@article{WeiWangYangetal.2023, author = {Wei, Yuxiang and Wang, Junyi and Yang, Weiguang and Lin, Zhenyang and Ye, Qing}, title = {Boosting Ring Strain and Lewis Acidity of Borirane: Synthesis, Reactivity and Density Functional Theory Studies of an Uncoordinated Arylborirane Fused to o-Carborane}, series = {Chemistry - A European Journal}, volume = {29}, journal = {Chemistry - A European Journal}, number = {5}, doi = {10.1002/chem.202203265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312089}, year = {2023}, abstract = {Among the parent borirane, benzoborirene and ortho-dicarbadodecaborane-fused borirane, the latter possesses the highest ring strain and the highest Lewis acidity according to our density functional theory (DFT) studies. The synthesis of this class of compounds is thus considerably challenging. The existing examples require either a strong π-donating group or an extra ligand for B-coordination, which nevertheless suppresses or completely turns off the Lewis acidity. The title compound, which possesses both features, not only allows the 1,2-insertion of P=O, C=O or C≡N to proceed under milder conditions, but also enables the heretofore unknown dearomative 1,4-insertion of Ar-(C=O)- into a B-C bond. The fusion of strained molecular systems to an o-carborane cage shows great promise for boosting both the ring strain and acidity.}, language = {en} } @article{ZhangLiuWangetal.2022, author = {Zhang, Chonghe and Liu, Xiaocui and Wang, Junyi and Ye, Qing}, title = {A Three-Dimensional Inorganic Analogue of 9,10-Diazido-9,10-Diboraanthracene: A Lewis Superacidic Azido Borane with Reactivity and Stability}, series = {Angewandte Chemie}, volume = {61}, journal = {Angewandte Chemie}, number = {36}, doi = {10.1002/anie.202205506}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318322}, year = {2022}, abstract = {Herein, we report the facile synthesis of a three-dimensional (3D) inorganic analogue of 9,10-diazido-9,10-dihydrodiboraantracene, which turned out to be a monomer in both the solid and solution state, and thermally stable up to 230 °C, representing a rare example of azido borane with boosted Lewis acidity and stability in one. Apart from the classical acid-base and Staudinger reactions, E-H bond activation (E=B, Si, Ge) was investigated. While the reaction with B-H (9-borabicyclo[3.3.1]nonane) led directly to the 1,1-addition on N\(_{α}\) upon N\(_{2}\) elimination, the Si-H (Et\(_{3}\)SiH, PhMe\(_{2}\)SiH) activation proceeded stepwise via 1,2-addition, with the key intermediates 5\(_{int}\) and 6\(_{int}\) being isolated and characterized. In contrast, the cooperative Ge-H was reversible and stayed at the 1,2-addition step.}, language = {en} } @article{SuRajeshkumarXiangetal.2022, author = {Su, Wei and Rajeshkumar, Thayalan and Xiang, Libo and Maron, Laurent and Ye, Qing}, title = {Facile Synthesis of Uranium Complexes with a Pendant Borane Lewis Acid and 1,2-Insertion of CO into a U-N Bond}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {51}, doi = {10.1002/anie.202212823}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312197}, year = {2022}, abstract = {In this contribution, we illustrate uranium complexes bearing a pendant borate (i.e. 1 and 2) or a pendant borane (i.e. 3 and 4) moiety via reaction of the highly strained uranacycle I with various 3-coordinate boranes. Complexes 3 and 4 represent the first examples of uranium complexes with a pendant borane Lewis acid. Moreover, complex 3 was capable of activation of CO, delivering a new CO activation mode, and an abnormal CO 1,2-insertion pathway into a U-N bond. The importance of the pendant borane moiety was confirmed by the controlled experiments.}, language = {en} } @phdthesis{Ye2012, author = {Ye, Qing}, title = {Synthesis and Investigation of Borylene Complexes: from Borylene Transfer to Borylene Catenation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71443}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Arbeit wurde das Spektrum des Borylentransfers ausgeweitet, indem {\"U}bergangsmetall Alkinylkomplexe und Metall-Kohlenstoff-Doppelbindungen als Borylen-Akzeptoren eingeschlossen wurden. Neben der Salzeliminierung, Halogenidabstraktion und Dehydrierung, wurde eine neuartige Syntheseroute zu terminalen Borylenkomplexen durch Salz- und Silylhalogenideliminierung etabliert. Mithilfe dieser Strategie gelang die Darstellung von [(OC)3(Me3P)Fe=BDur], ein seltenes Beispiel f{\"u}r einen neutralen Arylborylenkomplex. Im Speziellen hat diese Verbindung ein großes Anwendungspotenzial f{\"u}r Metathesereaktionen und die Funktionalisierung von polycyclischen aromatischen Kohlenwasserstoffen, wie z. B. Naphthalin, gezeigt. Außerdem konnte ein Eisen-Bis(borylen)-Komplex [(OC)3Fe(BDur){BN(SiMe3)2}] durch einen Phosphan-Borylen-Austausch dargestellt werden. Ausgehend von diesem Komplex gelang die Darstellung von 1,4-Diboracyclohexadien bzw. des ersten 1,4-Dibora-1,3-Butadien-Komplexes, wodurch eine neue Art von Borylentransfer etabliert werden konnte. H{\"o}chst interessant ist es, dass der Transfer von weiteren Borylen-Einheiten in die Koordinationssph{\"a}re des Eisenatoms zu einer kontrollierten Borylen-Verkettung gef{\"u}hrt hat.}, subject = {Borylene}, language = {en} }