@phdthesis{Jorgacevic2024, author = {Jorgacevic, Ivana}, title = {Elucidating the interconnection of GvHD and Western diet-induced atherosclerosis}, doi = {10.25972/OPUS-32579}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325792}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Allogeneic hematopoietic cell transplantation (Allo-HCT) is the main and only treatment for many malignant and non-malignant haematological disorders. Even though the treatment has improved through the years and patient life expectancy has increased, graft versus host disease (GvHD) is still considered the main obstacle and one of the main reasons for increased mortality. Furthermore, improved patient's survival and life expectancy brought into question the late post-HCT complications. The leading cause of late death after allo-HCT is the relapse of primary disease as well as chronic GvHD (cGvHD). However, a clear relationship was also described with pulmonary complications, endocrine dysfunction and infertility, and cataracts in post-HCT patients. In the last years big concern regarding a cumulative cardiovascular incidence in long-term survivors has been raised. Severe cardiovascular disease (CVD) is caused by atherosclerosis which is considered a chronic inflammatory disease of blood vessels. As such, it takes a long time from endothelial damage, as the onset event, and followed plaque formation to a manifestation of severe consequences, such as stroke, coronary heart disease, or peripheral arterial disease. Endothelial damage is well documented in patients post-HCT. In the context of allo-HCT, the endothelial damage is induced by the conditioning regimen with or without total body irradiation (TBI). Furthermore, endothelial cells (ECs) have been documented as a target of GvHD and increased concentration of circulating endothelial cells (CEC) coinciding with an increase in the number of circulating alloreactive T cells. According to 2021 ESC Guidelines on CVD prevention, the main atherosclerotic CVD (ASCVD) risk factors are blood apolipoprotein B (ApoB)-containing lipoproteins (of which low-density lipoprotein (LDL) is the most abundant), high blood pressure, cigarette smoking and diabetes mellitus (DM). GvHD is considered a high-risk factor for the onset of dyslipidaemia, hypertension, and DM. Overall, the risk of premature cardiovascular death is 2.7 fold increased in comparison to the general population, while the cumulative incidence of cardiovascular complications was shown to be up to 47\% at ten years after reduced intensity conditioning (RIC), post-HCT. However, up to date, there are no available studies elucidating the interconnection between GvHD and atherosclerosis. The goal of this study was, therefore, to investigate the involvement of GvHD in the progression of atherosclerosis as well as to elucidate whether cytotoxic, CD8+ T cells that were shown to play a significant role in endothelial damage during the course of skin GvHD on one hand, and inducers of formation of unstable plaque on the other, are involved in this interconnection. For that purpose we established a novel minor histocompatibility anti gens (miHAg) allo-HCT Western diet (WD)-induced atherosclerosis mouse model. We were able to show that GvHD has a significant impact on atherosclerosis development in B6.Ldlr-/- recipient mice even in the absence of overt clinical disease activity. It seems that the impact is at least partly induced by CD8+ T cells, that showed significantly increased infiltration of aortic lesions in mice facing subclinical GvHD. As studies have shown in regular atherosclerotic mouse models as well as in humans, these CD8+ T cells exhibited not only increased expression of genes involved in activation, survival and differentiation to cytotoxic phenotype, but also some genes pointing out their exhaustion, that were absent in CD4+ T cell cluster. When anti-CD8β antibody was applied once per week along with WD feeding for eight weeks, the plaque formation was significantly reduced in aorta and aortic root pointing out the importance of these cells in an alloreactivity induced lesion formation. Furthermore, anti-CD8β treatment led to significantly decreased necrotic core formation followed by overall increase in plaque stability. Strikingly, bone marrow plus T cells (BMT) recipients fed WD showed significantly increased serum cholesterol levels in comparison to bone marrow (BM) (a group lacking alloreactive T cells that induce GvHD). This effect was reversed when anti-CD8β treatment was applied, suggesting, at least partly, an impact of alloreactive CD8+ T cells on cholesterol levels. Expression of genes responsible for lipid metabolism pointed out the tendency of the liver to regulate the increased cholesterol levels, however, the mechanism behind this phenotype still remains to be revealed. On the other hand, the impact of obesity, induced by chronic high-fat diet (HFD) feeding, has been shown to be an independent risk factor for gastrointestinal GvHD. Similarly, in major histocompatibility complex (MHC) disparate allo-HCT mouse model, we have noticed that even short-term WD intake leads to a significant decrease in survival of mice post-HCT. When the concentration of transplanted alloreactive T cells was reduced, the survival was improved, pointing out the involvement of these cells in the pathogenesis. Additionally, bioluminescence imaging (BLI) during initiation and effector phase of acute GvHD (aGvHD) revealed increased infiltration of alloreactive T cells in mice fed WD. Studies in an obesity model, we could confirm the involvement of specifically CD4+ T cells in WD induced impact, as the relative number of these cells was significantly increased in small intestine on day six post-HCT in mice fed WD. This increased intestinal infiltration was preceded by increase in the number of alloreactive T cells expressing intestine homing receptor (α4β7 integrin) in peripheral lymph nodes (LNs). Even though the number of T cells was not changed in the spleen of WD fed mice, the subset of CD4+ and CD8+ T cells that were highly secreting TNFα was increased as well as the expression of genes regulating pro-inflammatory cytokines such as IL-6 and interferon (IFN)γ pointing out significant WD-induced inflammation. Moreover, slight tendency towards increased intestinal permeability and load of translocated luminal bacteria, that we observed, could induce severe endotoxemia and dysregulated systemic immune response that could lead to detrimental induction of cell death. Justifying our speculations, we noted increased levels of transaminases and an increase in lactate dehydrogenase (LDH) levels (pointing out significant tissue damages). However, the exact mechanism behind this detrimental WD impact still remains to be elucidated.}, subject = {Periphere Stammzellentransplantation}, language = {en} } @phdthesis{Waltmann2024, author = {Waltmann, Maria}, title = {Neurocognitive mechanisms of loss of control in Binge Eating Disorder}, doi = {10.25972/OPUS-36430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-364300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Binge Eating Disorder (BED) is a common, early-onset mental health condition characterised by uncontrollable episodes of overeating followed by negative emotions such as guilt and shame. An improved understanding of the neurocognitive mechanisms underlying BED is central to the development of more targeted and effective treatments. This thesis comprises a systematic review and three empirical studies contributing to this endeavour. BED can be thought of as a disorder of cognitive-behavioural control. Indeed, self-report evidence points towards enhanced impulsivity and compulsivity in BED. However, retrospective self-reports do not capture the mechanisms underlying impulsive and compulsive lapses of control in the moment. The systematic review therefore focussed on the experimental literature on impulsivity and compulsivity in BED. The evidence was very mixed, although there was some indication of altered goal-directed control and behavioural flexibility in BED. We highlight poor reliability of experimental paradigms and the failure to properly account for weight status as potential reasons for inconsistencies between studies. Moreover, we propose that impulsivity and/or compulsivity may be selectively enhanced in negative mood states in BED and may therefore not be consistently detected in lab-based studies. In the empirical studies, we explored the role of behavioural flexibility in BED using experimental and neuroimaging methods in concert with computational modelling. In the first empirical study, we assessed the reliability of a common measure of behavioural flexibility, the Probabilistic Reversal Learning Task (PRLT). We demonstrate that the behavioural and computational metrics of the PRLT have sufficient reliability to justify past and future applications if calculated using hierarchical modelling. This substantially improves reliability by reducing error variance. The results support the use of the PRLT in the second and third empirical studies on development and BED. Because a majority of patients develop BED as adolescents or young adults, we speculated that it may emerge as a consequence of disrupted or deficient maturation of behavioural flexibility. Little is known about typical development in this domain. We therefore investigated normative development of reversal learning from adolescence to adulthood in the second empirical study. Typically- developing adolescents exhibited less adaptive and more erratic and explorative behaviour than adults. This behaviour was accounted for by reduced sensitivity to positive feedback in a reinforcement learning model, and partially mediated by reduced activation reflecting uncertainty in the medial prefrontal cortex, a region known to mature substantially during adolescence. In the third empirical study, we investigated reversal learning in BED, paying special attention to potential biases associated with learning from wins vs learning from losses. We speculated that negative urgency could make it more difficult for BED patients to learn and make decisions under pressure to avoid losses. To dissociate between effects of excess weight and BED, we collected data from obese individuals with and without BED as well as normal-weight controls. As hypothesised, there were subtle neurocognitive differences between obese participants with and without BED with regard to learning to obtain rewards and to avoid losses. Obese individuals showed relatively impaired learning to obtain rewards, while BED patients showed relatively impaired learning to avoid losses. This was reflected in differential learning signals in the brain and associated with BED symptom severity. In sum, this thesis shows that the evidence on impulsivity and compulsivity in BED is inconsistent and offers potential explanations for this inconsistency. It highlights the need for reliability in interindividual difference research and indicates ways to improve it. Further, it charts the typical development of reversal learning from adolescence to adulthood and underscores the relevance of exploration in the context of learning and decision-making in adolescence. Finally, it demonstrates qualitative differences between BED and obesity, hinting at a pivotal role of aversive states in loss of control in BED.}, subject = {Binge-eating Disorder}, language = {en} } @phdthesis{Steinmueller2024, author = {Steinm{\"u}ller, Sophie Anna Maria}, title = {Benzimidazole-Based Photoswitches and Photoswitchable Cannabinoid 2 Receptor Ligands}, doi = {10.25972/OPUS-34894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348943}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The field of photopharmacology has attracted considerable attention due to applying the spatial and temporal precision of light to pharmacological systems. Photoswitchable biologically active compounds have proven useful in the field of G protein-coupled receptors (GPCRs), which are of tremendous therapeutic relevance. Generally, the pharmacology of GPCRs is complex, perhaps even more complex than originally thought. Suitable tools are required to dissect the different signalling pathways and mechanisms and to unravel how they are connected in a holistic image. This is reflected in the enormous scientific interest in CB2R, as the neuroprotective and immunomodulatory effects attributed to CB2R agonists have not yet translated into effective therapeutics. This work focused on the development of a novel photoswitchable scaffold based on the privileged structure of benzimidazole and its application in photoswitchable CB2R ligands as photopharmacological tools for studying the CB2R. The visible-light photoswitchable ligand 10d enables the investigation of CB2R activation with regard to βarr2 bias, exhibiting a unique pharmacological profile as a "cis-on" affinity switch at receptor level and as a "trans-on" efficacy-switch in βarr2-mediated receptor internalization. The novel photoswitchable scaffold developed in this work further serves as a guide for the development of novel photoswitchable GPCR ligands based on the privileged structure of benzimidazole. To obtain a different tool compound for studying CB2R activation and signalling mechanisms, a previously reported putatively dualsteric CB2R ligand was rendered photoswitchable, by linking the orthosteric agonist to a CB2R-selective PAM via photoswitchable azobenzene. Compound 27-para exhibits a desirable "cis-on" behaviour across all investigated assays with >10-fold higher potency compared to its trans-isomer and can be used as an efficacy-switch employing specific concentrations.}, subject = {Cannabinoide}, language = {en} } @phdthesis{Kreisz2024, author = {Kreisz, Philipp}, title = {Group S1 bZIP transcription factors regulate sink tissue development by controlling carbon and nitrogen resource allocation in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-32192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321925}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The evolutionary success of higher plants is largely attributed to their tremendous developmental plasticity, which allows them to cope with adverse conditions. However, because these adaptations require investments of resources, they must be tightly regulated to avoid unfavourable trade-offs. Most of the resources required are macronutrients based on carbon and nitrogen. Limitations in the availability of these nutrients have major effects on gene expression, metabolism, and overall plant morphology. These changes are largely mediated by the highly conserved master kinase SNF1-RELATED PROTEIN KINASE1 (SnRK1), which represses growth and induces catabolic processes. Downstream of SnRK1, a hub of heterodimerising group C and S1 BASIC LEUCINE ZIPPER (bZIP) transcription factors has been identified. These bZIPs act as regulators of nutrient homeostasis and are highly expressed in strong sink tissues, such as flowers or the meristems that initiate lateral growth of both shoots and roots. However, their potential involvement in controlling developmental responses through their impact on resource allocation and usage has been largely neglected so far. Therefore, the objective of this work was to elucidate the impact of particularly S1 bZIPs on gene expression, metabolism, and plant development. Due to the high homology and suspected partial redundancy of S1 bZIPs, higher order loss-of-function mutants were generated using CRISPR-Cas9. The triple mutant bzip2/11/44 showed a variety of robust morphological changes but maintained an overall growth comparable to wildtype plants. In detail however, seedlings exhibited a strong reduction in primary root length. In addition, floral transition was delayed, and siliques and seeds were smaller, indicating a reduced supply of resources to the shoot and root apices. However, lateral root density and axillary shoot branching were increased, suggesting an increased ratio of lateral to apical growth in the mutant. The full group S1 knockout bzip1/2/11/44/53 showed similar phenotypes, albeit far more pronounced and accompanied by growth retardation. Metabolomic approaches revealed that these architectural changes were accompanied by reduced sugar levels in distal sink tissues such as flowers and roots. Sugar levels were also diminished in leaf apoplasts, indicating that long distance transport of sugars by apoplastic phloem loading was impaired in the mutants. In contrast, an increased sugar supply to the proximal axillary buds and elevated starch levels in the leaves were measured. In addition, free amino acid levels were increased in bzip2/11/44 and bzip1/2/11/44/53, especially for the important transport forms asparagine and glutamine. The increased C and N availability in the proximal tissues could be the cause of the increased axillary branching in the mutants. To identify bZIP target genes that might cause the observed shifts in metabolic status, RNAseq experiments were performed. Strikingly, clade III SUGARS WILL EVENTUALLY BE EXPORTED (SWEET) 8 genes were abundant among the differentially expressed genes. As SWEETs are crucial for sugar export to the apoplast and long-distance transport through the phloem, their reduced expression is likely to be the cause of the observed changes in sugar allocation. Similarly, the reduced expression of GLUTAMINE AMIDOTRANSFERASE 1_2.1 (GAT1_2.1), which exhibits glutaminase activity, could be an explanation for the abundance of glutamine in the mutants. Additional experiments (ATAC-seq, DAP� seq, PTA, q-RT-PCR) supported the direct induction of SWEETs and GAT1_2.1 by S1 bZIPs. To confirm the involvement of these target genes in the observed S1 bZIP mutant phenotypes, loss-of-function mutants were obtained, which showed moderately increased axillary branching. At the same time, the induced overexpression of bZIP11 in axillary meristems had the opposite effect. Collectively, a model is proposed for the function of S1 bZIPs in regulating sink tissue development. For efficient long-distance sugar transport, bZIPs may be required to induce the expression of clade III SWEETs. Thus, reduced SWEET expression in the S1 bZIP mutants would lead to a decrease in apoplastic sugar loading and a reduced supply to distal sinks such as shoot or root apices. The reduction in long� distance transport could lead to sugar accumulation in the leaves, which would then increasingly be transported via symplastic routes towards proximal sinks such as axillary branches and lateral roots or sequestered as starch. The reduced GAT1_2.1 levels lead to an abundance of glutamine, a major nitrogen transport form. The combined effect on C and N allocation results in increased nutrient availability in proximal tissues, promoting the formation of lateral plant organs. Alongside emerging evidence highlighting the power of bZIPs to steer nutrient allocation in other species, a novel but evolutionary conserved role for S1 bZIPs as regulators of developmental plasticity is proposed, while the generation of valuable data sets and novel genetic resources will help to gain a deeper understanding of the molecular mechanisms involved}, subject = {Molekularbiologie}, language = {en} } @phdthesis{Gaballa2024, author = {Gaballa, Abdallah Hatem Hassan Hosny Ahmed}, title = {PAF1c drives MYC-mediated immune evasion in pancreatic ductal adenocarcinoma}, doi = {10.25972/OPUS-36045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360459}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The expression of the MYC proto-oncogene is elevated in a large proportion of patients with pancreatic ductal adenocarcinoma (PDAC). Previous findings in PDAC have shown that this increased MYC expression mediates immune evasion and promotes S-phase progression. How these functions are mediated and whether a downstream factor of MYC mediates these functions has remained elusive. Recent studies identifying the MYC interactome revealed a complex network of interaction partners, highlighting the need to identify the oncogenic pathway of MYC in an unbiased manner. In this work, we have shown that MYC ensures genomic stability during S-phase and prevents transcription-replication conflicts. Depletion of MYC and inhibition of ATR kinase showed a synergistic effect to induce DNA damage. A targeted siRNA screen targeting downstream factors of MYC revealed that PAF1c is required for DNA repair and S-phase progression. Recruitment of PAF1c to RNAPII was shown to be MYC dependent. PAF1c was shown to be largely dispensable for cell proliferation and regulation of MYC target genes. Depletion of CTR9, a subunit of PAF1c, caused strong tumor regression in a pancreatic ductal adenocarcinoma model, with long-term survival in a subset of mice. This effect was not due to induction of DNA damage, but to restoration of tumor immune surveillance. Depletion of PAF1c resulted in the release of RNAPII with transcription elongation factors, including SPT6, from the bodies of long genes, promoting full-length transcription of short genes. This resulted in the downregulation of long DNA repair genes and the concomitant upregulation of short genes, including MHC class I genes. These data demonstrate that a balance between long and short gene transcription is essential for tumor progression and that interference with PAF1c levels shifts this balance toward a tumor-suppressive transcriptional program. It also directly links MYC-mediated S-phase progression to immune evasion. Unlike MYC, PAF1c has a stable, known folded structure; therefore, the development of a small molecule targeting PAF1c may disrupt the immune evasive function of MYC while sparing its physiological functions in cellular growth.}, subject = {Myc}, language = {en} } @phdthesis{Zhu2024, author = {Zhu, Yan}, title = {Small RNA-associated RNA-binding proteins in \(Fusobacterium\) \(nucleatum\)}, doi = {10.25972/OPUS-37073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-370731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Fusobacterium nucleatum is an emerging cancer-associated bacterium belonging to the Fusobacteriota phylum, which is evolutionary distant from all model bacteria. Recent analysis generated global fusobacterial RNA maps, which enabled the discovery of 24 small noncoding RNAs (sRNAs) in F. nucleatum. Notably, the σE-dependent sRNA FoxI and FoxJ act as a posttranscriptional regulator of several cell envelope proteins. The σE-dependent sRNAs in Escherichia coli and Salmonella require the RNA chaperone Hfq for their functions. Intriguingly, F. nucleatum seems to have no homologs of the three common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. However, it remains unclear if other families of RBPs act in concert with FoxI, FoxJ and other fusobacterial sRNAs. This work has successfully established a 14-mer capture tagged-sRNA affinity purification procedure initially using 6S RNA as a proof-of-concept. Applying this method to 19 different F. nucleatum sRNAs led to a comprehensive mapping of sRNA-binding proteins in this bacterium. This screen identified a total of 75 proteins significantly enriched across all sRNAs and prominent in ribosomal proteins, uncharacterized proteins and enzymes associated with metabolism. This work further focused on the homologs of two KH domain proteins KhpA and KhpB, which were recently recognized as global RBPs in various Gram-positive bacteria such as Streptococcus pneumoniae, Clostridioides difficile, and Enterococcus faecalis. Comparative analyses revealed conserved domain composition and gene synteny of KhpA and KhpB across F. nucleatum, S. pneumoniae, C. difficle and E. faecalis, indicating conserved roles of these proteins in bacteria. Further protein-protein interaction assays and global RNA targets profiling demonstrated that KhpA and KhpB form dimers and act together as broad RBPs, binding to sRNAs, mRNAs and tRNAs in F. nucleatum. Further functional characterizations unveiled that KhpA/B are required for the growth of F. nucleatum under nutrient limitation conditions and impact cell morphology. Additionally, the two RBPs also influence global gene expression in F. nucleatum affecting various bacterial physiological processes, including ethanolamine utilization. In summary, this work established a sRNA-centric approach for screening sRNA-binding proteins in F. nucleatum. Further, the assay could be applied in other non-model organisms and is feasible to screen multiple sRNA baits in parallel for sRNA-interactors. By applying this procedure to nearly all known fusobacterial sRNAs, this work generated an extensive map of sRNA-interacting proteins in F. nucleatum. Molecular and genetic studies identified that KhpA/B act as major RBPs and gene regulators in F. nucleatum, representing important first steps in elucidating key players of post-transcriptional control at the root of the bacterial phylogenetic tree.}, subject = {Proteine}, language = {en} } @phdthesis{KuklovskyformerFinke2024, author = {Kuklovsky [former Finke], Valerie}, title = {Are some bees smarter than others? An examination of consistent individual differences in the cognitive abilities of honey bees}, doi = {10.25972/OPUS-32301}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323012}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Cognition refers to the ability to of animals to acquire, process, store and use vital information from the environment. Cognitive processes are necessary to predict the future and reduce the uncertainty of the ever-changing environment. Classically, research on animal cognition focuses on decisive cognitive tests to determine the capacity of a species by the testing the ability of a few individuals. This approach views variability between these tested key individuals as unwanted noise and is thus often neglected. However, inter-individual variability provides important insights to behavioral plasticity, cognitive specialization and brain modularity. Honey bees Apis mellifera are a robust and traditional model for the study of learning, memory and cognition due to their impressive capabilities and rich behavioral repertoire. In this thesis I have applied a novel view on the learning abilities of honey bees by looking explicitly at individual differences in a variety of learning tasks. Are some individual bees consistently smarter than some of her sisters? If so, will a smart individual always perform good independent of the time, the context and the cognitive requirements or do bees show distinct isolated 'cognitive modules'? My thesis presents the first comprehensive investigation of consistent individual differences in the cognitive abilities of honey bees. To speak of an individual as behaving consistently, a crucial step is to test the individual multiple times to examine the repeatability of a behavior. I show that free-flying bees remain consistent in a visual discrimination task for three consecutive days. Successively, I explored individual consistency in cognitive proficiency across tasks involving different sensory modalities, contexts and cognitive requirements. I found that free-flying bees show a cognitive specialization between visual and olfactory learning but remained consistent across a simple discrimination task and a complex concept learning task. I wished to further explore individual consistency with respect to tasks of different cognitive complexity, a question that has never been tackled before in an insect. I thus performed a series of four experiments using either visual or olfactory stimuli and a different training context (free-flying and restrained) and tested bees in a discrimination task, reversal learning and negative patterning. Intriguingly, across all these experiments I evidenced the same results: The bees' performances were consistent across the discrimination task and reversal learning and negative patterning respectively. No association was evidenced between reversal learning and negative patterning. After establishing the existence of consistent individual differences in the cognitive proficiency of honey bees I wished to determine factors which could underlie these differences. Since genetic components are known to underlie inter-individual variability in learning abilities, I studied the effects of genetics on consistency in cognitive proficiency by contrasting bees originating from either from a hive with a single patriline (low genetic diversity) or with multiple patrilines (high genetic diversity). These two groups of bees showed differences in the patterns of individually correlated performances, indicating a genetic component accounts for consistent cognitive individuality. Another major factor underlying variability in learning performances is the individual responsiveness to sucrose solution and to visual stimuli, as evidenced by many studies on restrained bees showing a positive correlation between responsiveness to task relevant stimuli and learning performances. I thus tested whether these relationships between sucrose/visual responsiveness and learning performances are applicable for free-flying bees. Free-flying bees were again subjected to reversal learning and negative patterning and subsequently tested in the laboratory for their responsiveness to sucrose and to light. There was no evidence of a positive relationship between sucrose/visual responsiveness and neither performances of free-flying bees in an elemental discrimination, reversal learning and negative patterning. These findings indicate that relationships established between responsiveness to task relevant stimuli and learning proficiency established in the laboratory with restrained bees might not hold true for a completely different behavioral context i.e. for free-flying bees in their natural environment. These results show that the honey bee is an excellent insect model to study consistency in cognitive proficiency and to identify the underlying factors. I mainly discuss the results with respect to the question of brain modularity in insects and the adaptive significance of individuality in cognitive abilities for honey bee colonies. I also provide a proposition of research questions which tie in this theme of consistent cognitive proficiency and could provide fruitful areas for future research.}, subject = {Lernen}, language = {en} } @phdthesis{Kawan2024, author = {Kawan, Mona}, title = {The membrane trafficking protein myoferlin is a novel interactor of p97}, doi = {10.25972/OPUS-28121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281218}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {p97 uses the energy of ATP hydrolysis to unfold and thereby segregate proteins. It is involved in various cellular processes such as proteasomal degradation, DNA damage repair, autophagy, and endo-lysosomal trafficking. The specificity for these processes is controlled by more than 30 regulatory cofactors. Interactions of p97 with cofactors and target proteins are known to be highly dynamic and transient. To identify new interaction partners and to uncover novel cellular functions of p97, the interactome of endogenous p97 was determined by using in cellulo crosslinking followed by immunoprecipitation and mass spectrometry. Myoferlin (MYOF) was identified as a novel interactor of p97 and the interaction was validated in reciprocal immunoprecipitation experiments for different cell lines. The ferlin family member MYOF is a tail-anchored membrane protein containing multiple C2 domains. MYOF is involved in various membrane repair and trafficking processes such as the endocytic recycling of cell surface receptors. The MYOF interactome was determined by mass spectrometry. Among others, the p97 cofactor PLAA, CD71 and Rab14 were identified as common interactors of p97 and MYOF. Immunoprecipitation experiments with PLAA KO cells revealed that the interaction between MYOF and p97 depends on PLAA. Immunofluorescence microscopy showed a co-localization of MYOF with Rab14 and Rab11, which are both involved in endocytic recycling pathways. Furthermore, immunofluoroscence experiments revealed that MYOF and the p97 cofactor PLAA are localized to Rab14- and Rab5-positive endosomal compartments. Using p97 inhibitors and p97 trapping mutants, the presence of p97 at MYOF-positive and Rab14-positive structures could be demonstrated. Consistent with this finding, the endocytic recycling of transferrin was delayed upon inhibition of p97. Taken together, this work identified MYOF as a novel interactor of p97 and suggests a role for p97 in the recycling of endocytic cargo.}, subject = {Endosom}, language = {en} } @phdthesis{Lechermeier2024, author = {Lechermeier, Carina}, title = {Neuroanatomical and functional evaluation of ADHD candidate genes in the model organism zebrafish (\(Danio\) \(rerio\))}, doi = {10.25972/OPUS-37108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-371084}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent developmental disorders, affecting 5.9\% children and adolescents and 2.5\% adults worldwide. The core characteristics are age-inappropriate levels of hyperactivity, impulsivity and inattention, often accompanied by co-morbidities such as mood and conduct disorders as wells as learning deficits. In the majority of cases, ADHD is caused by an interplay of accumulated genetic and environmental risk factors. Twin studies report a very high heritability of 70-80\%, however, common genetic variants in the population only explain a third of the heritability. The rest of the genetic predisposition is composed of rare copy number variations (CNVs) and gene x environment interactions including epigenetic alterations. Through genome wide association (GWAS) and linkage studies a number of likely candidate genes were identified. A handful of them play a role in dopamine or noradrenaline neurotransmitter systems, simultaneously those systems are the main targets of common drug treatment approaches. However, for the majority of candidates the biological function in relation to ADHD is unknown. It is crucial to identify those functions in order to gain a deeper understanding of the pathomechanism and genetic networks potentially responsible for the disorder. This work focuses on the three candidate genes GFOD1, SLC2A3 and LBX1 and their role in the healthy organism as well as in case of ADHD. The neuroanatomy was regarded through expression analysis and various behavioural assays of activity were performed to link alterations on the transcript level to phenotypes associated with the neurodevelopmental disorder. Zebrafish orthologues of the human risk genes were identified and extensive temporal and spacial expression characterisation performed via RNA in situ hybridisation. Through morpholino derived knock-down and mRNA overexpression zebrafish models with subsequent behavioural analysis, both hyper- and hypoactive phenotypes were discovered. Additional expression analysis through double in situ hybridisation revealed a co-localisation during zebrafish neurodevelopment of each gfod1 and slc2a3a together with gad1b, a marker for GABAergic neurons. Interestingly, both risk genes have previously been associated with glucose homeostasis and energy metabolism, which when disrupted could lead to alterations in signal transduction and neuron survival. Likewise, Lbx1 plays a pivotal role in GABAergic versus glutamatergic neuron specification during spinal cord and hindbrain development in mice and chicken. Preliminary results of this work suggest a similar role in zebrafish. Taken together, those findings on the one hand represent a sturdy basis to con- tinue studies of the function of the genes and on the other hand open up the opportunity to investigate novel aspects of ADHD research by exploring the role of the GABAergic neurotransmitter system or the connection between energy metabolism and psychiatric disorders.}, subject = {Aufmerksamkeitsdefizit-Syndrom}, language = {en} } @phdthesis{Beudert2024, author = {Beudert, Matthias}, title = {Bioinspired Modification and Functionalization of Hydrogels for Applications in Biomedicine}, doi = {10.25972/OPUS-32288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Over the years, hydrogels have been developed and used for a huge variety of different applications ranging from drug delivery devices to medical products. In this thesis, a poly(2-methyl-2-oxazoline) (POx) / poly(2-n-propyl-2-oxazine) (POzi) bioink was modified and analyzed for the use in biofabrication and targeted drug delivery. In addition, the protein fibrinogen (Fbg) was genetically modified for an increased stability towards plasmin degradation for its use as wound sealant. In Chapter 1, a thermogelling, printable POx/POzi-based hydrogel was modified with furan and maleimide moieties in the hydrophilic polymer backbone facilitating post-printing maturation of the constructs via Diels-Alder chemistry. The modification enabled long-term stability of the hydrogel scaffolds in aqueous solutions which is necessary for applications in biofabrication or tissue engineering. Furthermore, we incorporated RGD-peptides into the hydrogel which led to cell adhesion and elongated morphology of fibroblast cells seeded on top of the scaffolds. Additional printing experiments demonstrate that the presented POx/POzi system is a promising platform for the use as a bioink in biofabrication. Chapter 2 highlights the versatility of the POx/POzi hydrogels by adapting the system to a use in targeted drug delivery. We used a bioinspired approach for a bioorthogonal conjugation of insulin-like growth factor I (IGF-I) to the polymer using an omega-chain-end dibenzocyclooctyne (DBCO) modification and a matrix metalloprotease-sensitive peptide linker. This approach enabled a bioresponsive release of IGF-I from hydrogels as well as spatial control over the protein distribution in 3D printed constructs which makes the system a candidate for the use in personalized medicine. Chapter 3 gives a general overview over the necessity of wound sealants and the current generations of fibrin sealants on the market including advantages and challenges. Furthermore, it highlights trends and potential new strategies to tackle current problems and broadens the toolbox for future generations of fibrin sealants. Chapter 4 applies the concepts of recombinant protein expression and molecular engineering to a novel generation of fibrin sealants. In a proof-of-concept study, we developed a new recombinant fibrinogen (rFbg) expression protocol and a Fbg mutant that is less susceptible to plasmin degradation. Targeted lysine of plasmin cleavage sites in Fbg were exchanged with alanine or histidine in different parts of the molecule. The protein was recombinantly produced and restricted plasmin digest was analyzed using high resolution mass spectrometry. In addition to that, we developed a novel time resolved screening protocol for the detection of new potential plasmin cleavage sites for further amino acid exchanges in the fibrin sealant.}, subject = {Hydrogel}, language = {en} } @phdthesis{Drakopoulos2024, author = {Drakopoulos, Antonios}, title = {Opioid receptor oligomerization study through fluorescent selective ligands}, doi = {10.25972/OPUS-20717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Opioid receptors (ORs) are among the most intensively studied members of the G protein-coupled receptor (GPCR) family due to their important role in pain management and their involvement in psychological and neurological disorders. However, currently available opioid drugs exhibit both serious drawbacks, such as addiction, and life-threatening side effects, such as respiratory depression. Contrary to the classic monomeric model, indirect evidence suggests that ORs might form dimers, which could be endowed with a distinct pharmacological profile, and, thus, be exploited to develop innovative drugs. However, direct evidence for the spontaneous formation of OR dimers in living cells under physiological condition are missing. The focus of this thesis was the design, synthesis and characterization of new, highly subtype-selective OR fluorescent ligands to be used as tools for state-of-the-art microscopy methods, such as single molecule microscopy (SMM), in heterologous cells and potentially in native tissue, in order to investigate OR organization and mobility on the surface of intact, living cells, at low/physiological expression levels. The μOR is the OR subtype which plays the most critical role in pain modulation, while mediating the effects of the most powerful analgesic drugs. Also, it is the OR subtype which is mostly responsible for the major adverse effects of the currently marketed opioid drugs. We aimed to develop a new μOR-selective fluorescent ligand with a potential irreversible binding mode. Although the approach was in principle successful, i.e. the labelled cells were visible and distinguishable; this initial attempt was not suitable for SMM due to the ligands' poor selectivity and affinity as well as due to its high background noise. A second generation of the fluorescent ligand was designed; however the synthesis and characterization are part of another doctoral thesis. Lately, δOR has received attention as a promising drug target, due to its distinct pharmacological profile which features low abuse liability and lack of physical dependence. In addition, δOR expression has been associated with cancer regulation in the periphery, thus further highlighting the interest of imaging tools for this receptor. In this thesis, the development and characterization of two new δOR-selective fluorescent probes with excellent optical properties, based on the well-studied ligand naltrindole (NTI) is presented. Their application in SMM studies is currently underway at the group of Prof. Dr. Davide Calebiro at the University of Birmingham. The κOR is a subtype which has also emerged as a drug target due to its low abuse potential. Despite a growing interest in this receptor, κOR-selective fluorescent probes have been particularly scarce in literature. Herein, the design, synthesis and characterization of the first reported set of fluorescent κOR-selective probes with antagonistic properties, based on the established ligand 5'-guanidinonaltrindole (5'-GNTI) is presented. Two of these were employed for SMM experiments to investigate κOR homodimerization, localization and trafficking. Our findings do not support homodimerization of the κOR-bound probe complexes, while showing that the majority of them follow a normal Brownian diffusion on the cell surface.}, subject = {Opioidrezeptor}, language = {en} } @phdthesis{Nair2024, author = {Nair, Radhika Karal}, title = {Structural and biochemical characterization of USP28 inhibition by small molecule inhibitors}, doi = {10.25972/OPUS-28174}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281742}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ubiquitination is an important post-translational modification that maintains cellular homeostasis by regulating various biological processes. Deubiquitinases (DUBs) are enzymes that reverse the ubiquitination process by catalyzing the removal of ubiquitin from a substrate. Abnormal expression or function of DUBs is often associated with the onset and progression of various diseases, including cancer. Ubiquitin specific proteases (USPs), which constitute the largest family of DUBs in humans, have become the center of interest as potential targets in cancer therapy as many of them display increased activity or are overexpressed in a range of malignant tumors or the tumor microenvironment. Two related members of the USP family, USP28 and USP25, share high sequence identities but play diverse biological roles. USP28 regulates cell proliferation, oncogenesis, DNA damage repair and apoptosis, whereas USP25 is involved in the anti-viral response, innate immunity and ER-associated degradation in addition to carcinogenesis. USP28 and USP25 also exhibit different oligomeric states - while USP28 is a constitutively active dimer, USP25 assumes an auto-inhibited tetrameric structure. The catalytic domains of both USP28 and USP25 comprise the canonical, globular USP-domain but contain an additional, extended insertion site called USP25/28 catalytic domain inserted domain (UCID) that mediates oligomerization of the proteins. Disruption of the USP25 tetramer leads to the formation of an activated dimeric protein. However, it is still not clear what triggers its activation. Due to their role in maintaining and stabilizing numerous oncoproteins, USP28 and USP25 have emerged as interesting candidates for anti-cancer therapy. Recent advances in small-molecular inhibitor development have led to the discovery of relatively potent inhibitors of USP28 and USP25. This thesis focuses on the structural elucidation of USP28 and the biochemical characterization of USP28/USP25, both in complex with representatives of three out of the eight compound classes reported as USP28/USP25-specific inhibitors. The crystal structures of USP28 in complex with the AZ compounds, Vismodegib and FT206 reveal that all three inhibitor classes bind into the same allosteric pocket distant from the catalytic center, located between the palm and the thumb subdomains (the S1-site). Intriguingly, this binding pocket is identical to the UCID-tip binding interface in the USP25 tetramer, rendering the protein in a locked, inactive conformation. Formation of the binding pocket in USP28 requires a shift in the helix α5, which induces conformational changes and local distortion of the binding channel that typically accommodates the C-terminal tail of Ubiquitin, thus preventing catalysis and abrogating USP28 activity. The key residues of the USP28-inhibitor binding pocket are highly conserved in USP25. Mutagenesis studies of these residues accompanied by biochemical and biophysical assays confirm the proposed mechanism of inhibition and similar binding to USP25. This work provides valuable insights into the inhibition mechanism of the small molecule compounds specifically for the DUBs USP28 and USP25. The USP28-inhibitor complex structures offer a framework to develop more specific and potent inhibitors.}, subject = {Unique Selling Proposition}, language = {en} } @phdthesis{Diehl2024, author = {Diehl, Janina Marie Christin}, title = {Ecology and evolution of symbiont management in ambrosia beetles}, doi = {10.25972/OPUS-32121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321213}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The relationship between a farmer and their cultivated crops in agriculture is multifaceted, with pathogens affecting both the farmer and crop, and weeds that take advantage of resources provided by farmers. For my doctoral thesis, I aimed to gain a comprehensive understanding of the ecology and symbiosis of fungus farming ambrosia beetles. Through my research, I discovered that the microbial composition of fungus gardens, particularly the mutualists, is significantly influenced by the presence of both adults and larvae. The recognition of both beneficial and harmful symbionts is crucial for the success of ambrosia beetles, who respond differently depending on their life stage and the microbial species they encounter, which can contribute to the division of labour among family groups. The presence of antagonists and pathogens in the fungus garden depends on habitat and substrate quality, and beetle response to their introduction results in behavioural and developmental changes. Individual and social immunity measures, as well as changes in bacterial and fungal communities, were detected as a result of pathogen introduction. Additionally, the ability of ambrosia beetles to establish two nutritional fungal species depends on several factors. These insects must strike a balance between their essential functions and adapt to the constantly changing ecological and social conditions, which demonstrates their adaptive flexibility. However, interpreting data from laboratory studies should be approached with caution, as the natural environment allows for more flexibility and the potential for other beneficial symbionts to become more prominent if required. To aid in my research, I designed primers that use the 'fungal large subunit' (LSU) as genetic marker to identify and differentiate mutualistic and antagonistic fungi in X. saxesenii. The primers were able to distinguish closely related species of the Ophiostomataceae and other fungal symbionts. This allowed me to associate the abundance of key fungal taxa with factors such as the presence of beetles, the nest's age and condition, and the various developmental stages present. My primers are a valuable tool for understanding fungal communities, including their composition and the identification of previously unknown functional symbionts. However, some aspects should be approached with caution due to the exclusion of non-amplified taxa in the relative fungal community compositions.}, subject = {{\"O}kologie}, language = {en} } @phdthesis{Kappenberger2024, author = {Kappenberger, Jeannette Sarah}, title = {Biochemical characterization of the TFIIH translocase XPB from \(Chaetomium\) \(thermophilum\)}, doi = {10.25972/OPUS-24409}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {DNA repair and gene expression are two major cellular processes that are fundamental for the maintenance of biological life. Both processes require the enzymatic activity of the super family 2 helicase XBP, which is an integral subunit of the general transcription factor TFIIH. During transcription initiation, XPB catalyzes the initial melting of promoter DNA enabling RNA polymerase II to engage with the coding DNA strand and start gene transcription. In nucleotide excision repair, XPB acts in concert with the other TFIIH helicase XPD causing strand separation around a lesion site. Mutations within the genes encoding XPB or other TFIIH subunits are associated with different cancer types as well as with the autosomal recessive disorders Xeroderma Pigmentosum and trichothiodystrophy and rarely combined features of Xeroderma Pigmentosum and Cockayne syndrome. In the last few years, great progress has been made towards unraveling the structure of TFIIH and its individual subunits including XPB. These structural insights tremendously improved our understandings with respect to the molecular interactions within this intriguing protein complex. However, the underlying regulation mechanisms that functionally control XPB during transcription and repair remained largely elusive. We thus executed the biochemical characterization of this protein to investigate the functional network that regulates XPB within the scaffold of TFIIH. Due to their enhanced stability compared to the human proteins, we utilized the proteins that originate from the thermophilic fungus Chaetomium thermophilum for this purpose as a model organism for eukaryotic TFIIH. The present work provides novel insights into the enzymatic function and regulation of XPB. We could show that both, DNA and the TFIIH subunit p52 stimulate XPB's ATPase activity and that the p52-mediated activity is further boosted by p8, another subunit within TFIIH. Surprisingly, DNA can activate XPB's ATPase activity to a greater extent than its TFIIH interaction partners p52/p8, but when both, i.e. p52/p8 and DNA are present at the same time, p52 dominates the activation and the enzymatic speed is maintained at the level observed through the sole activation of p52/p8. We thus defined p52 as the master regulator of XPB that simultaneously activates and represses XPB's enzymatic activity. Based on a correlative mutagenesis study of the main interface between p52 and XPB that was set into context with recent structural data, a model for the p52-mediated activation and speed limitation of XPB's ATPase was proposed. The research on XPB's ATPase was expanded with the investigation of the inhibition mechanism of XPB's ATPase via the natural compound Triptolide. Furthermore, we investigated XPB's DNA translocase function and could observe that XPB can only perform its translocase movement when it is fully incorporated into core TFIIH and this translocase movement is further enhanced by the nucleotide excision repair factor XPA. Fluorescence polarization measurements with nucleotide analogues revealed that XPB displays the highest affinity towards DNA in the ADP + Pi bound state and its binding is weakened when ADP is bound or the nucleotide is dissociated from the enzyme, suggesting a movement on the DNA during the distinct states of the ATPase cycle. Finally, the well-known and highly conserved RED motif was found to be the crucial element in XPB to enable this translocase movement. Combined, the data presented in this work provide novel insights into the intricate regulation network that controls XPB's enzymatic activity within TFIIH and furthermore show that XPB's enzymatic activity is tightly controlled by various factors.}, subject = {DNS-Reparatur}, language = {en} } @phdthesis{Fohmann2024, author = {Fohmann, Ingo}, title = {The Role of Sphingosine 1-phosphate and S1PR1-3 in the Pathophysiology of Meningococcal Meningitis}, doi = {10.25972/OPUS-36976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369764}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Neisseria meningitidis (N. meningitidis) is an obligate human pathogen which causes live-threatening sepsis and meningitis. The fatality rate after meningococcal infection is high and surviving patients often suffer from severe sequelae. To cause meningitis, N. meningitidis must overcome the endothelium of the blood-brain barrier. The bacterium achieves this through the interaction with endothelial surface receptors leading to alternations of the cellular metabolism and signaling, which lastly results in cellular uptake and barrier traversal of N. meningitidis. Sphingosine 1-phosphate (S1P) is a lipid mediator that belongs to the class of sphingolipids and regulates the integrity of the blood-brain barrier through the interaction with its cognate receptors S1P receptors 1-3 (S1PR1-3). In this study, high performance liquid chromatography coupled with mass spectrometry (LC-MS/MS) was used to generate a time-resolved picture of the sphingolipid metabolism in a brain endothelial cell line (hCMEC/D3) upon meningococcal infection. Among various changes, S1P was elevated in the cellular compartment as well as in the supernatant of infected hCMEC/D3s. Analysis of mRNA expression in infected hCMEC/D3s with quantitative real-time polymerase chain reaction (RT-qPCR) revealed that the increase in S1P could be attributed to the enhanced expression of the S1P-generating enzyme sphingosine kinase 1 (SphK1). Antibody-based detection of SphK1 protein or phosphorylation at SphK1 residue Serine 225 in hCMEC/D3 plasma membrane fractions via Western Blot revealed that N. meningitidis also induced SphK1 phospho-activation and recruitment to the plasma membrane. Importantly, recruitment of SphK1 to the plasma membrane increases the probability of substrate encounter, thus elevating SphK activity. Enhanced SphK activity was also reflected on a functional level, as detected by a commercially available ATP depletion assay used for measuring the enzymatic activity of SphK. Infection of hCMEC/D3 cells with pilus-deficient mutants resulted in a lower SphK activation compared to the N. meningitidis wild type strain. hCMEC/D3 treatment with pilus-enriched protein fractions showed SphK activation similar to the infection with living bacteria and could be ascribed to pilus interaction with the membrane-proximal domain of cellular surface receptor CD147. Inhibition of SphK1 or SphK2 through pre-treatment with specific inhibitors or RNA interference reduced uptake of N. meningitidis into hCMEC/D3 cells, as measured with Gentamicin protection assays. Released S1P induced the phospho-activation of epidermal growth factor receptor (EGFR) via S1PR2 activation, whose expression was also increasing during infection. Furthermore, S1PR2 blockage had a preventive effect on bacterial invasion into hCMEC/D3 cells. On the contrary, activation of S1PR1+3 also reduced bacterial uptake, indicating an opposing regulatory role of S1PR1+3 and S1PR2 during N. meningitidis uptake. Moreover, SphK2 inhibition prevented inflammatory cytokine expression as well as release of interleukin-8 after N. meningitidis infection. Taken together, this study demonstrates the central role of S1P and its cognate receptors S1PR1-3 in the pathophysiology of meningococcal meningitis.}, subject = {Blut-Hirn-Schranke}, language = {en} } @phdthesis{MathewSchmitt2024, author = {Mathew-Schmitt, Sanjana}, title = {Development of blood-brain barrier spheroid models based on human induced pluripotent stem cells (hiPSCs) and investigation of shear stress on hiPSC-derived brain capillary endothelial-like cells}, doi = {10.25972/OPUS-32247}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322475}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {A highly regulated microenvironment is essential in maintaining normal functioning of the central nervous system (CNS). The existence of a biological barrier, termed as the blood-brain barrier (BBB), at the blood to brain interface effectively allows for selective passage of substances and pathogens into the brain (Kadry, Noorani et al. 2020). The BBB chiefly serves in protecting the brain from extrinsic toxin entry and pathogen invasions. The BBB is formed mainly by brain capillary endothelial cells (BCECs) which are responsible for excluding ∼ 100\% of large-molecule neurotherapeutics and more than 98\% of all small-molecule drugs from entry into the brain. Minimal BBB transport of major potential CNS drugs allows for attenuated effective treatments for majority of CNS disorders (Appelt-Menzel, Oerter et al. 2020). Animals are generally used as model systems to study neurotherapeutic delivery into the brain, however due to species based disparity, experimental animal models lead to several false positive or false negative drug efficacy predictions thereby being unable to fully predict effects in humans (Ruck, Bittner et al. 2015). An example being that over the last two decades, much of the studies involving animals lead to high failure rates in drug development with ~ 97\% failure in cancers and ~ 99\% failure for Alzheimer´s disease (Pound 2020). Widespead failures in clinical trials associated with neurological disorders have resulted in questions on whether existing preclinical animal models are genuinely reflective of the human condition (Bhalerao, Sivandzade et al. 2020). Apart from high failure rates in humans, the costs for animal testings is extremely high. According to the Organisation for Economic Co-operation and Development (OECD), responsible for determining animal testing guidelines and methodology for government, industry, and independent laboratories the average cost of a single two-generation reproductive animal toxicity study worldwide is 318,295 € and for Europe alone is ~ 285,842 € (Van Norman 2019). Due to these reasons two separate movements exist within the scientific world, one being to improve animal research and the other to promote new approach methodologies with the European government setting 2025 - 2035 as a deadline for gradually disposing the use of animals in pharmaceutical testing (Pound 2020). The discovery of human induced pluripotent stem cell (hiPSC) technology in 2006 (Takahashi and Yamanaka 2006, Takahashi, Tanabe et al. 2007) revolutionized the field of drug discovery in-vitro. HiPSCs can be differentiated into various tissue types that mimic disease phenotypes, thereby offering the possibility to deliver humanized in-vitro test systems. With respect to the BBB, several strategies to differentiate hiPSCs to BCECs (iBCECs) are reported over the years (Appelt-Menzel, Oerter et al. 2020). However, iBCECs are said to possess an epithelial or undifferentiated phenotype causing incongruity in BBB lineage specifications (Lippmann, 7 Azarin et al. 2020). Therefore, in order to identify a reliable differentiation strategy in deriving iBCECs possessing hallmark BBB characteristics, which can be used for downstream applications, the work in this thesis compared two methods, namely the co-differentiation (CD) and the directed differentiation (DD). Briefly, CD mimics a brain like niche environment for iBCEC specification (Lippmann, Al-Ahmad et al. 2014), while DD focuses on induction of the mesoderm followed by iBCEC specification (Qian, Maguire et al. 2017). The results obtained verified that while iBCECs derived via CD, in comparison to human BCEC cell line hCMEC/D3 showed the presence of epithelial transcripts such as E-Cadherin (CDH1), and gene level downregulation of endothelial specific platelet endothelial cell adhesion molecule-1 (PECAM-1) and VE-cadherin (CDH5) but demonstrated higher barrier integrity. The CD strategy essentially presented iBCECs with a mean trans-endothelial electrical resistance (TEER) of ~ 2000 - 2500 Ω*cm2 and low permeability coefficients (PC) of < 0.50 μm/min for small molecule transport of sodium fluorescein (NaF) and characteristic BCEC tight junction (TJ) protein expression of claudin-5 and occludin. Additionally, iBCECs derived via CD did not form tubes in response to angiogenic stimuli. DD on the other hand resulted in iBCECs with similar down regulations in PECAM-1 and CDH5 gene expression. They were additionally characterized by lower barrier integrity, measured by mean TEER of only ~ 250 - 450 Ω*cm2 and high PC of > 5 μm/min in small molecule transport of NaF. Although iBCECs derived via DD formed tubes in response to angiogenic stimuli, they did not show positive protein expression of characteristic BCEC TJs such as claudin-5 and occludin. These results led to the hypothesis that maturity and lineage specification of iBCECs could be improved by incorporating in-vivo like characteristics in-vitro, such as direct co-culture with neurovascular unit (NVU) cell types via spheroid formation and by induction of shear stress and fluid flow. In comparison to standard iBCEC transwell mono-cultures, BBB spheroids showed enhanced transcript expression of PECAM-1 and reduced expression of epithelial markers such as CDH1 and claudin-6 (CLDN6). BBB spheroids showed classical BCEC-like ultrastructure that was identified by TJ particles on the protoplasmic face (P-face) and exoplasmic face (E-face) of the plasma membrane. TJ strands were organized as particles and particle-free grooves on the E-face, while on the P-face, partly beaded particles and partly continuous strands were identified. BBB spheroids also showed positive protein expression of claudin-5, VE-cadherin, PECAM-1, glucose transporter-1 (GLUT-1), P-glycoprotein (P-gp) and transferrin receptor-1 (Tfr-1). BBB spheroids demonstrated higher relative impedance percentages in comparison to spheroids without an iBCEC barrier. Barrier integrity assessments additionally corresponded with lower permeability to small molecule tracer NaF, with spheroids containing iBCECs showing higher relative fluorescence unit percentages (RFU\%) of ~ 90\% in apical compartments, compared to ~ 80\% in spheroids without iBCECs. In summary, direct cellular contacts in the complex spheroid model resulted in enhanced maturation of iBCECs. 8 A bioreactor system was used to further assess the effect of shear stress. This system enabled inclusion of fluidic flow and shear stress conditions in addition to non-invasive barrier integrity measurements (Choi, Mathew et al. 2022). iBCECs were cultured for a total of seven days post differentiation (d17) within the bioreactor and barrier integrity was non-invasively monitored. Until d17 of long-term culture, TEER values of iBCECs steadily dropped from ~ 1800 Ω*cm2 ~ 400 Ω*cm2 under static conditions and from ~ 2500 Ω*cm2 to ~ 250 Ω*cm2 under dynamic conditions. Transcriptomic analyses, morphometric analyses and protein marker expression showed enhanced maturation of iBECs under long-term culture and dynamic flow. Importantly, on d10 claudin-5 was expressed mostly in the cytoplasm with only ~ 5\% iBCECs showing continuous staining at the cell borders. With increase in culture duration, iBCECs at d17 of static culture showed ~ 18\% of cells having continuous cell border expression, while dynamic conditions showed upto ~ 30\% of cells with continuous cell-cell border expression patterns. Similarly, ~ 33\% of cells showed cell-cell border expression of occludin on d10 with increases to ~ 55\% under d17 static and up to ~ 65\% under d17 dynamic conditions, thereby indicating iBCEC maturation. In conclusion, the data presented within this thesis demonstrates the maturation of iBCECs in BBB spheroids, obtained via direct cellular contacts and by the application of flow and shear stress. Both established novel models need to be further validated for pharmaceutical drug applications together with in-vitro-in-vivo correlations in order to exploit their full potential.}, subject = {Blut-Hirn-Schranke}, language = {en} } @phdthesis{GamboaVargas2024, author = {Gamboa Vargas, Juan Fernando}, title = {Receptors of the TNFSF in the biology and regulation of Tregs}, doi = {10.25972/OPUS-36980}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369801}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this work we expanded upon a study from our group where a ligand-based TNF-α mutein was developed to engage specifically TNFR2 and not TNFR1 activating Tregs and expanding them, which in an allo-HCT context conferred protection from GvHD. Fusing TNF trimers to the heavy chain of an Fc-dead and mouse irrelevant antibody, a new generation of this agonist was developed called NewSTAR2. It is believed that other members of the TNFSF can also target Tregs, therefore additional agonists against DR3 and GITR were developed under the same principles as for NewSTAR2. Phenotyping analysis of the expression of these three receptors were done to confirm their specificity for Tregs before in vitro and in vivo testings with mice or murine splenic cells. A potent expansion of Tregs was seen with NewSTAR2 and the other agonists as well as upregulation of activation markers on Tregs. Thorough analyses with NewSTAR2-treated mice showed how Tregs in several immune and non-immune organs were expanded and upregulated immunomodulatory receptors. A miniature suppressive assay and other cocultures with responder cells confirmed their enhanced suppression over unstimulated Tregs through contact dependent and independent mechanisms. Despite other myeloid cells also being increased after treatment, no undesired effects were observed under steady-state and prophylactic administration of a single dose of NewSTAR2 improved survival frequencies and lessened development of clinical symptoms. Prophylactic treatment with the other TNFRSF agonists showed similar protection yet Fc(DANA)-muTL1A was superior in in terms of less death events and lower clinical score. It was found that not all the three TNFSF members have redundant functions as development of skin lesions was observed with GITRL-based agonist Fc(DANA)-muGITRL, although its expansion of Tregs in steady-state was remarkable with no apparent adverse effects. Neither agonist had an impact on donor cell engraftment or allorective T cell response, however NewSTAR2-treatmend proved to reduce inflammation in small intestine and liver. This work is proof of concept of the effectivity of selectively engaging TNFSF to activate Tregs and expand them systemically allowing them to control strong and complex immune interactions like those governing GvHD.}, subject = {Regulatorischer T-Lymphozyt}, language = {en} }