@phdthesis{Schmitt2022, author = {Schmitt, Fabian Bernhard}, title = {Transport properties of the three-dimensional topological insulator mercury telluride}, doi = {10.25972/OPUS-29173}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation. In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established. This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment. Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation. Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Fijalkowski2022, author = {Fijalkowski, Kajetan Maciej}, title = {Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\)}, doi = {10.25972/OPUS-28230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{GraetzgebDittmann2022, author = {Graetz [geb. Dittmann], Jonas}, title = {X-Ray Dark-Field Tensor Tomography : a Hitchhiker's Guide to Tomographic Reconstruction and Talbot Imaging}, doi = {10.25972/OPUS-28143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281437}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques. To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis.}, subject = {Dreidimensionale Rekonstruktion}, language = {en} } @phdthesis{Uenzelmann2022, author = {{\"U}nzelmann, Maximilian}, title = {Interplay of Inversion Symmetry Breaking and Spin-Orbit Coupling - From the Rashba Effect to Weyl Semimetals}, doi = {10.25972/OPUS-28310}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations. Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs.}, subject = {Rashba-Effekt}, language = {en} } @article{GramGenslerWinteretal.2022, author = {Gram, Maximilian and Gensler, Daniel and Winter, Patrick and Seethaler, Michael and Arias-Loza, Paula Anahi and Oberberger, Johannes and Jakob, Peter Michael and Nordbeck, Peter}, title = {Fast myocardial T\(_{1P}\) mapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {35}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {2}, issn = {1352-8661}, doi = {10.1007/s10334-021-00951-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268903}, pages = {325-340}, year = {2022}, abstract = {Purpose T\(_{1P}\) dispersion quantification can potentially be used as a cardiac magnetic resonance index for sensitive detection of myocardial fibrosis without the need of contrast agents. However, dispersion quantification is still a major challenge, because T\(_{1P}\) mapping for different spin lock amplitudes is a very time consuming process. This study aims to develop a fast and accurate T\(_{1P}\) mapping sequence, which paves the way to cardiac T1ρ dispersion quantification within the limited measurement time of an in vivo study in small animals. Methods A radial spin lock sequence was developed using a Bloch simulation-optimized sampling pattern and a view-sharing method for image reconstruction. For validation, phantom measurements with a conventional sampling pattern and a gold standard sequence were compared to examine T\(_{1P}\) quantification accuracy. The in vivo validation of T\(_{1P}\) mapping was performed in N = 10 mice and in a reproduction study in a single animal, in which ten maps were acquired in direct succession. Finally, the feasibility of myocardial dispersion quantification was tested in one animal. Results The Bloch simulation-based sampling shows considerably higher image quality as well as improved T\(_{1P}\) quantification accuracy (+ 56\%) and precision (+ 49\%) compared to conventional sampling. Compared to the gold standard sequence, a mean deviation of - 0.46 ± 1.84\% was observed. The in vivo measurements proved high reproducibility of myocardial T\(_{1P}\) mapping. The mean T\(_{1P}\) in the left ventricle was 39.5 ± 1.2 ms for different animals and the maximum deviation was 2.1\% in the successive measurements. The myocardial T\(_{1P}\) dispersion slope, which was measured for the first time in one animal, could be determined to be 4.76 ± 0.23 ms/kHz. Conclusion This new and fast T\(_{1P}\) quantification technique enables high-resolution myocardial T\(_{1P}\) mapping and even dispersion quantification within the limited time of an in vivo study and could, therefore, be a reliable tool for improved tissue characterization.}, language = {en} } @phdthesis{Mueller2022, author = {M{\"u}ller, Valentin Leander}, title = {Transport signatures of topological and trivial states in the three-dimensional topological insulator HgTe}, doi = {10.25972/OPUS-25952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259521}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The thesis at hand is concerned with improving our understanding of and our control over transport properties of the three-dimensional topological insulator HgTe. Topological insulators are characterized by an insulating bulk and symmetry-protected metallic surface states. These topological surface states hold great promise for research and technology; at the same time, many properties of experimentally accessible topological insulator materials still need to be explored thoroughly. The overall aim of this thesis was to experimentally investigate micrometer-sized HgTe transport devices to observe the ballistic transport regime as well as intercarrier scattering and possibly identify special properties of the topological surface states. Part I of the thesis presents lithographic developments concerned with etching small HgTe devices. The aim was to replace existing processes which relied on dry etching with high-energy \(\text{Ar}^+\) ions and an organic etch mask. This etching method is known to degrade the HgTe crystal quality. In addition, the etch mask turned out to be not durable for long etching processes and difficult to remove completely after etching. First, \(\text{BaF}_2\) was introduced as a new etch mask for dry etching to replace the organic etch mask. With common surface characterization techniques like SEM and XPS it was shown that \(\text{BaF}_2\) etch masks are easy to deposit, highly durable in common dry etching processes for \(\text{Hg}_{1-x}\text{Cd}_x\text{Te}\), and easy to remove in deionized water. Transport results of HgTe devices fabricated with the new etch mask are comparable to results obtained with the old process. At the same time, the new etch mask can withstand longer etching times and does not cause problems due to incomplete removal. Second, a new inductively coupled plasma dry etching process based on \(\text{CH}_4\) and Ar was introduced. This etching process is compatible with \(\text{BaF}_2\) etch masks and yields highly reproducible results. Transport results indicate that the new etching process does not degrade the crystal quality and is suitable to produce high-quality transport devices even in the micrometer range. A comparison with wet-etched samples shows that inductively coupled plasma etching introduces a pronounced edge roughness. This - usually undesirable - property is actually beneficial for some of the experiments in this study and mostly irrelevant for others. Therefore, most samples appearing in this thesis were fabricated with the new process. Part II of the thesis details the advancements made in identifying topological and trivial states which contribute to transport in HgTe three-dimensional topological insulators. To this end, macroscopic Hall bar samples were fabricated from high-quality tensilely strained HgTe layers by means of the improved lithographic processes. All samples were equipped with a top gate electrode, and some also with a modulation doping layer or a back gate electrode to modify the carrier density of the surface states on both sides of the HgTe layer. Due to the high sample quality, Landau levels could be well-resolved in standard transport measurements down to magnetic fields of less than 0.5T. High-resolution measurements of the Landau level dispersion with gate voltage and magnetic field allowed disentangling different transport channels. The main result here is that the upper (electron) branches of the two topological surface states contribute to transport in all experimentally relevant density regimes, while the hole branch is not accessible. Far in n-regime bulk conduction band states give a minor contribution to transport. More importantly, trivial bulk valence band holes come into play close to the charge neutrality point. Further in p-regime, the strong applied gate voltage leads to the formation of two-dimensional, massive hole states at the HgTe surface. The interplay of different states gives rise to rich physics: Top gate-back gate maps revealed that an anticrossing of Landau levels from the two topological surface states occurs at equal filling. A possible explanation for this effect is a weak hybridization of the surface states; however, future studies need to further clarify this point. Furthermore, the superposition of n-type topological and p-type trivial surface states leads to an intriguing Landau level dispersion. The good quantization of the Hall conductance in this situation indicates that the counterpropagating edge states interact with each other. The nature of this interaction will be the topic of further research. Part III of the thesis is focused on HgTe microstructures. These "channel samples" have a typical width of 0.5 to 4µm and a typical length of 5 to 80µm. The quality of these devices benefits particularly from the improved lithographic processes. As a result, the impurity mean free path of the topological surface state electrons is on the order of the device width and transport becomes semiballistic. This was verified by measuring the channel resistance in small magnetic fields in n-regime. The deflection of carriers towards the dissipative channel walls results in a pronounced peak in the magnetoresistance, which scales in a predictable manner with the channel width. To investigate transport effects due to mutual scattering of charge carriers, the differential resistance of channel samples was measured as a function of carrier temperature. Selective heating of the charge carriers - but not the lattice - was achieved by passing a heating current through the channel. Increasing the carrier temperature has two pronounced effects when the Fermi level is situated in proximity to the bulk valence band maximum where the density of states is large. First, when both topological surface state electrons and bulk holes are present, electron-hole scattering leads to a pronounced increase in resistance with increasing carrier temperature. Second, a thermally induced increase of the electron and hole carrier densities reduces the resistance again at higher temperatures. A model considering these two effects was developed, which can well reproduce the experimental results. Current heating experiments in zero-gap HgTe quantum wells and compressively strained HgTe layers are consistent with this model. These observations raise the question as to how electron-hole scattering may affect other transport properties of HgTe-based three-dimensional topological insulators, which is briefly discussed in the outlook.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Harder2022, author = {Harder, Tristan H.}, title = {Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices}, doi = {10.25972/OPUS-25900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259008}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators.}, subject = {Exziton-Polariton}, language = {en} } @article{HerzStefanescuLohretal.2022, author = {Herz, Stefan and Stefanescu, Maria R. and Lohr, David and Vogel, Patrick and Kosmala, Aleksander and Terekhov, Maxim and Weng, Andreas M. and Grunz, Jan-Peter and Bley, Thorsten A. and Schreiber, Laura M.}, title = {Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {6}, doi = {10.1371/journal.pone.0270689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300129}, year = {2022}, abstract = {Background To investigate the effects of B\(_1\)-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0\%, 20\%, 40\%, 60\%, 80\%, and 100\%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B\(_1\)-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B\(_1\)-shimming showed shading artifacts due to local B\(_1\)\(^+\)-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B\(_1\)-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60\% and 80\%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B\(_1\)-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14\%, outside the phantoms 32\%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B\(_1\)-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures.}, language = {en} } @phdthesis{Gruene2022, author = {Gr{\"u}ne, Jeannine}, title = {Spin States and Efficiency-Limiting Pathways in Optoelectronic Materials and Devices}, doi = {10.25972/OPUS-29340}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis addresses the identification and characterization of spin states in optoelectronic materials and devices using multiple spin-sensitive techniques. For this purpose, a systematic study focussing on triplet states as well as associated loss pathways and excited state kinetics was carried out. The research was based on comparing a range of donor:acceptor systems, reaching from organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) to organic photovoltaics (OPV) employing fullerene and multiple non-fullerene acceptors (NFAs). By developing new strategies, e.g., appropriate modeling, new magnetic resonance techniques and experimental frameworks, the influence of spin states in the fundamental processes of organic semiconductors has been investigated. Thereby, the combination of techniques based on the principle of electron paramagnetic resonance (EPR), in particular transient EPR (trEPR) and optically detected magnetic resonance (ODMR), with all-optical methods, such as transient electroluminescence (trEL) and transient absorption (TA), has been employed. As a result, excited spin states, especially molecular and charge transfer (CT) states, were investigated in terms of kinetic behavior and associated pathways, which revealed a significant impact of triplet states on efficiency-limiting processes in both optoelectronic applications.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Kissner2022, author = {Kißner, Katharina}, title = {Manipulation of electronic properties in strongly correlated Cerium-based surface alloys}, doi = {10.25972/OPUS-27306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273067}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Photoelectron spectroscopy proves as a versatile tool for investigating various aspects of the electronic structure in strongly correlated electron systems. Influencing the manifestation of strong correlation in Ce-based surface alloys is the main task of this work. It is shown, that the manifestation of the Kondo ground state is influenced by a multitude of parameters such as the choice of the metal binding partner in binary Ce compounds, the surface alloy layer thickness and accompanying variations in the lattice structure as well as the interfaces to substrate or vacuum. Gaining access to these parameters allows to directly influence essential state variables, such as the f level occupancy nf or the Kondo temperature TK. The center of this work are the intermetallic thin films of CePt5/Pt(111) and CeAgx/Ag(111). By utilizing different excitation energies, photoemission spectroscopy provides access to characteristic features of Kondo physics in the valence band, such as the Kondo resonance and its spin-orbit partner at the Fermi level, as well as the multiplet structure of the Ce 3d core levels. In this work both approaches are applied to CePt5/Pt(111) to determine nf and TK for a variety of surface alloy layer thicknesses. A temperature dependent study of the Ce 3d core levels allows to determine the systems TK for the different layer thicknesses. This leads to TK ≈200-270K in the thin layer thickness regime and TK >280K for larger layer thicknesses. These results are confirmed by fitting the Ce 3d multiplet based on the Gunnarsson-Sch{\"o}nhammer formalism for core level spectroscopy and additionally by valence band photoemission spectra of the respective Kondo resonances. The influence of varying layer thickness on the manifestation of strong correlation is subsequently studied for the surface alloy CeAgx/Ag(111). Furthermore, the heavy element Bi is added, to investigate the effects of strong spin-orbit coupling on the electronic structure of the surface alloy.}, subject = {Korrelation}, language = {en} } @article{WyborskiPodemskiWrońskietal.2022, author = {Wyborski, Paweł and Podemski, Paweł and Wroński, Piotr Andrzej and Jabeen, Fauzia and H{\"o}fling, Sven and Sęk, Grzegorz}, title = {Electronic and optical properties of InAs QDs grown by MBE on InGaAs metamorphic buffer}, series = {Materials}, volume = {15}, journal = {Materials}, number = {3}, issn = {1996-1944}, doi = {10.3390/ma15031071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297037}, year = {2022}, abstract = {We present the optical characterization of GaAs-based InAs quantum dots (QDs) grown by molecular beam epitaxy on a digitally alloyed InGaAs metamorphic buffer layer (MBL) with gradual composition ensuring a redshift of the QD emission up to the second telecom window. Based on the photoluminescence (PL) measurements and numerical calculations, we analyzed the factors influencing the energies of optical transitions in QDs, among which the QD height seems to be dominating. In addition, polarization anisotropy of the QD emission was observed, which is a fingerprint of significant valence states mixing enhanced by the QD confinement potential asymmetry, driven by the decreased strain with increasing In content in the MBL. The barrier-related transitions were probed by photoreflectance, which combined with photoluminescence data and the PL temperature dependence, allowed for the determination of the carrier activation energies and the main channels of carrier loss, identified as the carrier escape to the MBL barrier. Eventually, the zero-dimensional character of the emission was confirmed by detecting the photoluminescence from single QDs with identified features of the confined neutral exciton and biexciton complexes via the excitation power and polarization dependences.}, language = {en} } @article{GottschollWagenhoeferKlimmeretal.2022, author = {Gottscholl, Andreas and Wagenh{\"o}fer, Maximilian and Klimmer, Manuel and Scherbel, Selina and Kasper, Christian and Baianov, Valentin and Astakhov, Georgy V. and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Superradiance of spin defects in silicon carbide for maser applications}, series = {Frontiers in Photonics}, volume = {3}, journal = {Frontiers in Photonics}, issn = {2673-6853}, doi = {10.3389/fphot.2022.886354}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284698}, year = {2022}, abstract = {Masers as telecommunication amplifiers have been known for decades, yet their application is strongly limited due to extreme operating conditions requiring vacuum techniques and cryogenic temperatures. Recently, a new generation of masers has been invented based on optically pumped spin states in pentacene and diamond. In this study, we pave the way for masers based on spin S = 3/2 silicon vacancy (V\(_{Si}\)) defects in silicon carbide (SiC) to overcome the microwave generation threshold and discuss the advantages of this highly developed spin hosting material. To achieve population inversion, we optically pump the V\(_{Si}\) into their m\(_S\) = ±1/2 spin sub-states and additionally tune the Zeeman energy splitting by applying an external magnetic field. In this way, the prerequisites for stimulated emission by means of resonant microwaves in the 10 GHz range are fulfilled. On the way to realising a maser, we were able to systematically solve a series of subtasks that improved the underlying relevant physical parameters of the SiC samples. Among others, we investigated the pump efficiency as a function of the optical excitation wavelength and the angle between the magnetic field and the defect symmetry axis in order to boost the population inversion factor, a key figure of merit for the targeted microwave oscillator. Furthermore, we developed a high-Q sapphire microwave resonator (Q ≈ 10\(^4\)-10\(^5\)) with which we find superradiant stimulated microwave emission. In summary, SiC with optimized spin defect density and thus spin relaxation rates is well on its way of becoming a suitable maser gain material with wide-ranging applications.}, language = {en} } @phdthesis{Gottscholl2022, author = {Gottscholl, Andreas Paul}, title = {Optical Accessible Spin Defects in Hexagonal Boron Nitride: Identification, Control and Application of the Negatively Charged Boron Vacancy VB-}, doi = {10.25972/OPUS-27432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this work, a bridge was built between the so-far separate fields of spin defects and 2D systems: for the first time, an optically addressable spin defect (VB-) in a van der Waals material (hexagonal boron nitride) was identified and exploited. The results of this thesis are divided into three topics as follows: 1.) Identification of VB-: In the scope of this chapter, the defect ,the negatively charged boron vacancy VB-, is identified and characterized. An initialization and readout of the spin state can be demonstrated optically at room temperature and its spin Hamiltonian contributions can be quantified. 2.) Coherent Control of VB-: A coherent control is required for the defect to be utilized for quantum applications, which}, subject = {Bornitrid}, language = {en} } @article{SperlichAuthDyakonov2022, author = {Sperlich, Andreas and Auth, Michael and Dyakonov, Vladimir}, title = {Charge transfer in ternary solar cells employing two fullerene derivatives: where do electrons go?}, series = {Israel Journal of Chemistry}, volume = {62}, journal = {Israel Journal of Chemistry}, number = {7-8}, doi = {10.1002/ijch.202100064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257506}, year = {2022}, abstract = {Earlier reports demonstrated that ternary organic solar cells (OSC) made of donor polymers (D) blended with different mixtures of fullerene acceptors (A : A) performed very similarly. This finding is surprising, as the corresponding fullerene LUMO levels are slightly different, which might result in decisive differences in the charge transfer step. We investigate ternary OSC (D : A : A) made of the donor polymer P3HT with stoichiometric mixtures of different fullerene derivatives, PC\(_{60}\)BM : PC\(_{70}\)BM and PC\(_{70}\)BM : IC\(_{60}\)BA, respectively. Using quantitative electron paramagnetic resonance (EPR) we can distinguish between positive and negative polarons, localized on the specific molecules. We found that after the initial charge transfer step, the electrons are re-distributed over two nearby acceptors in agreement with their stoichiometry and their relative LUMO energy difference. Remarkably, the measured ΔLUMO differences in fullerene mixtures are reduced by an order of magnitude compared to that of the pristine materials, i. e., below 1 meV for PC\(_{60}\)BM : PC\(_{70}\)BM and (20±5) meV for PC\(_{70}\)BM : IC\(_{60}\)BA. Furthermore, we found that this reduced ΔLUMO explains the shift in open circuit voltage for D : A : A organic solar cells. We attribute these findings to hybridization, leading to an effective fullerene LUMO. Consequently, multi-acceptor blends are indeed a viable option for photodetectors and solar cells, as they combine the best electron acceptor and light absorbing properties.}, language = {en} } @phdthesis{Youssef2022, author = {Youssef, Almoatazbellah}, title = {Fabrication of Micro-Engineered Scaffolds for Biomedical Application}, doi = {10.25972/OPUS-23545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients' own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW.}, language = {en} } @misc{Gross2022, type = {Master Thesis}, author = {Groß, Lennart}, title = {Point-spread function engineering for single-molecule localization microscopy in brain slices}, doi = {10.25972/OPUS-28259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Single-molecule localization microscopy (SMLM) is the method of choice to study biological specimens on a nanoscale level. Advantages of SMLM imply its superior specificity due to targeted molecular fluorescence labeling and its enhanced tissue preservation compared to electron microscopy, while reaching similar resolution. To reveal the molecular organization of protein structures in brain tissue, SMLM moves to the forefront: Instead of investigating brain slices with a thickness of a few µm, measurements of intact neuronal assemblies (up to 100 µm in each dimension) are required. As proteins are distributed in the whole brain volume and can move along synapses in all directions, this method is promising in revealing arrangements of neuronal protein markers. However, diffraction-limited imaging still required for the localization of the fluorophores is prevented by sample-induced distortion of emission pattern due to optical aberrations in tissue slices from non-superficial planes. In particular, the sample causes wavefront dephasing, which can be described as a summation of Zernike polynomials. To recover an optimal point spread function (PSF), active shaping can be performed by the use of adaptive optics. The aim of this thesis is to establish a setup using a deformable mirror and a wavefront sensor to actively shape the PSF to correct the wavefront phases in a super-resolution microscope setup. Therefore, fluorescence-labeled proteins expressed in different anatomical regions in brain tissue will be used as experiment specimen. Resolution independent imaging depth in slices reaching tens of micrometers is aimed.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {en} } @article{NoyaletIlgenBuerkleinetal.2022, author = {Noyalet, Laurent and Ilgen, Lukas and B{\"u}rklein, Miriam and Shehata-Dieler, Wafaa and Taeger, Johannes and Hagen, Rudolf and Neun, Tilmann and Zabler, Simon and Althoff, Daniel and Rak, Kristen}, title = {Vestibular aqueduct morphology and Meniere's disease - development of the vestibular aqueduct score by 3D analysis}, series = {Frontiers in Surgery}, volume = {9}, journal = {Frontiers in Surgery}, issn = {2296-875X}, doi = {10.3389/fsurg.2022.747517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312893}, year = {2022}, abstract = {Improved radiological examinations with newly developed 3D models may increase understanding of Meniere's disease (MD). The morphology and course of the vestibular aqueduct (VA) in the temporal bone might be related to the severity of MD. The presented study explored, if the VA of MD and non-MD patients can be grouped relative to its angle to the semicircular canals (SCC) and length using a 3D model. Scans of temporal bone specimens (TBS) were performed using micro-CT and micro flat panel volume computed tomography (mfpVCT). Furthermore, scans were carried out in patients and TBS by computed tomography (CT). The angle between the VA and the three SCC, as well as the length of the VA were measured. From these data, a 3D model was constructed to develop the vestibular aqueduct score (VAS). Using different imaging modalities it was demonstrated that angle measurements of the VA are reliable and can be effectively used for detailed diagnostic investigation. To test the clinical relevance, the VAS was applied on MD and on non-MD patients. Length and angle values from MD patients differed from non-MD patients. In MD patients, significantly higher numbers of VAs could be assigned to a distinct group of the VAS. In addition, it was tested, whether the outcome of a treatment option for MD can be correlated to the VAS.}, language = {en} } @article{ChristHaertlKlosteretal.2022, author = {Christ, Andreas and H{\"a}rtl, Patrick and Kloster, Patrick and Bode, Matthias and Leisegang, Markus}, title = {Influence of band structure on ballistic transport revealed by molecular nanoprobe}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, number = {4}, doi = {10.1103/PhysRevResearch.4.043016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300855}, year = {2022}, abstract = {In this study we characterize the tautomerization of HPc on Cu(111) as a charge-carrier-induced reversible one-electron process. An analysis of the bias-dependent tautomerization rate finds an energy threshold that corresponds to the energy of the N-H stretching mode. By using the tautomerization of the molecule as a detector for charge carrier transport in the so-called molecular nanoprobe (MONA) technique, we provide evidence for an inhomogeneous coupling between the fourfold-symmetric molecule and sixfold-symmetric surface. We conclude the study by comparing the energy dependence of charge carrier transport on the Cu(111) to the Ag(111) surface. While the MONA technique is limited to the detection of hot-electron transport for Ag(111), our data reveal that the lower onset energy of the Cu surface state also allows for the detection of hot-hole transport. The influence of surface and bulk transport on the MONA technique is discussed.}, language = {en} } @phdthesis{Weissenseel2022, author = {Weißenseel, Sebastian G{\"u}nter}, title = {Spin-Spin Interactions and their Impact on Organic Light-Emitting Devices}, doi = {10.25972/OPUS-25745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work investigates the correlations between spin states and the light emission properties of organic light-emitting diodes (OLEDs), which are based on the principle of thermally activated delayed fluorescence. The spin-spin interactions responsible for this mechanism are investigated in this work using methods based on spin-sensitive electron paramagnetic resonance (EPR). In particular, this method has been applied to electrically driven OLEDs. The magnetic resonance has been detected by electroluminescence, giving this method its name: electroluminescence detected magnetic resonance (ELDMR). Initial investigations on a novel deep blue TADF emitter were performed. Furthermore, the ELDMR method was used in this work to directly detect the spin states in the OLED. These measurements were further underlined by time-resolved experiments such as transient electro- and photoluminescence.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Heinrich2022, author = {Heinrich, Robert}, title = {Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region}, doi = {10.25972/OPUS-26864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.\% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed.}, subject = {Quantenkaskadenlaser}, language = {en} }