@article{KlotzCristalliGrifantinietal.1985, author = {Klotz, Karl-Norbert and Cristalli, G. and Grifantini, M. and Vittori, S. and Lohse, M. J.}, title = {Photoaffinity labeling of A\(_1\) adenosine receptors}, series = {The journal of biological chemistry}, volume = {27}, journal = {The journal of biological chemistry}, number = {260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60198}, year = {1985}, abstract = {The ligand-binding subunit of the A\(_1\)-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R- \(N^6\)-phenylisopropyladenosine, R-2-azido-\(N^6\)-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific Iigand for A\(_1\)-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R·AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A\(_1\)-subtype. It competes for [\(^3\)H].\(N^6\)- phenylisopropyladenosine binding to Arreceptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of [\(^3\)H)\(N^6\)-phenylisopropyladenosine binding afterextensive washing; the K; value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity Iabel of high specific radioactivity (\(^{125}\)I-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for \(^{125}\)I-AHPIA binding to rat brain membranes with an order of potency characteristic for A\(_1\)-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40\% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of M\(_r\) = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A\(_1\)-subtype. The results indicate that \(^{125}\)I-AHPIA identifies the ligand-binding subunit of the A\(_1\)-adenosine receptor, which is a peptide with M\(_r\) = 35,000.}, subject = {Toxikologie}, language = {en} } @article{UkenaSchirrenKlotzetal.1985, author = {Ukena, D. and Schirren, C. G. and Klotz, Karl-Norbert and Schwabe, U.}, title = {Evidence for an A\(_2\) adenosine receptor in guinea pig lung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60202}, year = {1985}, abstract = {Adenosine receptors in guinea pig lung were characterized by measurement of cyclic AMP formation and radioligand binding. 5'-N-Ethylcarboxamidoadenosine (NECA) increased cyclic AMP Ievels in lung slices about 4-fold over basal values with an EC\(_{50}\) of 0.32 \(\mu\)mol/l. N\(^6\) - R-(- )-Phenylisopropyladenosine (R-PIA) was 5-fold less potent than NECA. 5'-N-Methylcarboxamidoadenosine (MECA) and 2-chloroadenosine had EC\(_{50}\)-values of 0.29 and 2.6 \(\mu\)mol/l, whereas adenosine and inosine had no effect. The adenosine receptors in guinea pig Iung can therefore be classified as A\(_2\) receptors. Several xanthine derivatives antagonized the NECA-induced increase in cyclic AMP levels. 1,3-Diethyl-8-phenylxanthine (DPX; K\(_i\) 0.14 \(\mu\)mol/l) was the most potent analogue, followed by 8-phenyltheophylline (K\(_i\) 0.55 \(\mu\)mol/l), 3-isobutyl-1-methylxanthine (IBMX; K\(_i\) 2.9 \(\mu\)mol/l) and theophylline (K\(_i\) 8.1 \(\mu\)mol/l). In contrast, enprofylline (1 mmol/1) enhanced basal and NECA-stimulated cyclic AMP formation. In addition, we attempted to characterize these receptors in binding studies with [\(^3\)H]NECA. The K\(_D\) for [\(^3\)H] NECA was 0.25 \(\mu\)mol/l and the maximal number of binding sites was 12 pmol/mg protein. In competition experiments MECA (K\(_i\) 0.14 \(\mu\)mol/l) was the most potent inhibitor of [\(^3\)H] NECA binding, followed by NECA (K\(_i\) 0.19 \(\mu\)mol/l) and 2-chloroadenosine (K\(_i\) 1.4 \(\mu\)mol/l). These results correlate well with the EC\(_{50}\)- values for cyclic AMP formation in lung slices. However, the K\(_i\)-values of R-PIA and theophylline were 240 and 270 \(\mu\)mol/l, and DPX and 8-phenyltheophylline did not compete for [\(^3\)H]NECA binding sites. Therefore, a complete characterization of A\(_2\) adenosine receptors by [\(^3\)H] NECA binding was not achieved. In conclusion, our results show the presence of adenylate cyclase-coupled A\(_2\) adenosiile receptors in lung tissue which are antagonized by several xanthines.}, subject = {Toxikologie}, language = {en} } @incollection{LohseKlotzSchwabe1985, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Schwabe, Ulrich}, title = {Effects of barbiturates on A1 adenosine receptors of rat brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70100}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1985}, abstract = {Barbiturates inhibit binding of radioligands to A 1(Ri) adenosine receptors of rat brain membranes. This inhibition is dose-dependent and stereospecific and occurs in the range of pharmacologically active concentrations. The displacement of radiolabelled A1antagonists by barbiturates is not modified by GTP, indicating that barbiturates might act as antagonists at this receptor. This action of barbiturates does not seem to be related to the binding of barbiturates to plasma membranes, as the latter process has different characteristics. Barbiturates also inhibit the binding of radioligands to solubilized A1receptors, and saturation and kinetic experiments suggest that this is due to a competitive antagonism. These results indicate that barbiturates interact with the recognition site of the A1adenosine receptor.}, subject = {Barbiturat}, language = {en} } @article{OttLohseKlotzetal.1982, author = {Ott, Ilka and Lohse, Martin J. and Klotz, Karl-Norbert and Vogt-Moykopf, Ingolf and Schwabe, Ulrich}, title = {Effects of Adenosine on Histamine Release from Human Lung Fragments}, series = {International Archives of Allergy and Immunology}, volume = {98}, journal = {International Archives of Allergy and Immunology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127877}, pages = {50-56}, year = {1982}, abstract = {The actions of adenosine on histamine release of human lung fragments were investigated. Histamine release was stimulated either with the calcium ionophore A 23187 orwith concanavalin A. Adenosine and its analogue 5'-N-ethylcarboxamidoadenosine alone had no significant effect on basal release or on the release elicited by A 23187 or concanavalin A. However, in the presence of the adenosine receptor antagonist 8-[4-[[[[(2-aminoethyl)amino]-carbonyl] methyloxy]-phenyl]-1,3-dipropylaxanthine (XAC), which itself did not affect the release, adenosine increased the stimulated histamine release. On the other hand, in the presence of the nucleoside transport inhibitor S-(p-nitrobenzyl)-6-thioninosine (NBTI), adenosine caused a reduction in stimulated histamine release. NBTI itself caused a stimulation of release. Thus, a stimulatory effect of adenosine was seen in the presence ofXAC, whereas an inhibitory effect was unmasked by NBTI. From these data it is concluded that adenosine exerts two opposing effects on histamine release in the human lung which neutralize each other: it inhibits release via a si te antagonized by XAC, which presumably represents an A2 adenosine receptor, and it stimulates release via a mechanism that is blocked by NBTI, suggesting that adenosine needs to reach the interior of cells to exert this effect. The slight stimulatory effect of NBTI alone demonstrates that trapping intracellularly formed adenosine inside mast cells leads to sufficient concentrations of adenosine to stimulate histamine release. These findings suggest an important bimodal role of adenosine in regulating histamine release in the human lung.}, language = {en} }