants under Mediterranean climate, the cuticular permeability remained unaltered, regardless of habitat. The associated high temperatures in arid regions can drastically increase the cuticular water permeability. Thereby, the thermal stability of the cuticular transpirational barrier is decisive for safeguarding non-succulent xerophytes against desiccation. The successful adaptation of plants to hot deserts might be based on finding different solutions to cope with water and heat stresses. Water-saver plants close the stomata before the leaf water potential drastically changes in order to prevent damage, whereas water-spender plants reduce the leaf water potential by opening the stomata, which allow them to extract water from the deep soil to compensate the high water loss by stomatal transpiration. In chapter two, we compare the thermal stability of the cuticular transpiration barrier of the desert water-saver Phoenix dactylifera L. and the water-spender Citrullus colocynthis (L.) Schrad. In short, the temperature-dependent increase of the cuticular permeability of P. dactylifera was linear over the whole temperature range (25-50°C), while that of C. colocynthis was biphasic with a steep increase at temperatures ≥ 40°C. This drastic increase of cuticular permeability indicates a thermally induced breakdown of the C. colocynthis cuticular transpiration barrier, which does not occur in P. dactylifera. We further discussed how the specific chemical composition of the cutin and cuticular waxes might contribute to the pronounced thermal resistance of the P. dactylifera cuticular transpiration barrier. A multitude of morpho and physiological modifications, including photosynthetic thermal tolerance and traits related to water balance, led to the successful plant colonisation of hot arid regions over the globe. High evaporative demand and elevated temperatures very often go along together, thereby constraining the plant life in arid environments. In chapter 3, we surveyed cuticular permeability, leaf thermal tolerance, and cuticular wax chemical composition of 14 non-succulent plant species native from some of the hottest and driest biomes in South-America, Europe, and Asia. Our findings showed that xerophilous flowering plants present high variability for cuticular permeability and leaf thermal tolerance, but both physiological features could not be associated with the species original habitat. We also provide substantial evidence that non-succulent xerophytes with more efficient cuticular transpirational barrier have higher leaf thermal tolerance, which might indicate a potential coevolution of these features in hot arid biomes. We further discussed the efficiency of the cuticular transpiration barrier in function to the cuticular wax chemical composition in the general discussion section.}, subject = {Plant cuticle}, language = {en} } @phdthesis{Schoenwetter2021, author = {Sch{\"o}nwetter, Elisabeth Sofie}, title = {Towards an understanding of the intricate interaction network of TFIIH}, doi = {10.25972/OPUS-16892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168926}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The integrity of its DNA is fundamental for every living cell. However, DNA is constantly threatened by exogenous and endogenous damaging agents that can cause a variety of different DNA lesions. The severe consequences of an accumulation of DNA lesions are reflected in cancerogenesis and aging. Several DNA repair mechanisms ensure the repair of DNA lesions and thus maintain DNA integrity. One of these DNA repair mechanisms is nucleotide excision repair (NER), which is famous for its ability to address a large variety of structurally unrelated DNA lesions. A key component of eukaryotic NER is the transcription factor II H (TFIIH) complex, which is not only essential for DNA repair but also for transcription. The TFIIH complex is composed of ten subunits. How these subunits work together during NER to unwind the DNA around the lesion is, however, not yet fully understood. High-resolution structural data and biochemical insights into the function of every subunit are thus indispensable to understand the functional networks within TFIIH. The importance of an intact TFIIH complex is reflected in the severe consequences of patient mutations in the TFIIH subunits XPB, XPD or p8 leading to the hallmark diseases xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Defects in the NER pathway are further associated with several types of cancer including skin cancer. The herein described work focused on five TFIIH subunits derived from the thermophilic fungus Chaetomium thermophilum, the p34/p44 pair and the ternary XPB/p52/p8 complex. The interaction between p34 and p44 was characterized based on a high-resolution structure of the p34_vWA/p44_RING minimal complex. Biochemical studies of the p34/p44 interaction led to the disclosure of an additional interaction between the p34 and p44 subunits, which had not been characterized so far. The p34/p44 interaction was shown to be central to TFIIH, which justifies the presence of several redundant interfaces to safeguard the interaction between the two proteins and might explain why so far, no patient mutations in these subunits have been identified. The p52 subunit of TFIIH was known to be crucial to stimulate the ATPase activity of XPB, which is required during NER. This work presents the first entire atomic resolution structural characterization of p52, which was derived of several crystal structures of p52 variants and a p52/p8 variant thereby demonstrating the interaction between p52 and p8. The precise structural model of p52 offered the possibility to investigate interactions with other TFIIH subunits in more detail. The middle domain 2 of p52 and the N-terminal domain of XPB were shown to mediate the main interaction between the two subunits. An analysis of the p52 crystal structures within recently published cryo-electron microscopy structures of TFIIH provides a model of how p52 and p8 stimulate the ATPase activity of XPB, which is essential for NER and transcription. The structural and biochemical findings of this work provide an additional building block towards the uncovering of the architecture and function of this essential transcription factor.}, subject = {DNS-Reparatur}, language = {en} } @phdthesis{Tylek2021, author = {Tylek, Tina}, title = {Establishment of a Co-culture System of human Macrophages and hMSCs to Evaluate the Immunomodulatory Properties of Biomaterials}, doi = {10.25972/OPUS-20357}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203570}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The outcome of the innate immune response to biomaterials mainly determines whether the material will be incorporated in the body to fulfill its desired function or, when it gets encapsulated, will be rejected in the worst case. Macrophages are key players in this process, and their polarization state with either pro- (M1), anti-inflammatory (M2), or intermediate characteristics is crucial for deciding on the biomaterial's fate. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates the proper healing and subsequent regeneration. Therefore, biomaterial-based polarization may aid in driving macrophages in the desired direction. However, the in vivo process is highly complex, and a mono-culture of macrophages in vitro displays only one part of the cellular system, but, to this date, there is a lack of established co-cultures to assess the immune response to biomaterials. Thus, this thesis aimed to establish a functional co-culture system of human macrophages and human mesenchymal stromal cells (hMSCs) to improve the assessment of the immune response to biomaterials in vitro. Together with macrophages, hMSCs are involved in tissue regeneration and inflammatory reactions and can modulate the immune response. In particular, endogenously derived hMSCs considerably contribute to the successful engrafting of biomaterials. This thesis focused on poly(ε-caprolactone) (PCL) fiber-based scaffolds produced by the technique of melt electrowriting (MEW) as biomaterial constructs. Via this fabrication technique, uniform, precisely ordered scaffolds varying in geometry and pore size have been created in-house. To determine the impact of scaffold geometries and pore sizes on macrophages, mono-cultures incubated on scaffolds were conducted. As a pre-requisite to achieve a functional co-culture system on scaffolds, setups for direct and indirect systems in 2D have initially been established. These setups were analyzed for the capability of cell-cell communication. In parallel, a co-culture medium suitable for both cell types was defined, prior to the establishment of a step-by-step procedure for the co-cultivation of human macrophages and hMSCs on fiber-based scaffolds. Regarding the scaffold morphologies tested within this thesis to improve M2-like polarization, box-shaped scaffolds outperformed triangular-, round- or disordered-shaped ones. Upon further investigation of scaffolds with box-shaped pores and precise inter-fiber spacing from 100 µm down to only 40 µm, decreasing pore sizes facilitated primary human macrophage elongation accompanied by their differentiation towards the M2 type, which was most pronounced for the smallest pore size of 40 µm. To the best of my knowledge, this was the first time that the elongation of human macrophages in a 3D environment has been correlated to their M2-like polarization. Thus, these results may set the stage for the design, the assessment, and the selection of new biomaterials, which can positively affect the tissue regeneration. The cell communication of both cell types, detected via mitochondria exchange in direct and indirect co-cultures systems, took place in both directions, i.e., from hMSCs to macrophages and vice versa. Thereby, in direct co-culture, tunneling nanotubes enabled the transfer from one cell type to the respective other, while in indirect co-culture, a non-directional transfer through extracellular vesicles (EVs) released into the medium seemed likely. Moreover, the phagocytic activity of macrophages after 2D co-cultivation and hence immunomodulation by hMSCs increased with the highest phagocytic rate after 48 h being most pronounced in direct co-cultivation. As the commonly used serum supplements for macrophages and hMSCs, i.e., human serum (hS) and fetal calf serum (FCS), respectively, failed to support the respective other cell type during prolonged cultivation, these sera were replaced by human platelet lysate (hPL), which has been proven to be the optimal supplement for the co-cultivation of human macrophages with hMSCs within this thesis. Thereby, the phenotype of both cell types, the distribution of both cell populations, the phagocytic activity of macrophages, and the gene expression profiles were maintained and comparable to the respective standard mono-culture conditions. This was even true when hPL was applied without the anticoagulant heparin in all cultures with macrophages, and therefore, heparin was omitted for further experiments comprising hPL and macrophages. Accordingly, a step-by-step operating procedure for the co-cultivation on fiber-based scaffolds has been established comprising the setup for 3D cultivation as well as the description of methods for the analysis of phenotypical and molecular changes upon contact with the biomaterial. The evaluation of the macrophage response depending on the cultivation with or without hMSCs and either on scaffolds or on plastic surfaces has been successfully achieved and confirmed the functionality of the suggested procedures. In conclusion, the functional co-culture system of human macrophages and hMSCs established here can now be employed to assess biomaterials in terms of the immune response in a more in vivo-related way. Moreover, specifically designed scaffolds used within the present thesis showed auspicious design criteria positively influencing the macrophage polarization towards the anti-inflammatory, pro-healing type and might be adaptable to other biomaterials in future approaches. Hence, follow-up experiments should focus on the evaluation of the co-culture outcome on promising scaffolds, and the suggested operating procedures should be adjusted to further kinds of biomaterials, such as cements or hydrogels.}, subject = {Makrophage}, language = {en} } @phdthesis{Joshi2021, author = {Joshi, Hemant Kumar}, title = {Function of IRAK2 in macrophages and HECTD1 in B cells}, doi = {10.25972/OPUS-15084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150846}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The Immune system exerts its response against invading pathogens via a cumulative, sequential cooperation of immune cells coordinated by their secreted products. Immune cells, such as macrophages and dendritic cells (DCs), express toll-like receptors (TLRs) to sense the presence of pathogens through pathogen-associated molecular patterns (PAMPs). The interaction of PAMPs with TLRs elicits a cytosolic signaling cascade that enhances the expression of genes to stimulate inflammation. Interleukin 1 receptor-associated kinase 2 (IRAK2) is a component of the TLR signaling pathway. IRAK2 transduces the TLR signal via a direct interaction with TNF receptor-associated factor 6 (TRAF6) and subsequent enhancement of its ubiquitination. During my PhD thesis, I determined that a 55-amino acid long stretch at the C-terminal end of IRAK2 is important for TLR signaling. Overexpression of C-terminal truncated IRAK2 (IRAK2Δ55) in the murine macrophage cell line RAW 264.7 led to impaired CD40 expression after TLR4 stimulation by Lipopolysaccharide (LPS). I observed attenuated competency of IRAK2Δ55 in restoring a full TLR signaling response i.e. IL-6 secretion, NO production and CD40 expression in IRAK2-deficient RAW cells generated via CRISPR-Cas9 approach. Additionally, diminished TLR4 induced activation of nuclear factor κB (NF-κB) and extracellular signal related kinase (ERK) was observed with IRAK2Δ55 reconstituted RAW cells as compared to cell reconstituted with wildtype IRAK2. IRAK2Δ55 reconstituted RAW cells also exhibited reduced TLR4-induced cell death and phosphorylation of receptor interacting protein kinase 3 (RIP3). Co-immunoprecipitation experiments in HEK 293T cells showed that IRAK2Δ55 was still able to bind to TRAF6 alike IRAK2 but failed to induce ubiquitination of TRAF6. In conclusion, the results suggest that the IRAK2 TRAF6 interaction is not sufficient to sustain full TLR signaling. An C-terminus-dependent unknown molecular mechanism is also involved. Through my PhD work, I also analyzed a B cell lineage-specific HECTD1 knock-out mice. HECTD1 is an E3 ubiquitin ligase for various substrate proteins, such as heat shock protein 90 (HSP90), adenomatous polyposis coli and phosphatidylinositol phosphate kinase type 1 γ. Hsp90 regulates a variety of signaling molecules in NF-κB activation pathways which are essential for an optimal B cell response. HECTD1-deficient pro-B cells developed normally into mature B cells. However, TLR4 stimulated HECTD1-deficient B cells displayed reduced immunoglobulin (Ig) production in in vitro cultures. In addition, mice with HECTD1-deficient B cells showed a diminished Ig response after nitrophenylacetyl-keyhole limpet hemocyanin immunization. Thus, HECTD1 is necessary for efficient Ig secretion.}, subject = {Toll-like-Rezeptoren}, language = {en} } @phdthesis{ScheideNoeth2021, author = {Scheide-N{\"o}th, Jan-Philipp}, title = {Activation of the Interleukin-5 receptor and its inhibition by cyclic peptides}, doi = {10.25972/OPUS-18250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182504}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The cytokine interleukin-5 (IL-5) is part of the TH2-mediated immune response. As a key regulator of eosinophilic granulocytes (eosinophils), IL-5 controls multiple aspects of eosinophil life. Eosinophils play a pathogenic role in the onset and progression of atopic diseases as well as hypereosinophilic syndrome (HES). Here, cytotoxic proteins and pro-inflammatory mediators stored in intracellular vesicles termed granula are released upon activation thereby causing local inflammation to fight the pathogen. However, if such inflammation persists, tissue damage and organ failure can occur. Due to the close relationship between eosinophils and IL-5 this cytokine has become a major pharmaceutical target for the treatment of atopic diseases or HES. As observed with other cytokines, IL-5 signals by assembling a heterodimeric receptor complex at the cell surface in a stepwise mechanism. In the first step IL-5 binds to its receptor IL-5Rα (CD125). This membrane-located complex then recruits the so-called common beta chain βc (CD131) into a ternary ligand receptor complex, which leads to activation of intracellular signaling cascades. Based on this mechanism various strategies targeting either IL-5 or IL-5Rα have been developed allowing to specifically abrogate IL-5 signaling. In addition to the classical approach of employing neutralizing antibodies against IL 5/IL-5Rα or antagonistic IL-5 variants, two groups comprising small 18 to 30mer peptides have been discovered, that bind to and block IL-5Rα from binding its activating ligand IL-5. Structure-function studies have provided detailed insights into the architecture and interaction of IL-5IL-5Rα and βc. However, structural information for the ternary IL-5 complex as well as IL-5 inhibiting peptides is still lacking. In this thesis three areas were investigated. Firstly, to obtain insights into the second receptor activation step, i.e. formation of the ternary ligand-receptor complex IL-5•IL-5Rα•βc, a high-yield production for the extracellular domain of βc was established to facilitate structure determination of the ternary ligand receptor assembly by either X-ray crystallography or cryo-electron microscopy. In a second project structure analysis of the ectodomain of IL-5Rα in its unbound conformation was attempted. Data on IL-5Rα in its ligand-free state would provide important information as to whether the wrench-like shaped ectodomain of IL-5Rα adopts a fixed preformed conformation or whether it is flexible to adapt to its ligand binding partner upon interaction. While crystallization of free IL-5Rα failed, as the crystals obtained did not diffract X rays to high resolution, functional analysis strongly points towards a selection fit binding mechanism for IL-5Rα instead of a rigid and fixed IL-5Rα structure. Hence IL-5 possibly binds to a partially open architecture, which then closes to the known wrench-like architecture. The latter is then stabilized by interactions within the D1-D2 interface resulting in the tight binding of IL-5. In a third project X-ray structure analysis of a complex of the IL-5 inhibitory peptide AF17121 bound to the ectodomain of IL-5Rα was performed. This novel structure shows how the small cyclic 18mer peptide tightly binds into the wrench-like cleft formed by domains D1 and D2 of IL-5Rα. Due to the partial overlap of its binding site at IL-5Rα with the epitope for IL-5 binding, the peptide blocks IL-5 from access to key residues for binding explaining how the small peptide can effectively compete with the rather large ligand IL-5. While AF17121 and IL-5 seemingly bind to the same site at IL-5Rα, functional studies however showed that recognition and binding of both ligands differ. With the structure for the peptide-receptor complex at hand, peptide design and engineering could be performed to generate AF17121 analogies with enhanced receptor affinity. Several promising positions in the peptide AF17121 could be identified, which could improve inhibition capacity and might serve as a starting point for AF17121-based peptidomimetics that can yield either superior peptide based IL-5 antagonists or small-molecule-based pharmacophores for future therapies of atopic diseases or the hypereosinophilic syndrome.}, subject = {Interleukin 5}, language = {en} } @phdthesis{Pernitzsch2021, author = {Pernitzsch, Sandy Ramona}, title = {Functional Characterization of the abundant and conserved small regulatory RNA RepG in Helicobacter pylori}, doi = {10.25972/OPUS-12268}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122686}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Bacterial small non-coding RNAs (sRNAs) play fundamental roles in controlling and finetuning gene expression in a wide variety of cellular processes, including stress responses, environmental signaling and virulence in pathogens. Despite the identification of hundreds of sRNA candidates in diverse bacteria by genomics approaches, the mechanisms and regulatory capabilities of these posttranscriptional regulators have most intensively been studied in Gram-negative Gammaproteobacteria such as Escherichia coli and Salmonella. So far, almost nothing is known about sRNA-mediated regulation (riboregulation) in Epsilonproteobacteria, including the major human pathogen Helicobacter pylori. H. pylori was even thought to be deficient for riboregulation as none of the sRNAs known from enterobacteria are conserved in Helicobacter and since it lacks the major RNA chaperone Hfq, which is crucial for sRNA function as well as stability in many bacteria. Nonetheless, more than 60 cis- and trans-acting sRNA candidates were recently identified in H. pylori by a global RNA sequencing approach, indicating that this pathogen, in principle, has the capability to use riboregulation for its gene expression control. However, the functions and underlying mechanisms of H. pylori sRNAs remained unclear. This thesis focused on the first functional characterization and target gene identification of a trans-acting sRNA, RepG (Regulator of polymeric G-repeats), in H. pylori. Using in-vitro and in-vivo approaches, RepG was shown to directly base-pair with its C/Urich terminator loop to a variable homopolymeric G-repeat in the 5' untranslated region (UTR) of the tlpB mRNA, thereby regulating expression of the chemotaxis receptor TlpB. While the RepG sRNA is highly conserved, the length of the G-repeat in the tlpB mRNA leader varies among different H. pylori isolates, resulting in a strain-specific tlpB regulation. The modification of the number of guanines within the G-stretch in H. pylori strain 26695 demonstrated that the length of the homopolymeric G-repeat determines the outcome of posttranscriptional control (repression or activation) of tlpB by RepG. This lengthdependent targeting of a simple sequence repeat by a trans-acting sRNA represents a new twist in sRNA-mediated regulation and a novel mechanism of gene expression control, since it uniquely links phase variation by simple sequence repeats to posttranscriptional regulation. In almost all sequenced H. pylori strains, tlpB is encoded in a two gene operon upstream of HP0102, a gene of previously unknown function. This study provided evidence that HP0102 encodes a glycosyltransferase involved in LPS O-chain and Lewis x antigen production. Accordingly, this glycosyltransferase was shown to be essential for mice colonization by H. pylori. The coordinated posttranscriptional regulation of the tlpB-HP0102 operon by antisense base-pairing of RepG to the phase-variable G-repeat in the 5' UTR of the tlpB mRNA allows for a gradual, rather than ON/OFF, control of HP0102 expression, thereby affecting LPS biosynthesis in H. pylori. This fine-tuning of O-chain and Lewis x antigen expression modulates H. pylori antibiotics sensitivity and thus, might be advantageous for Helicobacter colonization and persistence. Whole transcriptome analysis based on microarray and RNA sequencing was used to identify additional RepG target mRNAs and uncover the physiological role of this riboregulator in H. pylori. Altogether, repG deletion affected expression of more than 40 target gene candidates involved various cellular processes, including membrane transport and adhesion, LPS modification, amino acid metabolism, oxidative and nitrosative stress, and nucleic acid modification. The presence of homopolymeric G-repeats/G-rich sequences in almost all target mRNA candidates indicated that RepG hijacks a conserved motif to recognize and regulate multiple target mRNAs in H. pylori. Overall, this study demonstrates that H. pylori employs riboregulation in stress response and virulence control. In addition, this thesis has successfully established Helicobacter as a new model organism for investigating general concepts of gene expression control by Hfq-independent sRNAs and sRNAs in bacterial pathogens.}, subject = {Small RNA}, language = {en} } @phdthesis{Adenugba2021, author = {Adenugba, Akinbami Raphael}, title = {Functional analysis of the gene organization of the pneumoviral attachment protein G}, doi = {10.25972/OPUS-12814}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128146}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The putative attachment protein G of pneumonia virus of mice (PVM), a member of the Pneumoviruses, is an important virulence factor with so far ambiguous function in a virus-cell as well as in virus-host context. The sequence of the corresponding G gene is characterized by significant heterogeneity between and even within strains, affecting the gene and possibly the protein structure. This accounts in particular for the PVM strain J3666 for which two differing G gene organizations have been described: a polymorphism in nucleotide 65 of the G gene results in the presence of an upstream open reading frame (uORF) that precedes the main ORF in frame (GJ366665A) or extension of the major G ORF for 18 codons (GJ366665U). Therefore, this study was designed to analyse the impact of the sequence variations in the respective G genes of PVM strains J3666 and the reference strain 15 on protein expression, replication and virulence. First, the controversy regarding the consensus sequence of PVM J3666 was resolved. The analysis of 45 distinct cloned fragments showed that the strain separated into two distinct virus populations defined by the sequence and structure of the G gene. This division was further supported by nucleotide polymorphisms in the neighbouring M and SH genes. Sequential passage of this mixed strain in the cell line standardly used for propagation of virus stocks resulted in selection for the GJ366665A-containing population in one of two experiments pointing towards a moderate replicative advantage. The replacement of the G gene of the recombinant PVM 15 with GJ366665A or GJ366665U, respectively, using a reverse genetic approach indicated that the presence of uORF within the GJ366665A significantly reduced the expression of the main G ORF on translational level while the potential extension of the ORF in GJ366665U increased G protein expression. In comparison, the effect of the G gene-structure on virus replication was inconsistent and dependent on cell line and type. While the presence of uORF correlated with a replication advantage in the standardly used BHK-21 cells and primary murine embryonic fibroblasts, replication in the murine macrophage cell line RAW 264.7 did not. In comparison, the GJ366665U variant was not associated with any effect on replication in cultured cells at all. Nonetheless, in-vivo analysis of the recombinant viruses associated the GJ366665U gene variant, and hence an increased G expression, with higher virulence whereas the GJ366665A gene, and therefore an impaired G expression, conferred an attenuated phenotype to the virus. To extend the study to other G gene organizations, a recombinant PVM expressing a G protein without the cytoplasmic domain and for comparison a G-deletion mutant, both known to be attenuated in vivo, were studied. Not noticed before, this structure of the G gene was associated with a 75\% reduction in G protein expression and a significant attenuation of replication in macrophage-like cells. This attenuation was even more prominent for the virus lacking G. Taking into consideration the higher reduction in G protein levels compared to the GJ366665A variant indicates that a threshold amount of G is required for efficient replication in these cells. In conclusion, the results gathered indicated that the expression levels of the G protein were modulated by the sequence of the 5' untranslated region of the gene. At the same time the G protein levels modulated the virulence of PVM.}, subject = {G glycoprotein}, language = {en} }