@phdthesis{Kleineisel2024, author = {Kleineisel, Jonas}, title = {Variational networks in magnetic resonance imaging - Application to spiral cardiac MRI and investigations on image quality}, doi = {10.25972/OPUS-34737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Acceleration is a central aim of clinical and technical research in magnetic resonance imaging (MRI) today, with the potential to increase robustness, accessibility and patient comfort, reduce cost, and enable entirely new kinds of examinations. A key component in this endeavor is image reconstruction, as most modern approaches build on advanced signal and image processing. Here, deep learning (DL)-based methods have recently shown considerable potential, with numerous publications demonstrating benefits for MRI reconstruction. However, these methods often come at the cost of an increased risk for subtle yet critical errors. Therefore, the aim of this thesis is to advance DL-based MRI reconstruction, while ensuring high quality and fidelity with measured data. A network architecture specifically suited for this purpose is the variational network (VN). To investigate the benefits these can bring to non-Cartesian cardiac imaging, the first part presents an application of VNs, which were specifically adapted to the reconstruction of accelerated spiral acquisitions. The proposed method is compared to a segmented exam, a U-Net and a compressed sensing (CS) model using qualitative and quantitative measures. While the U-Net performed poorly, the VN as well as the CS reconstruction showed good output quality. In functional cardiac imaging, the proposed real-time method with VN reconstruction substantially accelerates examinations over the gold-standard, from over 10 to just 1 minute. Clinical parameters agreed on average. Generally in MRI reconstruction, the assessment of image quality is complex, in particular for modern non-linear methods. Therefore, advanced techniques for precise evaluation of quality were subsequently demonstrated. With two distinct methods, resolution and amplification or suppression of noise are quantified locally in each pixel of a reconstruction. Using these, local maps of resolution and noise in parallel imaging (GRAPPA), CS, U-Net and VN reconstructions were determined for MR images of the brain. In the tested images, GRAPPA delivers uniform and ideal resolution, but amplifies noise noticeably. The other methods adapt their behavior to image structure, where different levels of local blurring were observed at edges compared to homogeneous areas, and noise was suppressed except at edges. Overall, VNs were found to combine a number of advantageous properties, including a good trade-off between resolution and noise, fast reconstruction times, and high overall image quality and fidelity of the produced output. Therefore, this network architecture seems highly promising for MRI reconstruction.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Berberich2024, author = {Berberich, Oliver}, title = {Lateral Cartilage Tissue Integration - Evaluation of Bonding Strength and Tissue Integration \(in\) \(vitro\) Utilizing Biomaterials and Adhesives}, doi = {10.25972/OPUS-34602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Articular cartilage defects represent one of the most challenging clinical problem for orthopedic surgeons and cartilage damage after trauma can result in debilitating joint pain, functional impairment and in the long-term development of osteoarthritis. The lateral cartilage-cartilage integration is crucial for the long-term success and to prevent further tissue degeneration. Tissue adhesives and sealants are becoming increasingly more popular and can be a beneficial approach in fostering tissue integration, particularly in tissues like cartilage where alternative techniques, such as suturing, would instead introduce further damage. However, adhesive materials still require optimization regarding the maximization of adhesion strength on the one hand and long-term tissue integration on the other hand. In vitro models can be a valuable support in the investigation of potential candidates and their functional mechanisms. For the conducted experiments within this work, an in vitro disc/ring model obtained from porcine articular cartilage tissue was established. In addition to qualitative evaluation of regeneration, this model facilitates the implementation of biomechanical tests to quantify cartilage integration strength. Construct harvesting for histology and other evaluation methods could be standardized and is ethically less questionable compared to in vivo testing. The opportunity of cell culture technique application for the in vitro model allowed a better understanding of cartilage integration processes. Tissue bonding requires chemical or physical interaction of the adhesive material and the substrate. Adhesive hydrogels can bind to the defect interface and simultaneously fill the gap of irregularly shaped defect voids. Fibrin gels are derived from the physiological blood-clot formation and are clinically applied for wound closure. Within this work, comparisons of different fibrin glue formulations with the commercial BioGlue® were assessed, which highlighted the need for good biocompatibility when applied on cartilage tissue in order to achieve satisfying long-term integration. Fibrin gel formulations can be adapted with regard to their long-term stability and when applied on cartilage disc/ring constructs improved integrative repair is observable. The kinetic of repairing processes was investigated in fibrin-treated cartilage composites as part of this work. After three days in vitro cultivation, deposited extracellular matrix (ECM) was obvious at the glued interface that increased further over time. Interfacial cell invasion from the surrounding native cartilage was detected from day ten of tissue culture. The ECM formation relies on molecular factors, e.g., as was shown representatively for ascorbic acid, and contributes to increasing integration strengths over time. The experiments performed with fibrin revealed that the treatment with a biocompatible adhesive that allows cartilage neosynthesis favors lateral cartilage integration in the long term. However, fibrin has limited immediate bonding strength, which is disadvantageous for use on articular cartilage that is subject to high mechanical stress. The continuing aim of this thesis was to further develop adhesive mechanisms and new adhesive hydrogels that retain the positive properties of fibrin but have an increased immediate bonding strength. Two different photochemical approaches with the advantage of on-demand bonding were tested. Such treatment potentially eases the application for the professional user. First, an UV light induced crosslinking mechanism was transferred to fibrin glue to provide additional bonding strength. For this, the cartilage surface was functionalized with highly reactive light-sensitive diazirine groups, which allowed additional covalent bonds to the fibrin matrix and thus increased the adhesive strength. However, the disadvantages of this approach were the multi-step bonding reactions, the need for enzymatic pretreatment of the cartilage, expensive reagents, potential UV-light damage, and potential toxicity hazards. Due to the mentioned disadvantages, no further experiments, including long-term culture, were carried out. A second photosensitive approach focused on blue light induced crosslinking of fibrinogen (RuFib) via a photoinitiator molecule instead of using thrombin as a crosslinking mediator like in normal fibrin glue. The used ruthenium complex allowed inter- and intramolecular dityrosine binding of fibrinogen molecules. The advantage of this method is a one-step curing of fibrinogen via visible light that further achieved higher adhesive strengths than fibrin. In contrast to diazirine functionalization of cartilage, the ruthenium complex is of less toxicological concern. However, after in vitro cultivation of the disc/ring constructs, there was a decrease in integration strength. Compared to fibrin, a reduced cartilage synthesis was observed at the defect. It is also disadvantageous that a direct adjustment of the adhesive can only be made via protein concentration, since fibrinogen is a natural protein that has a fixed number of tyrosine binding sites without chemical modification. An additional cartilage adhesive was developed that is based on a mussel-inspired adhesive mechanism in which reactivity to a variety of substrates is enabled via free DOPA amino acids. DOPA-based adhesion is known to function in moist environments, a major advantage for application on water-rich cartilage tissue surrounded by synovial liquid. Reactive DOPA groups were synthetically attached to a polymer, here POx, to allow easy chemical modifiability, e.g. insertion of hydrolyzable ester motifs for tunable degradation. The possibility of preparing an adhesive hybrid hydrogel of POx in combination with fibrinogen led to good cell compatibility as was similarly observed with fibrin, but with increased immediate adhesive strength. Degradation could be adjusted by the amount of ester linkages on the POx and a direct influence of degradation rates on the development of integration in the in vitro model could be shown. Hydrogels are well suited to fill defect gaps and immediate integration can be achieved via adhesive properties. The results obtained show that for the success of long-term integration, a good ability of the adhesive to take up synthesized ECM components and cells to enable regeneration is required. The degradation kinetics of the adhesive must match the remodeling process to avoid intermediate loss of integration power and to allow long-term firm adhesion to the native tissue. Hydrogels are not only important as adhesives for smaller lesions, but also for filling large defect volumes and populating them with cells to produce tissue engineered cartilage. Many different hydrogel types suitable for cartilage synthesis are reported in the literature. A long-term stable fibrin formulation was tested in this work not only as an adhesive but also as a bulk hydrogel construct. Agarose is also a material widely used in cartilage tissue engineering that has shown good cartilage neosynthesis and was included in integration assessment. In addition, a synthetic hyaluronic acid-based hydrogel (HA SH/P(AGE/G)) was used. The disc/ring construct was adapted for such experiments and the inner lumen of the cartilage ring was filled with the respective hydrogel. In contrast to agarose, fibrin and HA-SH/P(AGE/G) gels have a crosslink mechanism that led to immediate bonding upon contact with cartilage during curing. The enhanced cartilage neosynthesis in agarose compared to the other hydrogel types resulted in improved integration during in vitro culture. This shows that for the long-term success of a treatment, remodeling of the hydrogel into functional cartilage tissue is a very high priority. In order to successfully treat larger cartilage defects with hydrogels, new materials with these properties in combination with chemical modifiability and a direct adhesion mechanism are one of the most promising approaches.}, subject = {Knorpel}, language = {en} } @phdthesis{Shaikh2024, author = {Shaikh, Muhammad Haroon}, title = {Nicht-h{\"a}matopoetische lymphoide Stromazellen aktivieren alloreaktive CD4\(^+\) T-Zellen in der Initiierung der akuten Graft-versus-Host Disease}, doi = {10.25972/OPUS-25201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In der Initiationsphase der akuten Graft-versus-Host Erkrankung (GvHD) werden CD4+ T-Zellen in den lymphatischen Organen durch h{\"a}matopoietische Antigen-pr{\"a}sentierende Zellen aktiviert. Im Gegensatz dazu, werden in der Effektorphase CD4+ T-Zellen von nicht-h{\"a}matopoetischen Zellen im D{\"u}nndarm aktiviert. Wir stellten die Hypothese auf, dass alloreaktive CD4+ T-Zellen nach allogener h{\"a}matopoetischer Zelltransplantation, welche in der Initiationsphase der aGvHD vorwiegend in die sekund{\"a}ren lymphatischen Organe migrieren, dort durch nicht-h{\"a}matopoetische Lymphknoten-Stromazellen {\"u}ber die Erkennung von MHC-Klasse II aktiviert werden. Um diese Hypothese zu testen, setzten wir ein von allogenen CD4+ T-Zellen-abh{\"a}ngiges MHC Major Mismatch aGvHD Mausmodell ein, um diese Zusammenh{\"a}nge n{\"a}her zu erforschen. Mittels Biolumineszenz-Bildgebung und dreidimensionale Lichtblattmikroskopie und Durchflusszytometrie-Analysen von fr{\"u}heren Zeitpunkten nach einer alloHCT bzw. im Anfangsstadium der aGvHD konnten wir zeigen, dass allogene T-Zellen exklusiv in die Milz, Lymphknoten und die Peyerschen Plaques migrieren und nicht in die intestinale Lamina propria. Indem wir transgene Mauslinien verwendeten, die keine oder eine nur partielle komplette h{\"a}matopoietische Antigenpr{\"a}sentation aufwiesen, konnten wir eine sehr fr{\"u}h auf die alloHCT folgende allogene CD4+ T-Zellaktivierung in den lymphoiden Organen von MHCIIΔCD11c and MHCIIΔ Knochenmark-Chim{\"a}ren nachweisen. Aufgrund des, bei den MHCIIΔ Knochenmarks-Chim{\"a}ren auftretenden Versagens der negativen Thymusselektion und die daraus resultierende autoreaktive Immunreaktionen nach einer syngenen HCST stellte sich heraus, dass dies ein ungeeignetes Modell f{\"u}r die Untersuchung der Pr{\"a}sentation nicht-h{\"a}matopoetischer Antigene bei GvHD ist. Um diese Herausforderung zu bew{\"a}ltigen, generierten wir MHCIIΔVav1 M{\"a}use bei denen die MHC-Klasse-II-Expression auf allen h{\"a}matopoetischen Zellen fehlt. MHCIIΔVav1 M{\"a}use entwickelten eine aGvHD, wobei die Lymphknoten-Stromazellen dieser Tiere allogene CD4+ T-Zellen in gemischten Lymphozytenreaktionen aktivieren konnten. Ebenso konnten mesenteriale Lymphknoten von CD11c.DTR-M{\"a}usen, die zuvor in eine MHCIIΔ Maus transplantiert wurden, CD4+ T-Zellen in vivo aktivieren, wodurch die Lymphknoten-Stromazellen eindeutig als nicht-h{\"a}matopoetische Antigen-pr{\"a}sentierende Zellen der lymphoiden Organe nachgewiesen werden konnten. {\"U}ber das Cre/loxP-System konnten wir Knockout-M{\"a}use mit fehlender MHCII-Expression in Subpopulationen von Lymphknoten-Stromazellen generieren und verwendeten dann Einzelzell-RNA-Sequenzierung. Hier w{\"a}hlten wir Ccl19 und VE-Cadherin aus, um unsere Analyse spezifisch auf die fibroblastischen retikul{\"a}ren Zellen bzw. Endothelzellen der Lymphknoten zu konzentrieren. Bei MHCIIΔCcl19 M{\"a}usen war die Aktivierung alloreaktiver CD4+ T-Zellen in der Initiationsphase der aGvHD m{\"a}ßig reduziert, w{\"a}hrend das Fehlen von MHCII auf den fibroblastischen retikul{\"a}ren Zellen zu einer Hyperaktivierung allogener CD4+ T-Zellen f{\"u}hrte, was wiederum eine schlechtere {\"U}berlebensrate der M{\"a}use zur Folge hatte. Dieser Ph{\"a}notyp wurde durch regulatorische T-Zellen moduliert, die in der Lage waren, H2-Ab1fl M{\"a}use von den Folgen von GvHD zu retten, jedoch nicht die MHCIIΔCcl19. Ein Knock-out von MHCII auf Endothelzellen von MHCIIΔVE-Cadherin M{\"a}usen, f{\"u}hrte in der Initiationsphase der GvHD nur zu einer m{\"a}ßig reduzierten Aktivierung von CD4+ T-Zellen. Umgekehrt zeigten MHCIIΔVE-Cadherin M{\"a}use im Langzeit{\"u}berleben jedoch einen protektiven Ph{\"a}notyp verglichen mit wurfgeschwister H2-Ab1fl M{\"a}usen. Um die Bedeutung der MHCII-Antigenpr{\"a}sentation der Endothelzellen zu untersuchen, generierten wir außerdem MHCIIΔVE-CadherinΔVav1 M{\"a}use, bei welchen eine Antigenpr{\"a}sentation, weder im endothelialen noch im h{\"a}matopoetischen Kompartiment m{\"o}glich war. Lymphknoten-Stromazellen von MHCIIΔVE-CadherinΔVav1 M{\"a}usen waren nicht in der Lage, alloreaktive CD4+ T-Zellen in einer gemischten Lymphozytenreaktion zu aktivieren. Insgesamt konnten wir zum ersten Mal beweisen, dass die MHC-Klassse II auf den Lymphknoten-Stromazellen eine entscheidende Rolle bei der Modulation allogener CD4+ T-Zellen in der Initiations- und schließlich in der Effektorphase der Graft-versus-Host-Disease spielt.}, subject = {Transplantat-Wirt-Reaktion}, language = {en} } @phdthesis{SchukraftgebScheffler2024, author = {Schukraft [geb. Scheffler], Nina}, title = {Integrated defensive states and their neuronal correlates in the Periaqueductal Gray}, doi = {10.25972/OPUS-34745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In the face of threat, animals react with a defensive reaction to avoid or reduce harm. This defensive reaction encompasses apart from behavioral changes also physiological, analgetic, and endocrine adaptations. Nonetheless, most animal studies on fear and anxiety are based on behavioral observations only, disregarding other aspects of the defensive reaction, or integrating their inter-related dynamics only insufficiently. The first part of this thesis aimed in characterizing patterned associations of behavioral and physiological responses, termed integrated defensive states. Analyzing cardiac and behavioral responses in mice undergoing multiple fear and anxiety paradigms revealed a complex and dynamic interaction of those readouts on both, short and long timescales. Microstates, stereotypical combinations of i.e. freezing and decelerating heart rates, are short-lasting and were, in turn, shown to be influenced by slow acting macrostate changes. One of those higher order macrostates, called `rigidity`, was defined as a latent process that constrains the range of momentary displayed heart rate values. Furthermore, integrated defensive states were found to be highly dependent on the cue and the context the animals are confronted with. Importantly, same behavioral observations, i.e. freezing, were associated with distinct cardiac responses, highlighting the importance of multivariate analysis of integrated defensive states. Defensive states are orchestrated by the brain, which has evolved evolutionary conserved survival circuits. A central brain area of these circuits is the periaqueductal gray (PAG) in the midbrain. It plays a pivotal role in mediating defensive states, as it receives signals about external and internal information from multiple brain regions and sends information to both, higher order brain areas as well as to the brainstem ultimately causing the execution of threat responses. In the second part of this thesis, different neuronal circuit elements in the PAG were optically manipulated in order to gain mechanistic insight into the defense network in the brain underlying the previously delineated cardio-behavioral defensive states. Optical activation of glutamatergic PAG neurons evoked heterogeneous, light-intensity dependent responses. However, a further molecular restriction of the glutamatergic neuronal population targeting only Chx10+ neurons, led to a cardio-behavioral state that resembled spontaneous freezing-bradycardia bouts. In summary, this thesis presents a multivariate description of defensive states, which includes the complex interaction of cardiac and behavioral responses on different timescales and, furthermore, functionally dissects different excitatory and inhibitory PAG circuit elements mediating these defensive states.}, subject = {Perianova, Irina}, language = {en} } @phdthesis{Rumpel2024, author = {Rumpel, Matthias}, title = {Development of Components for Solid-State Batteries and their Characterization}, doi = {10.25972/OPUS-34715}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347154}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This Ph.D. thesis has addressed several main issues in current ASSB research within four studies. Ceramic ASSBs are meant to enable the implementation of Li-metal anodes and high voltage cathode materials, which would increase energy density, power density, life time as well as safety aspects in comparison with commercially available liquid electrolyte LiBs. In this thesis, several scientific questions arising on the cathode side of ASSBs have been focused on. With respect to the target system of a ternary composite bulk cathode consisting of ceramic active material, ceramic SSE and an electrically conductive component, studies about the thermal stabilities of these components and their impact on the electrochemical performance have been conducted. Particulate bulk cathode composites have to fulfil electrochemical, chemical, mechanical and structural requirements in order to compete with commercial LiBs. Particularly, the production process requires high-temperature sintering to obtain firmly bonded contacts in order to maximize the electrochemically active area, charge transfer and ionic conduction. However, interdiffusion, intermixing and decomposition of the initial components during sintering result in low-performing ASSBs so far. These side reactions during high-temperature treatment have been investigated in order to gain a better understanding of these mechanisms and to enable a better controlling of the manufacturing process as well as to simplify the choice of material combinations. The first two parts of this thesis deal with the thermal stability of the ceramic SSE LATP in combination with various active materials and with the validation of a probable improvement of the sintering process due to liquid phase sintering of LATP by adding Li3PO4. In the third and fourth parts, the impact of interdiffusion, intermixing and decomposition on the electrochemical performance of TF-SSBs based on the active material LMO and the ceramic SSE Ga-LLZO has been investigated.}, subject = {Elektrochemie}, language = {en} } @phdthesis{Janz2024, author = {Janz, Anna}, title = {Human induced pluripotent stem cells (iPSCs) in inherited cardiomyopathies: Generation and characterization of an iPSC-derived cardiomyocyte model system of dilated cardiomyopathy with ataxia (DCMA)}, doi = {10.25972/OPUS-24096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240966}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The emergence of human induced pluripotent stem cells (iPSCs) and the rise of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing technology innovated the research platform for scientists based on living human pluripotent cells. The revolutionary combination of both Nobel Prize-honored techniques enables direct disease modeling especially for research focused on genetic diseases. To allow the study on mutation-associated pathomechanisms, we established robust human in vitro systems of three inherited cardiomyopathies: arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy with juvenile cataract (DCMJC) and dilated cardiomyopathy with ataxia (DCMA). Sendai virus vectors encoding OCT3/4, SOX2, KLF4, and c-MYC were used to reprogram human healthy control or mutation-bearing dermal fibroblasts from patients to an embryonic state thereby allowing the robust and efficient generation of in total five transgene-free iPSC lines. The nucleofection-mediated CRISPR/Cas9 plasmid delivery in healthy control iPSCs enabled precise and efficient genome editing by mutating the respective disease genes to create isogenic mutant control iPSCs. Here, a PKP2 knock-out and a DSG2 knock-out iPSC line were established to serve as a model of ACM. Moreover, a DNAJC19 C-terminal truncated variant (DNAJC19tv) was established to mimic a splice acceptor site mutation in DNAJC19 of two patients with the potential of recapitulating DCMA-associated phenotypes. In total eight self-generated iPSC lines were assessed matching internationally defined quality control criteria. The cells retained their ability to differentiate into cells of all three germ layers in vitro and maintained a stable karyotype. All iPSC lines exhibited a typical stem cell-like morphology as well as expression of characteristic pluripotency markers with high population purities, thus validating the further usage of all iPSC lines in in vitro systems of ACM, DCMA and DCMJC. Furthermore, cardiac-specific disease mechanisms underlying DCMA were investigated using in vitro generated iPSC-derived cardiomyocytes (iPSC-CMs). DCMA is an autosomal recessive disorder characterized by life threatening early onset cardiomyopathy associated with a metabolic syndrome. Causal mutations were identified in the DNAJC19 gene encoding an inner mitochondrial membrane (IMM) protein with a presumed function in mitochondrial biogenesis and cardiolipin (CL) remodeling. In total, two DCMA patient-derived iPSC lines (DCMAP1, DCMAP2) of siblings with discordant cardiac phenotypes, a third isogenic mutant control iPSC line (DNAJC19tv) as well as two control lines (NC6M and NC47F) were directed towards the cardiovascular lineage upon response to extracellular specification cues. The monolayer cardiac differentiation approach was successfully adapted for all five iPSC lines and optimized towards ventricular subtype identity, higher population purities and enhanced maturity states to fulfill all DCMA-specific requirements prior to phenotypic investigations. To provide a solid basis for the study of DCMA, the combination of lactate-based metabolic enrichment, magnetic-activated cell sorting, mattress-based cultivation and prolonged cultivation time was performed in an approach-dependent manner. The application of the designated strategies was sufficient to ensure adult-like characteristics, which included at least 60-day-old iPSC-CMs. Therefore, the novel human DCMA platform was established to enable the study of the pathogenesis underlying DCMA with respect to structural, morphological and functional changes. The disease-associated protein, DNAJC19, is constituent of the TIM23 import machinery and can directly interact with PHB2, a component of the membrane bound hetero-oligomeric prohibitin ring complexes that are crucial for phospholipid and protein clustering in the IMM. DNAJC19 mutations were predicted to cause a loss of the DnaJ interaction domain, which was confirmed by loss of full-length DNAJC19 protein in all mutant cell lines. The subcellular investigation of DNAJC19 demonstrated a nuclear restriction in mutant iPSC-CMs. The loss of DNAJC19 co-localization with mitochondrial structures was accompanied by enhanced fragmentation, an overall reduction of mitochondrial mass and smaller cardiomyocytes. Ultrastructural analysis yielded decreased mitochondria sizes and abnormal cristae providing a link to defects in mitochondrial biogenesis and CL remodeling. Preliminary data on CL profiles revealed longer acyl chains and a more unsaturated acyl chain composition highlighting abnormities in the phospholipid maturation in DCMA. However, the assessment of mitochondrial function in iPSCs and dermal fibroblasts revealed an overall higher oxygen consumption that was even more enhanced in iPSC-CMs when comparing all three mutants to healthy controls. Excess oxygen consumption rates indicated a higher electron transport chain (ETC) activity to meet cellular ATP demands that probably result from proton leakage or the decoupling of the ETC complexes provoked by abnormal CL embedding in the IMM. Moreover, in particular iPSC-CMs presented increased extracellular acidification rates that indicated a shift towards the utilization of other substrates than fatty acids, such as glucose, pyruvate or glutamine. The examination of metabolic features via double radioactive tracer uptakes (18F-FDG, 125I-BMIPP) displayed significantly decreased fatty acid uptake in all mutants that was accompanied by increased glucose uptake in one patient cell line only, underlining a highly dynamic preference of substrates between mutant iPSC-CMs. To connect molecular changes directly to physiological processes, insights on calcium kinetics, contractility and arrhythmic potential were assessed and unraveled significantly increased beating frequencies, elevated diastolic calcium concentrations and a shared trend towards reduced cell shortenings in all mutant cell lines basally and upon isoproterenol stimulation. Extended speed of recovery was seen in all mutant iPSC-CMs but most striking in one patient-derived iPSC-CM model, that additionally showed significantly prolonged relaxation times. The investigations of calcium transient shapes pointed towards enhanced arrhythmic features in mutant cells comprised by both the occurrence of DADs/EADs and fibrillation-like events with discordant preferences. Taken together, new insights into a novel in vitro model system of DCMA were gained to study a genetically determined cardiomyopathy in a patient-specific manner upon incorporation of an isogenic mutant control. Based on our results, we suggest that loss of full-length DNAJC19 impedes PHB2-complex stabilization within the IMM, thus hindering PHB-rings from building IMM-specific phospholipid clusters. These clusters are essential to enable normal CL remodeling during cristae morphogenesis. Disturbed cristae and mitochondrial fragmentation were observed and refer to an essential role of DNAJC19 in mitochondrial morphogenesis and biogenesis. Alterations in mitochondrial morphology are generally linked to reduced ATP yields and aberrant reactive oxygen species production thereby having fundamental downstream effects on the cardiomyocytes` functionality. DCMA-associated cellular dysfunctions were in particular manifested in excess oxygen consumption, altered substrate utilization and abnormal calcium kinetics. The summarized data highlight the usage of human iPSC-derived CMs as a powerful tool to recapitulate DCMA-associated phenotypes that offers an unique potential to identify therapeutic strategies in order to reverse the pathological process and to pave the way towards clinical applications for a personalized therapy of DCMA in the future.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Massih2024, author = {Massih, Bita}, title = {Human stem cell-based models to analyze the pathophysiology of motor neuron diseases}, publisher = {Frontiers in Cell and Developmental Biology}, doi = {10.25972/OPUS-34637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Motor neuron diseases (MNDs) encompass a variety of clinically and genetically heterogeneous disorders, which lead to the degeneration of motor neurons (MNs) and impaired motor functions. MNs coordinate and control movement by transmitting their signal to a target muscle cell. The synaptic endings of the MN axon and the contact site of the muscle cell thereby form the presynaptic and postsynaptic structures of the neuromuscular junction (NMJ). In MNDs, synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is an early target in the pathophysiological cascade leading to MN death. In this study, we established new experimental strategies to analyze human MNDs by patient derived induced pluripotent stem cells (iPSCs) and investigated pathophysiological mechanisms in two different MNDs. To study human MNDs, specialized cell culture systems that enable the connection of MNs to their target muscle cells are required to allow the formation of NMJs. In the first part of this study, we established and validated a human neuromuscular co-culture system consisting of iPSC derived MNs and 3D skeletal muscle tissue derived from myoblasts. We generated 3D muscle tissue by culturing primary myoblasts in a defined extracellular matrix in self-microfabricated silicone dishes that support the 3D tissue formation. Subsequently, iPSCs from healthy donors and iPSCs from patients with the progressive MND Amyotrophic Lateral Sclerosis (ALS) were differentiated into MNs and used for 3D neuromuscular co-cultures. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the functionality of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of ALS and found a decrease in neuromuscular coupling, muscle contraction, and axonal outgrowth in co-cultures with MNs harboring ALS-linked superoxide dismutase 1 (SOD1) mutation. In summary, this co-culture system presents a human model for MNDs that can recapitulate aspects of ALS pathophysiology. In the second part of this study, we identified an impaired unconventional protein secretion (UPS) of Sod1 as pathological mechanisms in Pleckstrin homology domain-containing family G member 5 (Plekhg5)-associated MND. Sod1 is a leaderless cytosolic protein which is secreted in an autophagy-dependent manner. We found that Plekhg5 depletion in primary MNs and NSC34 cells leads to an impaired secretion of wildtype Sod1, indicating that Plekhg5 drives the UPS of Sod1 in vitro. By interfering with different steps during the biogenesis of autophagosomes, we could show that Plekhg5-regulated Sod1 secretion is determined by autophagy. To analyze our findings in a clinically more relevant model we utilized human iPSC MNs from healthy donors and ALS patients with SOD1 mutations. We observed reduced SOD1 secretion in ALS MNs which coincides with reduced protein expression of PLEKHG5 compared to healthy and isogenic control MNs. To confirm this correlation, we depleted PLEKHG5 in control MNs and found reduced extracellular SOD1 levels, implying that SOD1 secretion depends on PLEKHG5. In summary, we found that Plekh5 regulates the UPS of Sod1 in mouse and human MNs and that Sod1 secretion occurs in an autophagy dependent manner. Our data shows an unreported mechanistic link between two MND-associated proteins.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Loh2024, author = {Loh, Frank}, title = {Monitoring the Quality of Streaming and Internet of Things Applications}, edition = {korrigierte Version}, issn = {1432-8801}, doi = {10.25972/OPUS-35096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350969}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The ongoing and evolving usage of networks presents two critical challenges for current and future networks that require attention: (1) the task of effectively managing the vast and continually increasing data traffic and (2) the need to address the substantial number of end devices resulting from the rapid adoption of the Internet of Things. Besides these challenges, there is a mandatory need for energy consumption reduction, a more efficient resource usage, and streamlined processes without losing service quality. We comprehensively address these efforts, tackling the monitoring and quality assessment of streaming applications, a leading contributor to the total Internet traffic, as well as conducting an exhaustive analysis of the network performance within a Long Range Wide Area Network (LoRaWAN), one of the rapidly emerging LPWAN solutions.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Loh2024, author = {Loh, Frank}, title = {Monitoring the Quality of Streaming and Internet of Things Applications}, issn = {1432-8801}, doi = {10.25972/OPUS-34783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The ongoing and evolving usage of networks presents two critical challenges for current and future networks that require attention: (1) the task of effectively managing the vast and continually increasing data traffic and (2) the need to address the substantial number of end devices resulting from the rapid adoption of the Internet of Things. Besides these challenges, there is a mandatory need for energy consumption reduction, a more efficient resource usage, and streamlined processes without losing service quality. We comprehensively address these efforts, tackling the monitoring and quality assessment of streaming applications, a leading contributor to the total Internet traffic, as well as conducting an exhaustive analysis of the network performance within a Long Range Wide Area Network (LoRaWAN), one of the rapidly emerging LPWAN solutions.}, subject = {Leistungsbewertung}, language = {en} } @phdthesis{Prell2024, author = {Prell, Andreas}, title = {The effects of paternal age on DNA methylation of developmentally important genes in human and bovine sperm}, doi = {10.25972/OPUS-34786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Western societies are steadily becoming older undergoing a clear trend of delayed parenthood. Children of older fathers have an undeniably higher risk for certain neurodevelopmental disorders and other medical conditions. Changes in the epigenetic landscape and especially in DNA methylation patterns are likely to account for a portion of this inherited disease susceptibility. DNA methylation changes during the ageing process are a well-known epigenetic feature. These so-called age-DMRs exist in developmentally important genes in the methylome of several mammalian species. However, there is only a minor overlap between the age-DMR datasets of different studies. We therefore replicated age-DMRs (which were obtained from a genome wide technique) by applying a different technical approach in a larger sample number. Here, this study confirmed 10 age-DMRs in the human and 4 in the bovine sperm epigenome from a preliminary candidate list based on RRBS. For this purpose, we used bisulphite Pyrosequencing in 94 human and 36 bovine sperm samples. These Pyrosequencing results confirm RRBS as an effective and reliable method to screen for age-DMRs in the vertebrate genome. To decipher whether paternal age effects are an evolutionary conserved feature of mammalian development, we compared methylation patterns between human and bovine sperm in orthologous regulatory regions. We discovered that the level of methylation and the age effect are both species-specific and speculate that these methylation marks reflect the lineage-specific development of each species to hit evolutionary requirements and adaptation processes. Different methylation levels between species in developmentally important genes also imply a differing mutational burden, representing a potential driver for point mutations and consequently deviations in the underlying DNA sequence of different species. Using the example of different haplotypes, this study showed the great effect of single base variations on the methylation of adjacent CpGs. Nonetheless, this study could not provide further evidence or a mechanism for the transfer of epigenetic marks to future generations. Therefore, further research in tissues from the progeny of old and young fathers is required to determine if the observed methylation changes are transmitted to the next generation and if they are associated with altered transcriptional activity of the respective genes. This could provide a direct link between the methylome of sperm from elderly fathers and the development potential of the next generation.}, subject = {Epigenetik}, language = {en} } @phdthesis{Held2024, author = {Held, Helena}, title = {The effectiveness of non-occlusal therapies in relation to the chronicity of temporomandibular disorders: a systematic review with meta-analysis}, doi = {10.25972/OPUS-34799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347990}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Background: That a differentiated treatment of subjects with low and high levels of disabling pain might be necessarily has only been suspected but not sufficiently confirmed so far. Furthermore, the effectiveness of extraoral therapy methods for TMD is still controversial in the literature. The present work could make an important contribution to this. Objectives: Five systematic reviews with meta-analysis were conducted to investigate the efficacy of extraoral therapies (acupuncture, laser, medication, psychosocial interventions, and physiotherapy) in the treatment of TMD in relation to the degree of chronicity of pain. Literature sources: With this objective, the databases Pubmed/MEDLINE, EMBASE, Cochrane Library, Livivo, OpenGrey, drks.de, Clinicaltrials.gov. were searched. Criteria for the selection of suitable studies: Adults suffering from painful TMD and treated with either acupuncture, laser, medication, psychosocial interventions, or physiotherapy. The studies were then examined for evidence in the subjects' characteristics suggesting that they were suffering from chronic TMD in terms of pain dysfunction. These included a high score on the GCPS, resistance to undergone treatments, multilocular pain, depression, and regular use of pain medication. The effectiveness of the five interventions was then differentiated according to the suspected degree of chronicity. Effectiveness was assessed by the following outcomes: patient- related current pain intensity, MMO, pain on palpation, temporomandibular joint sounds, depression, and somatization. Study evaluation: After the assessment of the studies, the quality assessment (Risk of Bias Tool of the Cochrane Institute) and the extraction of the data were conducted. After that five meta-analyses were carried out for each of the five interventions using the Review Manager of the Cochrane Institute (RevMan 5.3) Results: Acupuncture and dry needling were statistically significantly more effective in providing short-term pain relief compared to the control group in patients with low disability pain (p=0.04) and (p=0.02), respectively. Acupuncture or dry needling did not show a significant result in the improvement of MMO in the short-term period. Laser therapy is more effective in relieving pain (p<0.0001) and functional outcomes (p=0.03) in the short term compared to placebo for low disability pain. Botulinum toxin (p=0.003) and NSAIDs (p=0.03) showed significantly better short-term improvement in pain intensity for high disability pain. Low disability pain is significantly better treated by psychosocial interventions than by other treatments in terms of long-term pain relief (more than 12 months) (p=0.02). Patients with high disability pain had significantly lower depression scores after psychosocial interventions than after other treatments (p=0.008). Physiotherapy showed a statistically significant short-term analgesic effect in patients with high disability pain compared to placebo (p=0.04). Manual Therapy (MT) showed a statistically significant short-term analgesic effect in high disability pain compared to the control group (p=0.01). Patients with low disability pain showed a statistically significant short-term pain-relieving effect with the single intervention of MT in combination with exercise compared to the control groups (p=0.003). A statistically significant result in the improvement of MMO was found in the short-term period in low disability pain for the single interventions of physiotherapy (p=0.008) and physiotherapy in combination with another treatment compared to other treatments (p=0.03), MT compared to the control group (p=0.03) and physiotherapy compared to splint therapy (p=0.03). Clinical conclusion: Individual interventions of the five extraoral therapies confirm the hypothesis that painful TMDs respond differently to established therapies depending on the degree of chronic pain-related disability and that the prognosis of therapy is significantly influenced by the degree of chronic pain- related disability of the condition, according to the GCPS. Registration number of the review at PROSPERO: CRD42020202558 Keywords: meta-analysis, systematic review, temporomandibular disorders, extra oral therapy, acupuncture, laser, medication, psychosocial interventions, physiotherapy, low disability, high disability, pain, chronification}, subject = {Metaanalyse}, language = {en} } @phdthesis{Scherz2024, author = {Scherz, Jan}, title = {Weak Solutions to Mathematical Models of the Interaction between Fluids, Solids and Electromagnetic Fields}, doi = {10.25972/OPUS-34920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations, respectively. The proofs of these results are built upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with respect to time in order to deal with the solution-dependent test functions in the induction equation. The remaining parts are treated as continuous equations on the small intervals between consecutive discrete time points, allowing us to employ techniques which do not transfer to the discretized setting. Moreover, the solution-dependent test functions in the momentum equation are handled via the use of classical penalization methods. The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our main result proves the existence of weak solutions to the corresponding system of partial differential equations. Its proof is based on De Giorgi's minimizing movements method, in which the system is discretized in time and, at each discrete time point, a minimization problem is solved, the associated Euler-Lagrange equations of which constitute a suitable approximation of the original equation of motion and magnetic force balance. The construction of such a minimization problem is made possible by the realization that, already on the continuous level, both of these equations can be written in terms of the same energy and dissipation potentials. The functional for the discrete minimization problem can then be constructed on the basis of these potentials.}, subject = {Fluid-Struktur-Wechselwirkung}, language = {en} } @phdthesis{Behne2024, author = {Behne, Robert Stefan Friedrich}, title = {Development Of A Human iPSC-Derived Cortical Neuron Model Of Adaptor- Protein-Complex-4-Deficiency}, doi = {10.25972/OPUS-35139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351390}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Adaptor-protein-4-deficiency (AP-4-deficiency) is an autosomal-recessive childhood- onset form of complicated hereditary spastic paraplegia (HSP) caused by bi-allelic loss- of-function mutations in one of the four subunits of the AP-4-complex. These four conditions are named SPG47 (AP4B1, OMIM \#614066), SPG50 (AP4M1, OMIM \#612936), SPG51 (AP4E1, OMIM \#613744) and SPG52 (AP4S1, OMIM \#614067), respectively and all present with global developmental delay, progressive spasticity and seizures. Imaging features include a thinning of the corpus callosum, ventriculomegaly and white matter changes. AP-4 is a highly conserved heterotetrameric complex, which is responsible for polarized sorting of transmembrane cargo including the autophagy- related protein 9 A (ATG9A). Loss of any of the four subunits leads to an instable complex and defective sorting of AP-4-cargo. ATG9A is implicated in autophagosome formation and neurite outgrowth. It is missorted in AP-4-deficient cells and CNS-specific knockout of Atg9a in mice results in a phenotype reminiscent of AP-4-deficiency. However, the AP-4-related cellular phenotypes including ATG9A missorting have not been investigated in human neurons. Thus, the aim of this study is to provide the first human induced pluripotent stem cell- derived (iPSC) cortical neuron model of AP-4-deficiency to explore AP-4-related phenotypes in preparation for a high-content screening. Under the hypothesis that AP-4- deficiency leads to ATG9A missorting, elevated ATG9A levels, impaired autophagy and neurite outgrowth in human iPSC-derived cortical neurons, in vitro biochemical and imaging assays including automated high-content imaging and analysis were applied. First, these phenotypes were investigated in fibroblasts from three patients with compound heterozygous mutations in the AP4B1 gene and their sex-matched parental controls. The same cell lines were used to generate iPSCs and differentiate them into human excitatory cortical neurons. This work shows that ATG9A is accumulating in the trans-Golgi-network in AP-4- deficient human fibroblasts and that ATG9A levels are increased compared to parental controls and wild type cells suggesting a compensatory mechanism. Protein levels of the AP4E1-subunit were used as a surrogate marker for the AP-4-complex and were decreased in AP-4-deficient fibroblasts with co-immunoprecipitation confirming the instability of the complex. Lentiviral re-expression of the AP4B1-subunit rescues this corroborating the fact that a stable AP-4-complex is needed for ATG9A trafficking. Surprisingly, autophagic flux was present in AP-4-deficient fibroblasts under nutrient- rich and starvation conditions. These phenotypic markers were evaluated in iPSC-derived cortical neurons and here, a robust accumulation of ATG9A in the juxtanuclear area was seen together with elevated ATG9A protein levels. Strikingly, assessment of autophagy markers under nutrient-rich conditions showed alterations in AP-4-deficient iPSC- derived cortical neurons indicating dysfunctional autophagosome formation. These findings point towards a neuron-specific impairment of autophagy and need further investigation. Adding to the range of AP-4-related phenotypes, neurite outgrowth and branching are impaired in AP-4-deficient iPSC-derived cortical neurons as early as 24h after plating and together with recent studies point towards a distinct role of ATG9A in neurodevelopment independent of autophagy. Together, this work provides the first patient-derived neuron model of AP-4-deficiency and shows that ATG9A is sorted in an AP-4-dependent manner. It establishes ATG9A- related phenotypes and impaired neurite outgrowth as robust markers for a high-content screening. This disease model holds the promise of providing a platform to further study AP-4-deficiency and to search for novel therapeutic targets.}, subject = {Adaptorproteine}, language = {en} } @phdthesis{Pekarek2024, author = {Pek{\´a}rek, Luk{\´a}š}, title = {Single-Molecule Approaches To Study Frameshifting Mechanisms}, doi = {10.25972/OPUS-34611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346112}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The RNAs of many viruses contain a frameshift stimulatory element (FSE) that grants access to an alternate reading frame via -1 programmed ribosomal frameshifting (PRF). This -1PRF is essential for effective viral replication. The -1PRF efficiency relies on the presence of conserved RNA elements within the FSE, such as a slippery sequence, spacer, and a downstream secondary structure - often a hairpin or a pseudoknot. The PRF efficiency is also affected by trans-acting factors such as proteins, miRNAs and metabolites. The interactions of these factors with the RNA and the translation machinery have not yet been completely understood. Traditional ensemble methods used previously to study these events focus on the whole population of molecular species. This results in innate averaging of the molecular behavior and a loss of heterogeneity information. Here, we first established the experimental workflow to study the RNA structures and the effect of potential trans-acting factors using single-molecule force spectroscopy technique, optical tweezers. Additionally, to streamline the data analysis, we developed an algorithm for automatized data processing. Next, we harnessed this knowledge to study viral RNA elements responsible for stimulation of PRF and how the presence of trans-acting factors affects the RNA behavior. We further complemented these single-molecule structural data with ensemble functional assays to gain a complex view on the dynamics behind the programmed ribosomal frameshifting. Specifically, two different viral RNA elements have been studied in the presented work. First, the dynamics of SARS-CoV-2 FSE and the role of extended sequences have been explored. Then, the mode of action of the host-encoded trans-acting factor ZAP-S inhibition of SARS-CoV-2 PRF has been examined. Finally, the mechanism of the trans-acting viral factor induced PRF in Encephalomyocarditis virus (EMCV) has been uncovered.}, language = {en} } @phdthesis{Cronje2024, author = {Cronj{\´e}, Johrine}, title = {Trust towards Virtual Humans in Immersive Virtual Reality and Influencing Factors}, doi = {10.25972/OPUS-34814}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348143}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Virtual humans (VHs) hold immense potential for collaboration in social virtual reality (VR). As VR technology advances, it's vital to assess the psychological effects on VH trust and user privacy to build meaningful social interactions in VR. In social VR, users must be able to trust the VHs they interact with as they navigate through socio-cultural activities. The evaluation of trustworthiness in VHs profoundly impacts interaction quality and user willingness to engage. Conversely, untrustworthy VHs can harm user experiences, privacy, and VR engagement. To address this, we conducted immersive VR studies, exploring how psychological factors influence user's VH trust evaluation under various psychological conditions. This research is pivotal for developing strategies to enhance user privacy, establish secure VR environments, and create a foundation of trust that supports immersive socio-cultural experiences in VR. To date, there are no established interpersonal trust measurement tools specifically for VHs in VR. In study 1 (the familiarity study) of the current thesis the VR-adjusted version of the social conditioned place preference paradigm (SCPP) by Kiser et al., (2022) was identified as a potential trust measurement tool. We tested whether the familiarity of a VH influenced trust as measured with the SCPP paradigm and other self-defined outcome measures, in a Computer Augmented Virtual Environment (CAVE). The CAVE is a VR system that combines immersive VR with real-world elements. It consists of a room-sized space where the walls are used as projection screens to display virtual scenes and objects. In this within - subject design (n = 20), half of the participants were familiarized with one VH and tasked to explore and interact in a realistic looking virtual art museum environment. The participant's evaluation of the VH's trustworthiness was measured as well as their subsequent trust behaviours. Results revealed no significant differences in the evaluation of the VH's trustworthiness nor any behavioural differences between conditions. The findings of the impact of a VH's familiarity on trust is inconclusive due to the major limitations of the paradigm. We concluded that the SCPP paradigm needs further validation and the proposed proxies of trust need to be re-evaluated. The findings were considered in the following study. The virtual maze paradigm design of Hale, (2018) was identified as a potential trust measurement tool, however several limitations are associated with its use to measure trust in VR. In study 2 (a validation study), improvements were made to the virtual maze paradigm of Hale, (2018) and a variant of this paradigm was implemented. We conducted a validation study with 70 participants in a between-subject design with VH trustworthiness as the between-subject factor. Participants wore a head-mounted display (HMD), to deliver an immersive VR experience. In our version of the virtual maze, it was the task of the users (the trustors) to navigate through a maze in VR, where they could interact with a VH (the trustee). They could choose to ask for advice and follow the advice from the VH if they wanted to. The number of times participants asked and followed advice and the time it took to respond to the given advice served as behavioural proxies/measures of trust. The two conditions (trustworthy vs. untrustworthy) did not differ in the content of the advice but in the appearance, tone of voice and engagement of the trustees (allegedly an avatar controlled by other participants). Results indicated that the experimental manipulation was successful, as participants rated the VH as more trustworthy in the trustworthy condition compared with the VH in the untrustworthy condition. Importantly, this manipulation affected the trust behaviour of participants, who, in the trustworthy condition, asked for advice and followed advice more often, indicating that the paradigm is sensitive to differences in VH's trustworthiness. Thus, our paradigm can be used to measure differences in interpersonal trust towards VHs and may serve as a valuable research tool for researchers who study trust in VR. Therefore, study 2 fills the gap in the literature, for an interpersonal trust measurement tool specifically for VHs in VR. Two experimental studies, with a sample size of 50 participants each, utilized the virtual maze paradigm where participants entered 12 rooms under different conditions. We examined the influence of cognitive load (CL) on trust towards VH in VR in study 3 (Cognitive load study), and the influence of emotional affect (Emotional affect study) on trust towards VH in VR in study 4 (EA study). In both studies, we assessed participant's evaluation of a VH's trustworthiness, along with three behavioural indicators of trust in the maze task: 1) frequency of advice asked, 2) frequency of advice followed, and 3) the time taken by participants to execute the received advice. In study 3, the CL was manipulated with the auditory 1-back task in the high cognitive load condition (HCL). In study 4, the Autobiographical Emotional Memory Task (AEMT) was used to manipulate the EA of participants in the negative emotional affect (NEA) condition. As an additional manipulation, while participants were immersed in VR, they were exposed to 12 negative pictures and sounds that was presented simultaneously to strengthen the initial manipulation. The manipulation of the within-subject factors (CL and EA) was successful in both studies, as significant differences between conditions were observed in both studies (higher CL in the HCL condition and a more negative EA in the NEA condition). However, only CL influenced participant's evaluation of the VH's trustworthiness. The VH were evaluated as significantly more trustworthy after the HCL condition. Despite the difference in trust evaluation, there was no difference in advice asking or following. Participants in study 4 asked and followed advice due to their trust in the VH and asked and followed advice equally often in both conditions. Importantly, significant differences were observed in the participants response times in both studies. In study 3 during the HCL condition participants followed advice quicker. The order in which the conditions were presented influenced the experience of CL. Participants experienced higher levels of CL and responded to advice significantly faster when low cognitive load (LCL) was presented as the first condition compared with LCL as the second condition. In study 4 participants in the NEA condition followed advice slower similar to the findings of study 3. The order in which the conditions were presented had a significant effect on the EA. Participants asked and followed advice less when the NEA condition was presented first compared with when it is presented second. Possible explanations for the findings are discussed in the thesis. Overall, this thesis offers a novel tool for trust measurement (the virtual maze paradigm) and contributes to understanding the role of psychological factors in trust towards virtual humans in virtual reality.}, subject = {Virtuelle Realit{\"a}t}, language = {en} } @phdthesis{Lu2024, author = {Lu, Jinping}, title = {The vacuolar TPC1 channel and its luminal calcium sensing site in the luminal pore entrance}, doi = {10.25972/OPUS-25135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251353}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The slowly activating vacuolar SV/TPC1 channel is ubiquitously expressed in plants and provides a large cation conductance in the vacuolar membrane. Thereby, monovalent (K+, Na+) and in principle also divalent cations, such as Ca2+, can pass through the channel. The SV/TPC1 channel is activated upon membrane depolarization and cytosolic Ca2+ but inhibited by luminal calcium. With respect to the latter, two luminal Ca2+ binding sites (site 1 Asp240/Asp454/Glu528, site 2 Glu239/Asp240/Glu457) were identified to coordinate luminal Ca2+. In this work, the characteristics of the SV/TPC1 channels in terms of regulation and function were further elucidated, focusing on the TPC1s of Arabidopsis thaliana and Vicia faba. For electrophysiological analysis of the role of distinct pore residues for channel gating and luminal Ca2+ sensing, TPC1 channel variants were generated by site-directed mutagenesis and transiently expressed as eGFP/eYFP-fusion constructs in Arabidopsis thaliana mesophyll protoplasts of the TPC1 loss-of-function mutant attpc1-2. 1. As visualized by confocal fluorescence laser-scanning microscopy, all AtTPC1 (WT, E605A/Q, D606N, D607N, E605A/D606N, E605Q/D606N/D607N, E457N/E605A/D606N) and VfTPC1 channel variants (WT, N458E/A607E/ N608D) were correctly targeted to the vacuole membrane. 2. Patch-clamp studies revealed that removal of one of the negative charges at position Glu605 or Asp606 was already sufficient to promote voltage-dependent channel activation with higher voltage sensitivity. The combined neutralization of these residues (E605A/D606N), however, was required to additionally reduce the luminal Ca2+ sensitivity of the AtTPC1 channel, leading to hyperactive AtTPC1 channels. Thus, the residues Glu605/Asp606 are functionally coupled with the voltage sensor of AtTPC1 channel, thereby modulating channel gating, and form a novel luminal Ca2+ sensing site 3 in AtTPC1 at the luminal entrance of the ion transport pathway. 3. Interestingly, this novel luminal Ca2+ sensing site 3 (Glu605/Asp606) and Glu457 from the luminal Ca2+ sensing site 2 of the luminal Ca2+-sensitive AtTPC1 channel were neutralized by either asparagine or alanine in the TPC1 channel from Vicia faba and many other Fabaceae. Moreover, the VfTPC1 was validated to be a hyperactive TPC1 channel with higher tolerance to luminal Ca2+ loads which was in contrast to the AtTPC1 channel features. As a result, VfTPC1 but not AtTPC1 conferred the hyperexcitability of vacuoles. When AtTPC1 was mutated for the three VfTPC1-homologous polymorphic site residues, the AtTPC1 triple mutant (E457N/E605A/D606N) gained VfTPC1-like characteristics. However, when VfTPC1 was mutated for the three AtTPC1-homologous polymorphic site residues, the VfTPC1 triple mutant (N458E/A607E/N608D) still sustained VfTPC1-WT-like features. These findings indicate that the hyperactivity of VfTPC1 is achieved in part by the loss of negatively charged amino acids at positions that - as part of the luminal Ca2+ sensing sites 2 and 3 - are homologous to AtTPC1-Glu457/Glu605/Asp606 and are likely stabilized by other unknown residues or domains. 4.The luminal polymorphic pore residues (Glu605/Asp606 in AtTPC1) apparently do not contribute to the unitary conductance of TPC1. Under symmetrical K+ conditions, a single channel conductance of about 80 pS was determined for AtTPC1 wild type and the AtTPC1 double mutant E605A/D606A. This is in line with the three-fold higher unitary conductance of VfTPC1 (232 pS), which harbors neutral luminal pore residues at the homologous sites to AtTPC1. In conclusion, by studying TPC1 channel from Arabidopsis thaliana and Vicia faba, the present thesis provides evidence that the natural TPC1 channel variants exhibit differences in voltage gating, luminal Ca2+ sensitivity and luminal Ca2+ binding sites.}, language = {en} } @phdthesis{ZimmermannneePapp2024, author = {Zimmermann [n{\´e}e Papp], Lena}, title = {Platelets as modulators of blood-brain barrier disruption and inflammation in the pathophysiology of ischemic stroke}, doi = {10.25972/OPUS-30285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ischemia-reperfusion injury (I/R injury) is a common complication in ischemic stroke (IS) treatment, which is characterized by a paradoxical perpetuation of tissue damage despite the successful re-establishment of vascular perfusion. This phenomenon is known to be facilitated by the detrimental interplay of platelets and inflammatory cells at the vascular interface. However, the spatio-temporal and molecular mechanisms underlying these cellular interactions and their contribution to infarct progression are still incompletely understood. Therefore, this study intended to clarify the temporal mechanisms of infarct growth after cerebral vessel recanalization. The data presented here could show that infarct progression is driven by early blood-brain-barrier perturbation and is independent of secondary thrombus formation. Since previous studies unravelled the secretion of platelet granules as a molecular mechanism of how platelets contribute to I/R injury, special emphasis was placed on the role of platelet granule secretion in the process of barrier dysfunction. By combining an in vitro approach with a murine IS model, it could be shown that platelet α-granules exerted endothelial-damaging properties, whereas their absence (NBEAL2-deficiency) translated into improved microvascular integrity. Hence, targeting platelet α-granules might serve as a novel treatment option to reduce vascular integrity loss and diminish infarct growth despite recanalization. Recent evidence revealed that pathomechanisms underlying I/R injury are already instrumental during large vessel occlusion. This indicates that penumbral tissue loss under occlusion and I/R injury during reperfusion share an intertwined relationship. In accordance with this notion, human observational data disclosed the presence of a neutrophil dominated immune response and local platelet activation and secretion, by the detection of the main components of platelet α-granules, within the secluded vasculature of IS patients. These initial observations of immune cells and platelets could be further expanded within this thesis by flow cytometric analysis of local ischemic blood samples. Phenotyping of immune cells disclosed a yet unknown shift in the lymphocyte population towards CD4+ T cells and additionally corroborated the concept of an immediate intravascular immune response that is dominated by granulocytes. Furthermore, this thesis provides first-time evidence for the increased appearance of platelet-leukocyte-aggregates within the secluded human vasculature. Thus, interfering with immune cells and/or platelets already under occlusion might serve as a potential strategy to diminish infarct expansion and ameliorate clinical outcome after IS.}, subject = {Schlaganfall}, language = {en} } @phdthesis{KosergebKretzschmar2024, author = {Koser [geb. Kretzschmar], Charlotte Ursula}, title = {\(Mon\) \(Aprendisage\) - Midwifery Training at the H{\^o}tel-Dieu de Paris 1704}, doi = {10.25972/OPUS-34952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349520}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This thesis provides an edition and commentary of a manuscript discovered by Michael Stolberg in the archives of the central library in Zurich under the title "Mon aprendisage {\`a} l'H{\^o}tel Dieu de Paris 1704." (My apprenticeship at the H{\^o}tel-Dieu de Paris 1704). The manuscript contains records of a midwifery student at the H{\^o}tel-Dieu de Paris, an old hospital famous among others for its education in midwifery in the maternity ward. We read about managing different births, recipes for common remedies, direct questions answered by the ma{\^i}tresse sage-femme, the leading midwife at the H{\^o}tel-Dieu de Paris and more. Although other accounts exist of the maternity ward at the H{\^o}tel-Dieu de Paris, \(Mon\) \(Aprendisage\) is the first and only account from a midwife's perspective that gives more than just instructions on obstetrical techniques. It takes us into the day-to-day experience of a woman as she progressed through her training at the H{\^o}tel-Dieu.}, subject = {Hebamme}, language = {en} } @phdthesis{Maier2024, author = {Maier, Matthias}, title = {Inorganic and Inorganic-Organic Hybrid Polymers Containing BN Units in the Main Chain}, doi = {10.25972/OPUS-35153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {π-Conjugated organic polymers have attracted tremendous attention in the last decades, and the interest in these materials is mainly driven by their applicability in next-generation electronic and optoelectronic devices (OLEDs, OFETs, photovoltaics). The partial or complete replacement of carbon atoms by main group elements in conjugated polymers can significantly change the characteristics and applications of these macromolecules. In this work, a class of inorganic polymers comprising a backbone of exclusively boron and nitrogen atoms (poly(iminoborane)s, PIBs) and their monodisperse oligomers is described. In addition, novel inorganic-organic hybrid polymers containing BN units in their polymer backbone were synthesized and characterized. In chapter 2.1, the development of catalytic B-N coupling routes for the controlled synthesis of macromolecular materials is described. While the reaction of an N-silyl-B-chloro-aminoborane with the electrophilic reagent trimethylsilyl triflate led to effective B-N coupling, the reaction with a silver(I) salt resulted in an intramolecular Cl/Me exchange between the boron and silicon centers. In chapter 2.2-2.4, the study of oligo- and poly(iminoborane)s is discussed. Monodisperse and cyclolinear oligo(iminoborane)s based on diazaborolidines with up to 7 boron and 8 nitrogen atoms were synthesized by successively extending the B-N main chain. However, the use of benzodiazaborolines only led to limited BN catenation. Furthermore, the redistribution processes resulting from the reaction of longer oligomers with non-stoichiometric amounts of (di)halogenated boranes is reported. In chapter 2.5-2.6, the synthesis of 1,2,5-azadiborolanes as building blocks for the synthesis of poly(iminoborane)s and inorganic-organic hybrid polymers is described. While the attempt to apply an azadiborolane with sterically demanding groups on the boron-bridging ethylene unit for the construction of PIB was unfeasible, it was successfully incorporated in inorganic-organic hybrid polymers. Photophysical studies indicated π-conjugation along the polymer chain. A first attempt to synthesize PIBs based on azadiborolanes with unsubstituted ethylene units showed promising results. In chapter 2.7-2.8, a comprehensive study of poly(arylene iminoborane)s, which are BN analogs of poly(arylene vinylene)s is described, and the properties of four polymers as well as twelve monodisperse oligomers were investigated. Photophysical investigations of the monomers, dimers and polymers showed a systematic bathochromic shift of the absorption maximum with increasing chain length and thiophene content. Based on TD-DFT calculations of the model oligomers, the lowest-energy absorption band could be assigned to HOMO to LUMO transitions with π-π* character. The oligo- and poly(arylene iminoborane)s showed only very weak to no emission in solution but they were emissive in the solid state. For four oligomers the aggregation induced emission (AIE) in a THF/water mixture was investigated and DLS studies confirmed the formation of nanoaggregates. In chapter 2.9, oligo- and polymerizations of sulfur-containing building blocks and subsequent pH-triggered degradation of the products is described. While a sulfilimine-containing oligomer could not be isolated, the sulfone-, sulfoximine-, and sulfoxide-containing molecular oligomers and polymers could be successfully synthesized by B=N or B-O bond formation reactions. The sulfur-containing building blocks were successfully released under acidic or basic conditions, which was confirmed by NMR spectroscopy and mass spectrometry.}, subject = {Anorganische Polymere}, language = {en} } @phdthesis{Daeullary2024, author = {D{\"a}ullary, Thomas}, title = {Establishment of an infection model of the human intestinal epithelium to study host and pathogen determinants during the \(Salmonella\) Typhimurium infection process}, doi = {10.25972/OPUS-31154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {According to the WHO, foodborne derived enteric infections are a global disease burden and often manifest in diseases that can potentially reach life threatening levels, especially in developing countries. These diseases are caused by a variety of enteric pathogens and affect the gastrointestinal tract, from the gastric to the intestinal to the rectal tissue. Although the complex mucosal structure of these organs is usually well prepared to defend the body against harmful agents, specialised pathogens such as Salmonella enterica can overcome the intestinal defence mechanism. After ingestion, Salmonella are capable of colonising the gut and establishing their proliferative niche, thereby leading to inflammatory processes and tissue damage of the host epithelium. In order to understand these processes, the scientific community in the last decades mostly used cell line based in vitro approaches or in vivo animal studies. Although these approaches provide fundamental insights into the interactions between bacteria and host cells, they have limited applicability to human pathology. Therefore, tissue engineered primary based approaches are important for modern infection research. They exhibit the human complexity better than traditional cell lines and can mimic human-obligate processes in contrast to animal studies. Therefore, in this study a tissue engineered human primary model of the small intestinal epithelium was established for the application of enteric infection research with the exemplary pathogen Salmonella Typhimurium. To this purpose, adult stem cell derived intestinal organoids were used as a primary human cell source to generate monolayers on biological or synthetic scaffolds in a Transwell®-like setting. These tissue models of the intestinal epithelium were examined for their comparability to the native tissue in terms of morphology, morphometry and barrier function. Further, the gene expression profiles of organotypical mucins, tight junction-associated proteins and claudins were investigated. Overall, the biological scaffold-based tissue models showed higher similarity to the native tissue - among others in morphometry and polarisation. Therefore, these models were further characterised on cellular and structural level. Ultrastructural analysis demonstrated the establishment of characteristic microvilli and tight-junction connections between individual epithelial cells. Furthermore, the expression pattern of typical intestinal epithelial protein was addressed and showed in vivo-like localisation. Interested in the cell type composition, single cell transcriptomic profiling revealed distinct cell types including proliferative cells and stem cells, progenitors, cellular entities of the absorptive lineage, Enterocytes and Microfold-like cells. Cells of the secretory lineage were also annotated, but without distinct canonical gene expression patterns. With the organotypical polarisation, protein expression, structural features and the heterogeneous cell composition including the rare Microfold-like cells, the biological scaffold-based tissue model of the intestinal epithelium demonstrates key requisites needed for infection studies with Salmonella. In a second part of this study, a suitable infection protocol of the epithelial tissue model with Salmonella Typhimurium was established, followed by the examination of key features of the infection process. Salmonella adhered to the epithelial microvilli and induced typical membrane ruffling during invasion; interestingly the individual steps of invasion could be observed. After invasion, time course analysis showed that Salmonella resided and proliferated intracellularly, while simultaneously migrating from the apical to the basolateral side of the infected cell. Furthermore, the bacterial morphology changed to a filamentous phenotype; especially when the models have been analysed at late time points after infection. The epithelial cells on the other side released the cytokines Interleukin 8 and Tumour Necrosis Factor α upon bacterial infection in a time-dependent manner. Taken together, Salmonella infection of the intestinal epithelial tissue model recapitulates important steps of the infection process as described in the literature, and hence demonstrates a valid in vitro platform for the investigation of the Salmonella infection process in the human context. During the infection process, intracellular Salmonella populations varied in their bacterial number, which could be attributed to increased intracellular proliferation and demonstrated thereby a heterogeneous behaviour of Salmonella in individual cells. Furthermore, by the application of single cell transcriptomic profiling, the upregulation of Olfactomedin-4 (OLFM4) gene expression was detected; OLFM4 is a protein involved in various functions including cell immunity as well as proliferating signalling pathways and is often used as intestinal stem cell marker. This OLFM4 upregulation was time-dependent, restricted to Salmonella infected cells and seemed to increase with bacterial mass. Investigating the OLFM4 regulatory mechanism, nuclear factor κB induced upregulation could be excluded, whereas inhibition of the Notch signalling led to a decrease of OLFM4 gene and protein expression. Furthermore, Notch inhibition resulted in decreased filamentous Salmonella formation. Taken together, by the use of the introduced primary epithelial tissue model, a heterogeneous intracellular bacterial behaviour was observed and a so far overlooked host cell response - the expression of OLFM4 by individual infected cells - could be identified; although Salmonella Typhimurium is one of the best-studied enteric pathogenic bacteria. This proves the applicability of the introduced tissue model in enteric infection research as well as the importance of new approaches in order to decipher host-pathogen interactions with higher relevance to the host.}, subject = {Salmonella typhimurium}, language = {en} }