@phdthesis{Nemec2023, author = {Nemec, Katarina}, title = {Modulation of parathyroid hormone 1 receptor (PTH1R) signaling by receptor activity-modifying proteins (RAMPs)}, doi = {10.25972/OPUS-28858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288588}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions. Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive. This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation. I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors. These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR function and advanced drug design.}, subject = {G-Protein gekoppelter Rezeptor}, language = {en} } @phdthesis{İşbilir2022, author = {İ{\c{s}}bilir, Ali}, title = {Localization and Trafficking of CXCR4 and CXCR7}, doi = {10.25972/OPUS-24937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249378}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins, and are the master components that translate extracellular stimulus into intracellular signaling, which in turn modulates key physiological and pathophysiological processes. Research within the last three decades suggests that many GPCRs can form complexes with each other via mechanisms that are yet unexplored. Despite a number of functional evidence in favor of GPCR dimers and oligomers, the existence of such complexes remains controversial, as different methods suggest diverse quaternary organizations for individual receptors. Among various methods, high resolution fluorescence microscopy and imagebased fluorescence spectroscopy are state-of-the-art tools to quantify membrane protein oligomerization with high precision. This thesis work describes the use of single molecule fluorescence microscopy and implementation of two confocal microscopy based fluorescence fluctuation spectroscopy based methods for characterizing the quaternary organization of two class A GPCRs that are important clinical targets: the C-X-C type chemokine receptor 4 (CXCR4) and 7 (CXCR7), or recently named as the atypical chemokine receptor 3 (ACKR3). The first part of the results describe that CXCR4 protomers are mainly organized as monomeric entities that can form transient dimers at very low expression levels allowing single molecule resolution. The second part describes the establishment and use of spatial and temporal brightness methods that are based on fluorescence fluctuation spectroscopy. Results from this part suggests that ACKR3 forms clusters and surface localized monomers, while CXCR4 forms increasing amount of dimers as a function of receptor density in cells. Moreover, CXCR4 dimerization can be modulated by its ligands as well as receptor conformations in distinct manners. Further results suggest that antagonists of CXCR4 display distinct binding modes, and the binding mode influences the oligomerization and the basal activity of the receptor: While the ligands that bind to a "minor" subpocket suppress both dimerization and constitutive activity, ligands that bind to a distinct, "major" subpocket only act as neutral antagonists on the receptor, and do not modulate neither the quaternary organization nor the basal signaling of CXCR4. Together, these results link CXCR4 dimerization to its density and to its activity, which may represent a new strategy to target CXCR4.}, subject = {G-Protein gekoppelter Rezeptor}, language = {en} } @phdthesis{Jarzina2022, author = {Jarzina, Sebastian Oskar}, title = {Assessment of systemic toxicity in vitro using the Adverse Outcome Pathway (AOP) concept: nephrotoxicity due to receptor-mediated endocytosis and lysosomal overload and inhibition of mtDNA polymerase-ɣ as case studies}, doi = {10.25972/OPUS-26484}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264842}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The US National Research Council (NRC) report "Toxicity Testing in the 21st Century: A Vision and a strategy (Tox21)", published in 2007, calls for a complete paradigm shift in tox-icity testing. A central aspect of the proposed strategy includes the transition from apical end-points in in vivo studies to more mechanistically based in vitro tests. To support and facilitate the transition and paradigm shift in toxicity testing, the Adverse Outcome Pathway (AOP) concept is widely recognized as a pragmatic tool. As case studies, the AOP concept was ap-plied in this work to develop AOPs for proximal tubule injuries initiated by Receptor-mediated endocytosis and lysosomal overload and Inhibition of mtDNA polymerase-. These AOPs were used as a mechanistic basis for the development of in vitro assays for each key event (KE). To experimentally support the developed in vitro assays, proximal tubule cells from rat (NRK-52E) and human (RPTEC/TERT1) were treated with model compounds. To measure the dis-turbance of lysosomal function in the AOP - Receptor-mediated endocytosis and lysosomal overload, polymyxin antibiotics (polymyxin B, colistin, polymyxin B nonapeptide) were used as model compounds. Altered expression of lysosomal associated membrane protein 1/2 (LAMP-1/2) (KE1) and cathepsin D release from lysosomes (KE2) were determined by im-munofluorescence, while cytotoxicity (KE3) was measured using the CellTiter-Glo® cell via-bility assay. Importantly, significant differences in polymyxin uptake and susceptibility be-tween cell lines were observed, underlining the importance of in vitro biokinetics to determine an appropriate in vitro point of departure (PoD) for risk assessment. Compared to the in vivo situation, distinct expression of relevant transporters such as megalin and cubilin on mRNA and protein level in the used cell lines (RPTEC/TERT1 and NRK-52E) could not be con-firmed, making integration of quantitative in vitro to in vivo extrapolations (QIVIVE) neces-sary. Integration of QIVIVE by project partners of the University of Utrecht showed an im-provement in the modelled biokinetic data for polymyxin B. To assess the first key event, (KE1) Depletion of mitochondrial DNA, in the AOP - Inhibition of mtDNA polymerase-, a RT-qPCR method was used to determine the mtDNA copy number in cells treated with mod-el compounds (adefovir, cidofovir, tenofovir, adefovir dipivoxil, tenofovir disoproxil fumarate). Mitochondrial toxicity (KE2) was measured by project partners using the high-content imaging technique and MitoTracker® whereas cytotoxicity (KE3) was determined by CellTiter-Glo® cell viability assay. In contrast to the mechanistic hypothesis underlying the AOP - Inhibition of mtDNA polymerase-, treatment with model compounds for 24 h resulted in an increase rather than a decrease in mtDNA copy number (KE1). Only minor effects on mitochondrial toxicity (KE2) and cytotoxicity (KE3) were observed. Treatment of RPT-EC/TERT1 cells for 14 days showed only a slight decrease in mtDNA copy number after treatment with adefovir dipivoxil and tenofovir disoproxil fumarate, underscoring some of the limitations of short-term in vitro systems. To obtain a first estimation for risk assessment based on in vitro data, potential points of departure (PoD) for each KE were calculated from the obtained in vitro data. The most common PoDs were calculated such as the effect concentra-tion at which 10 \% or 20_\% effect was measured (EC10, EC20), the highest no observed effect concentration (NOEC), the lowest observed effect concentration (LOEC), the benchmark 10 \% (lower / upper) concentrations (BMC10, BMCL10, BMCU10) and a modelled non-toxic con-centration (NtC). These PoDs were then compared with serum and tissue concentrations de-termined from in vivo studies after treatment with therapeutic / supratherapeutic doses of the respective drugs in order to obtain a first estimate of risk based on in vitro data. In addition, AOPs were used to test whether the quantitative key event relationships between key events allow prediction of downstream effects and effects on the adverse outcome (AO) based on measurements of an early key event. Predictions of cytotoxicity from the mathematical rela-tionships showed good concordance with measured cytotoxicity after treatment with colistin and polymyxin b nonapeptide. The work also revealed uncertainties and limitations of the ap-plied strategy, which have a significant impact on the prediction and on a risk assessment based on in vitro results.}, language = {en} } @phdthesis{BathePeters2022, author = {Bathe-Peters, Marc}, title = {Spectroscopic approaches for the localization and dynamics of β\(_1\)- and β\(_2\)-adrenergic receptors in cardiomyocytes}, doi = {10.25972/OPUS-25812}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258126}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the heart the β\(_1\)-adrenergic receptor (AR) and the β\(_2\)-AR, two prototypical G protein-coupled receptors (GPCRs), are both activated by the same hormones, namely adrenaline and noradrenaline. Both receptors couple to stimulatory G\(_s\) proteins, mediate an increase in cyclic adenosine monophosphate (cAMP) and influence the contractility and frequency of the heart upon stimulation. However, activation of the β\(_1\)-AR, not the β\(_2\)-AR, lead to other additional effects, such as changes in gene transcription resulting in cardiac hypertrophy, leading to speculations on how distinct effects can arise from receptors coupled to the same downstream signaling pathway. In this thesis the question of whether this distinct behavior may originate from a differential localization of these two receptors in adult cardiomyocytes is addressed. Therefore, fluorescence spectroscopy tools are developed and implemented in order to elucidate the presence and dynamics of these endogenous receptors at the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. This allows the visualization of confined localization and diffusion of the β\(_2\)-AR to the T-tubular network at endogenous expression. In contrast, the β\(_1\)-AR is found diffusing at both the outer plasma membrane and the T-tubules. Upon overexpression of the β\(_2\)-AR in adult transgenic cardiomyocytes, the receptors experience a loss of this compartmentalization and are also found at the cell surface. These data suggest that distinct signaling and functional effects can be controlled by specific cell surface targeting of the receptor subtypes. The tools at the basis of this thesis work are a fluorescent adrenergic antagonist in combination of fluorescence fluctuation spectroscopy to monitor the localization and dynamics of the lowly expressed adrenergic receptors. Along the way to optimizing these approaches, I worked on combining widefield and confocal imaging in one setup, as well as implementing a stable autofocus mechanism using electrically tunable lenses.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Bertelsmann2022, author = {Bertelsmann, Dietmar}, title = {Analysis of the Frequency of Kidney Toxicity in Preclinical Safety Studies using the eTOX Database}, doi = {10.25972/OPUS-25710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This research aimed to obtain reliable data on the frequency of different types of renal toxicity findings in 28-day oral gavage studies in Wistar rats, their consistency across species and study duration, as well as the correlation between histopathological endpoints and routinely used clinical chemistry parameters indicative of kidney injury. Analysis of renal histopathological findings was carried out through extraction of information from the IMI eTOX database. Spontaneous renal histopathological findings in 28-day oral gavage studies in control Wistar rats and beagle dogs confirmed tubular basophilia and renal dilation as the most frequent incidental findings in controls, whereas necrosis and glomerulosclerosis were not identified at all or only rarely as a background lesion. Histopathological evidence of necrosis and glomerulosclerosis was associated with changes in clinical chemistry parameters in 28-day oral gavage Wistar rat studies. Necrosis was frequently accompanied by a statistically significant rise in serum creatinine and serum urea, whereas serum albumin was frequently found to decrease statistically significantly in treatment groups in which necrosis was recorded. In contrast to necrosis, glomerulosclerosis was not associated with statistically significant changes in serum creatinine and urea in any of the 28-day oral gavage Wistar rat treatment groups, but appears to be best reflected by a pattern of statistically significantly lowered serum albumin and serum protein together with a statistically significant increase in serum cholesterol. As might have been expected based on the high background incidences of tubular basophilia and dilation, no consistent changes in any of the clinical chemistry parameters were evident in animals in which renal lesions were con� fined to renal tubular basophilia or dilation. In summary, the routinely provided clinical chemistry parameters are rather insensitive - novel kidney biomarkers such as Cystatin C, β-trace protein and Kidney injury molecule 1 should further be evaluated and integrated into routine preclinical and clinical practice. However, evaluation of clinical chemistry data was limited by the lack of individual animal data. Even though an extensive amount of preclinical studies is accessible through the eTOX database, comparison of consistency across time was limited by the limited number of shorter- and longer term studies conducted with the compounds identified as causing renal histopathological changes within a 28- day study in rats. A high consistency across time for both treatment-related tubular basophilia and treatment-related dilation cannot be confirmed for either of the two effects as these two findings were both induced only rarely in studies over a different treatment-duration other than 28 days after administration of the compounds which provoked the respective effect in a 28-day study. For the finding of necrosis consistency across time was low with the exception of "AZ_GGA_200002321", in which renal papillary necrosis was identified consist� ently throughout different treatment durations (2, 4, 26, 104 weeks). No shorter and longer-term studies were available for the compounds identified as causing glomerulosclerosis within a 28-day study in rats. No consistent findings of the selected histopathological endpoints were identified in any of the corresponding 28-day oral gavage beagle dog studies after treatment with the identical compounds, which caused the respective ef� fect after 28-day treatment in rats. However, in the overwhelming majority of cases, beagle dogs were administered lower doses in these studies in compar� ison to the corresponding 28-day Wistar rat studies. Searching the eTOX database yielded no 28-day oral gavage studies in Wistar and Wistar Han rats in which accumulation of hyaline droplets, tubular atrophy or hyperplasia was recorded. Only one 28-day oral gavage Wistar rat study was identified with the histopathological result of neutrophilic inflammation. Consequently, evaluation of these four renal findings in relation to clinical chemistry parameters and consistency across time and species cannot be made. In summary, this work contributes knowledge through mining and evaluating the eTOX database on a variety of specific renal endpoints that frequently occur after administration of trial substances in 28-day oral gavage studies in Wistar rats in the field of preclinical toxicity with specific focus on their frequency relation to background findings, as well as consistency across time and species. Targeted statistical evaluation of in vivo data within joint research ventures such as the eTOX project, presents an enormous opportunity for an innovative future way of aiding preclinical research towards a more efficient research in the preclinical stage of drug development. This could be achieved through the aug� mentation of methodological strategies and possibly novel software tools in order to predict in vivo toxicology of new molecular entities by means of information that is already available before early stages of the drug development pipeline begin.}, language = {en} } @phdthesis{Anton2021, author = {Anton, Selma}, title = {Characterization of cAMP nanodomains surrounding the human Glucagon-like peptide 1 receptor using FRET-based reporters}, doi = {10.25972/OPUS-19069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190695}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cyclic adenosine monophosphate (cAMP), the ubiquitous second messenger produced upon stimulation of GPCRs which couple to the stimulatory GS protein, orchestrates an array of physiological processes including cardiac function, neuronal plasticity, immune responses, cellular proliferation and apoptosis. By interacting with various effector proteins, among others protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), it triggers signaling cascades for the cellular response. Although the functional outcomes of GSPCR-activation are very diverse depending on the extracellular stimulus, they are all mediated exclusively by this single second messenger. Thus, the question arises how specificity in such responses may be attained. A hypothesis to explain signaling specificity is that cellular signaling architecture, and thus precise operation of cAMP in space and time would appear to be essential to achieve signaling specificity. Compartments with elevated cAMP levels would allow specific signal relay from receptors to effectors within a micro- or nanometer range, setting the molecular basis for signaling specificity. Although the paradigm of signaling compartmentation gains continuous recognition and is thoroughly being investigated, the molecular composition of such compartments and how they are maintained remains to be elucidated. In addition, such compartments would require very restricted diffusion of cAMP, but all direct measurements have indicated that it can diffuse in cells almost freely. In this work, we present the identification and characterize of a cAMP signaling compartment at a GSPCR. We created a F{\"o}rster resonance energy transfer (FRET)-based receptor-sensor conjugate, allowing us to study cAMP dynamics in direct vicinity of the human glucagone-like peptide 1 receptor (hGLP1R). Additional targeting of analogous sensors to the plasma membrane and the cytosol enables assessment of cAMP dynamics in different subcellular regions. We compare both basal and stimulated cAMP levels and study cAMP crosstalk of different receptors. With the design of novel receptor nanorulers up to 60nm in length, which allow mapping cAMP levels in nanometer distance from the hGLP1R, we identify a cAMP nanodomain surrounding it. Further, we show that phosphodiesterases (PDEs), the only enzymes known to degrade cAMP, are decisive in constraining cAMP diffusion into the cytosol thereby maintaining a cAMP gradient. Following the discovery of this nanodomain, we sought to investigate whether downstream effectors such as PKA are present and active within the domain, additionally studying the role of A-kinase anchoring proteins (AKAPs) in targeting PKA to the receptor compartment. We demonstrate that GLP1-produced cAMP signals translate into local nanodomain-restricted PKA phosphorylation and determine that AKAP-tethering is essential for nanodomain PKA. Taken together, our results provide evidence for the existence of a dynamic, receptor associated cAMP nanodomain and give prospect for which key proteins are likely to be involved in its formation. These conditions would allow cAMP to exert its function in a spatially and temporally restricted manner, setting the basis for a cell to achieve signaling specificity. Understanding the molecular mechanism of cAMP signaling would allow modulation and thus regulation of GPCR signaling, taking advantage of it for pharmacological treatment.}, language = {en} } @phdthesis{Kodandaraman2021, author = {Kodandaraman, Geema}, title = {Influence of insulin-induced oxidative stress in genotoxicity and disease}, doi = {10.25972/OPUS-24200}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Hormones are essential components in the body and their imbalance leads to pathological consequences. T2DM, insulin resistance and obesity are the most commonly occurring lifestyle diseases in the past decade. Also, an increased cancer incidence has been strongly associated with obese and T2DM patients. Therefore, our aim was to study the influence of high insulin levels in accumulating DNA damage in in vitro models and patients, through the induction of oxidative stress. The primary goal of this study was to analyze the genotoxicity induced by the combined action of two endogenous hormones (insulin and adrenaline) with in vitro models, through the induction of micronuclei and to see if they cause an additive increase in genomic damage. This is important for multifactorial diseases having high levels of more than one hormone, such as metabolic syndrome and conditions with multiple pathologies (e.g., T2DM along with high stress levels). Furthermore, the combination of insulin and the pharmacological inhibition of the tumor suppressor gene: PTEN, was to be tested in in vitro models for their genotoxic effect and oxidative stress inducing potential. As the tumor suppressor gene: PTEN is downregulated in PTEN associated syndromes and when presented along with T2DM and insulin resistance, this may increase the potential to accumulate genomic damage. The consequences of insulin action were to be further elucidated by following GFP-expressing cells in live cell-imaging to observe the ability of insulin, to induce micronuclei and replicative stress. Finally, the detrimental potential of high insulin levels in obese patients with hyperinsulinemia and pre-diabetes was to be studied by analyzing markers of oxidative stress and genomic damage. In summary, the intention of this work was to understand the effects of high insulin levels in in vitro and in patients to understand its relevance for the development of genomic instability and thus an elevated cancer risk.}, subject = {Insulin}, language = {en} } @phdthesis{Classen2021, author = {Claßen, Alexandra}, title = {The ERK-cascade in the pathophysiology of cardiac hypertrophy}, doi = {10.25972/OPUS-22966}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229664}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {ERK1/2 are known key players in the pathophysiology of heart failure, but the members of the ERK cascade, in particular Raf1, can also protect the heart from cell death and ischemic injury. An additional autophosphorylation (ERK1 at Thr208, ERK2 at Thr188) empowers ERK1/2 translocation to the nucleus and phosphorylation of nuclear targets which take part in the development of cardiac hypertrophy. Thereby, targeting this additional phosphorylation is a promising pharmacological approach. In this thesis, an in silico model of ERK cascade in the cardiomyocyte is introduced. The model is a semi-quantitive model and its behavior was tested with different softwares (SQUAD and CellNetAnalyzer). Different phosphorylation states of ERK1/2 as well as different stimuli can be reproduced. The different types of stimuli include hypertrophic as well as non-hypertrophic stimuli. With the introduced in-silico model time courses and synergistic as well as antagonistic receptor stimuli combinations can be predicted. The simulated time courses were experimentally validated. SQUAD was mainly used to make predictions about time courses and thresholds, whereas CNA was used to analyze steady states and feedback loops. Furthermore, new targets of ERK1/2 which partially contribute, also in the formation of cardiac hypertrophy, were identified and the most promising of them were illuminated. Important further targets are Caspase 8, GAB2, Mxi-2, SMAD2, FHL2 and SPIN90. Cardiomyocyte gene expression data sets were analyzed to verify involved components and to find further significantly altered genes after induced hypertrophy with TAC (transverse aortic constriction). Changes in the ultrastructure of the cardiomyocyte are the final result of induced hypertrophy.}, subject = {Herzhypertrophie}, language = {en} } @phdthesis{Schihada2021, author = {Schihada, Hannes}, title = {Novel optical methods to monitor G-protein-coupled receptor activation in microtiter plates}, doi = {10.25972/OPUS-17541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {G-protein-coupled receptors (GPCRs) regulate diverse physiological processes in the human body and represent prime targets in modern drug discovery. Engagement of different ligands to these membrane-embedded proteins evokes distinct receptor conformational rearrangements that facilitate subsequent receptor-mediated signalling and, ultimately, enable cellular adaptation to altered environmental conditions. Since the early 2000s, the technology of resonance energy transfer (RET) has been exploited to assess these conformational receptor dynamics in living cells and real time. However, to date, these conformational GPCR studies are restricted to single-cell microscopic setups, slowing down the discovery of novel GPCR-directed therapeutics. In this work, we present the development of a novel generalizable high-throughput compatible assay for the direct measurement of GPCR activation and deactivation. By screening a variety of energy partners for fluorescence (FRET) and bioluminescence resonance energy transfer (BRET), we identified a highly sensitive design for an α2A-adrenergic receptor conformational biosensor. This biosensor reports the receptor's conformational change upon ligand binding in a 96-well plate reader format with the highest signal amplitude obtained so far. We demonstrate the capacity of this sensor prototype to faithfully quantify efficacy and potency of GPCR ligands in intact cells and real time. Furthermore, we confirm its universal applicability by cloning and validating five further equivalent GPCR biosensors. To prove the suitability of this new GPCR assay for screening purposes, we measured the well-accepted Z-factor as a parameter for the assay quality. All tested biosensors show excellent Z-factors indicating outstanding assay quality. Furthermore, we demonstrate that this assay provides excellent throughput and presents low rates of erroneous hit identification (false positives and false negatives). Following this phase of assay development, we utilized these biosensors to understand the mechanism and consequences of the postulated modulation of parathyroid hormone receptor 1 (PTHR1) through receptor activity-modifying protein 2 (RAMP2). We found that RAMP2 desensitizes PTHR1, but not the β2-adrenergic receptor (β2AR), for agonist-induced structural changes. This generalizable sensor design offers the first possibility to upscale conformational GPCR studies, which represents the most direct and unbiased approach to monitor receptor activation and deactivation. Therefore, this novel technology provides substantial advantages over currently established methods for GPCR ligand screening. We feel confident that this technology will aid the discovery of novel types of GPCR ligands, help to identify the endogenous ligands of so-called orphan GPCRs and deepen our understanding of the physiological regulation of GPCR function.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{PerpinaViciano2020, author = {Perpi{\~n}{\´a} Viciano, Cristina}, title = {Study of the activation mechanisms of the CXC chemokine receptor 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3)}, doi = {10.25972/OPUS-19237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192371}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The CXC chemokine receptor 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3) are seven transmembrane receptors that are involved in numerous pathologies, including several types of cancers. Both receptors bind the same chemokine, CXCL12, leading to significantly different outcomes. While CXCR4 activation generally leads to canonical GPCR signaling, involving Gi proteins and β-arrestins, ACKR3, which is predominantly found in intracellular vesicles, has been shown to signal via β-arrestin-dependent signaling pathways. Understanding the dynamics and kinetics of their activation in response to their ligands is of importance to understand how signaling proceeds via these two receptors. In this thesis, different F{\"o}rster resonance energy transfer (FRET)-based approaches have been combined to individually investigate the early events of their signaling cascades. In order to investigate receptor activation, intramolecular FRET sensors for CXCR4 and ACKR3 were developed by using the pair of fluorophores cyan fluorescence protein and fluorescence arsenical hairpin binder. The sensors, which exhibited similar functional properties to their wild-type counterparts, allowed to monitor their ligand-induced conformational changes and represent the first RET-based receptor sensors in the field of chemokine receptors. Additional FRET-based settings were also established to investigate the coupling of receptors with G proteins, rearrangements within dimers, as well as G protein activation. On one hand, CXCR4 showed a complex activation mechanism in response to CXCL12 that involved rearrangements in the transmembrane domain of the receptor followed by rearrangements between the receptor and the G protein as well as rearrangements between CXCR4 protomers, suggesting a role of homodimers in the activation course of this receptor. This was followed by a prolonged activation of Gi proteins, but not Gq activation, via the axis CXCL12/CXCR4. In contrast, the structural rearrangements at each step of the signaling cascade in response to macrophage migration inhibitory factor (MIF) were dynamically and kinetically different and no Gi protein activation via this axis was detected. These findings suggest distinct mechanisms of action of CXCL12 and MIF on CXCR4 and provide evidence for a new type of sequential signaling events of a GPCR. Importantly, evidence in this work revealed that CXCR4 exhibits some degree of constitutive activity, a potentially important feature for drug development. On the other hand, by cotransfecting the ACKR3 sensor with K44A dynamin, it was possible to increase its presence in the plasma membrane and measure the ligand-induced activation of this receptor. Different kinetics of ACKR3 activation were observed in response to CXCL12 and three other agonists by means of using the receptor sensor developed in this thesis, showing that it is a valuable tool to study the activation of this atypical receptor and pharmacologically characterize ligands. No CXCL12-induced G protein activation via ACKR3 was observed even when the receptor was re-localized to the plasma membrane by means of using the mutant dynamin. Altogether, this thesis work provides the temporal resolution of signaling patterns of two chemokine receptors for the first time as well as valuable tools that can be applied to characterize their activation in response to pharmacologically relevant ligands.}, subject = {G protein-coupled receptors}, language = {en} } @phdthesis{Koussemou2020, author = {Kouss{\´e}mou, Y{\´e}wa Bony Marthe}, title = {A\(_{2B}\) adenosine receptor signaling in MDA-MB-231 breast cancer cells: Mechanism of A\(_{2B}\)-mediated reduction of ERK1/2 phosphorylation}, doi = {10.25972/OPUS-20965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209655}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Recently, it was shown that MDA-MB-231 breast cancer cells express very high levels of the A2BAR as the sole adenosine receptor subtype, and stimulation of the A2BAR in MDA-MB-231 cells triggers an unusual inhibitory signal on ERK1/2 phosphorylation. The ERK1/2 pathway is reported to be associated with the control of growth, proliferation and differentiation of cells and as such might serve as a promising target for tumor treatment. The present study investigated signaling mechanisms involved in linking A2BAR to ERK1/2 phosphorylation in MDA-MB-231 cells. The A2BAR mediated reduction of ERK1/2 phosphorylation and of proliferation of MDA-MB-231 cell is in good agreement with previous results from (Dubey et al., 2005). These observations provide support to the hypothesis that activation of A2BAR could attenuate the growth of some types of cancer cell and argue against a stimulation of proliferation resulting from the activation of A2BAR as discussed by (Fernandez-Gallardo et al., 2016). AC activation by forskolin has recently been shown to enhance the activity of the chemotherapeutic agent doxorubicin in TNBC cells via a mechanism dependent on the PKA-mediated inhibition of ERK1/2 phosphorylation. Furthermore, forskolin also increased the sensitivity of MDA-MB-231 and MDA-MB-468 triple negative breast cancer cells to 5-fluorouracil and taxol (Illiano et al., 2018), and sustains the evidence of anticancer activity mediated by cAMP/PKA-mediated ERK1/2 inhibition. Similar to these studies, a reduced amount of pERK1/2 was also observed after stimulation of AC with FSK, application of cAMP-AM or inhibition of PDE-4. The inhibition of ERK1/2 phosphorylation was mimicked by UTP and abolished with the PLC inhibitor U73122 or by chelating intracellular Ca2+ with BAPTA-AM. These results point to an important role for both cAMP and Ca2+ signaling in the pathway leading to a decrease in ERK1/2 phosphorylation. This study encourages the idea that A2BAR could be used as target in cancer therapy. But A2BAR did not only stimulate signaling cascades associated with cell survival and proliferation reduction, but also key phases relevant in angiogenesis like Ca2+ mobilization (Kohn et al., 1995). Whereas the potency toward AC and Ca2+ are similar for the diverse agonists, the potency to promote ERK1/2 reduction is much higher. Interestingly, the proliferation of MDA-MB-231 cells is inhibited by low nanomolar agonist concentration which is inactive in Ca2+ mobilization. This means that it is certainly possible to reduce the proliferation without promoting angiogenesis. LUF6210 is particularly interesting when considering that it preferentially stimulates a reduction in ERK1/2 phosphorylation over Ca2+ and therefore may not promote angiogenesis. LUF6210 is therapeutically appealing as adjuvant in treatment of cancer. Given that stimulation of AC can activate a reduction of ERK1/2 phosphorylation and proliferation in cancer cells, agonist bias toward Gs-AC-PKA-mediated ERK1/2 inhibition represent a potential therapy of various malignancies. The fact that the reduction of ERK1/2 phosphorylation followed by reduced proliferation observed in MDA-MB-231 cells were mediated by the activation of the A2BAR illustrates the importance of this receptor subtype in cancer. A2BARs must be considered as a key factor in cancer treatment and deserve attention for the development of new therapeutic strategies.}, subject = {Adenosinrezeptor}, language = {en} } @phdthesis{Seier2020, author = {Seier, Kerstin}, title = {Investigation of dynamic processes of prototypical class A GPCRs by single-molecule microscopy}, doi = {10.25972/OPUS-19973}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199739}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this work, two projects were pursued. In the first project, I investigated two different subtypes of opioid receptors, which play a key role as target for analgesia. A set of subtype specific fluorescent ligands for μ opioid receptor (MOR) and δ opioid receptor (DOR) was characterised and used to gain insights into the diffusion behaviour of those receptors. It was shown that the novel ligands hold photophysical and pharmacological properties making them suitable for single-molecule microscopy. Applying them to wild-type receptors expressed in living cells revealed that both sub-types possess a heterogeneous diffusion behaviour. Further- more, the fluorescent ligands for the MOR were used to investigate homodomerisation, a highly debated topic. The results reveal that only ≈ 5 \% of the receptors are present as homodimers, and thus the majority is monomeric. G-protein coupled receptors (GPCRs) play a major role as drug targets. Accordingly, understanding the activation process is very important. For a long time GPCRs have been believed to be either active or inactive. In recent years several studies have shown, that the reality is more complex, involving more substates. [1, 2, 3, 4] In this work the α 2A AR was chosen to investigate the activation process on a single-molecule level, thus being able to distinguish also rare or short-lived events that are hidden in ensemble mea- surements. With this aim, the receptor was labelled intracellular with two fluorophores using supported membranes. Thus it was possible to acquire movies showing qualita- tively smFRET events. Unfortunately, the functionality of the used construct could not be demonstrated. To recover the functionality the CLIP-tag in the third intracellular loop was replaced successfully with an amber codon. This stop codon was used to insert an unnatural amino acid. Five different mutants were created and tested and the most promising candidate could be identified. First ensemble FRET measurements indicated that the functionality might be recovered but further improvements would be needed. Overall, I could show that single-molecule microscopy is a versatile tool to investigate the behaviour of typical class A GPCRs. I was able to show that MOR are mostly monomeric under physiological expression levels. Furthermore, I could establish intra- cellular labelling with supported membranes and acquire qualitative smFRET events.}, subject = {PhD thesis pharmacology}, language = {en} } @phdthesis{Maimari2020, author = {Maimari, Theopisti}, title = {The influence of N-terminal peptides of G-protein coupled receptor kinase (GRK) 2, 3 and 5 on β-adrenergic signaling}, doi = {10.25972/OPUS-19932}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199322}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {G protein coupled receptor kinases (GRK) phosphorylate and thereby desensitize G protein coupled receptors (GPCR) including β-adrenergic receptors (βAR), which are critical regulators of cardiac function. We identified the Raf kinase inhibitor protein (RKIP) as an endogenous inhibitor of GRK2 that leads to increased cardiac contractility via βAR activation. RKIP binds to the N-terminus (aa1-185) of GRK2, which is important for the GRK2/receptor interaction. Thereby it interferes with the GRK2/receptor interaction without interference with cytosolic GRK2 target activation. In this project, the RKIP/GRK interface was investigated to develop strategies that simulate the effects of RKIP on βAR. RKIP binding to different isoforms of GRK expressed in the heart was analyzed by protein interaction assays using full-length and N-termini of GRK2, GRK3 and GRK5: 1-53, 54-185 and 1-185. Co-immunoprecipitation (Co-IPs) and pull-down assays revealed that RKIP binds to the peptides of GRK2 and GRK3 but not to the ones of GRK5, which suggests the existence of several binding sites of RKIP within the N-termini of GRK2 and GRK3. To analyze whether the peptides of GRK2 and GRK3 are able to simulate the RKIP mediated interference of the GRK2/receptor interaction, we analyzed the β2-AR phosphorylation in the absence and presence of the peptides. Interestingly, N-termini (aa1-185) of GRK2 and GRK3 reduced β2AR phosphorylation to a comparable extent as RKIP. In line with reduced receptor phosphorylation, the peptides also reduced isoproterenol-stimulated receptor internalization as shown by [3H] CGP-12177 radioligand binding assay and fluorescence microscopy compared to control cells. Subsequently, these peptides increased downstream signaling of β2AR, i.e. the phosphorylation of the PKA substrate phosducin. In an attempt to elucidate the mechanism behind the observed effects, Co-IPs were performed in order to investigate whether the peptides bind directly to the β2-AR and block its phosphorylation by GRK2. Indeed, GRK2 1-185 and GRK3 1-185 could bind the receptor, suggesting that this way GRK2 is prevented from inhibiting the receptor. To investigate the physiological effect of GRK2 1-185, GRK3 1-185 and GRK5 1-185, their effect on neonatal mouse cardiomyocyte contractility and hypertrophy was analyzed. After long-term isoproterenol stimulation, in the presence of GRK2 1 185 and GRK3 1-185 the cross-sectional area of the cardiomyocytes showed no significant increase in comparison to the unstimulated control cells. In addition, upon isoproterenol stimulation, GRK2 1-185 and GRK3 1-185 increased the beat rate in cardiomyocytes, mimicking RKIP while the base impedance, an indicator of viability, remained stable. The N-termini (1-185) of GRK2 and GRK3 simulated RKIP's function and had a significant influence on β2AR phosphorylation, on its downstream signaling and internalization, could bind β2-AR, increased beat rate and did not significantly induce hypertrophy, suggesting that they may serve as a model for the generation of new and more specific targeting strategies for GRK mediated receptor regulation.}, language = {en} } @phdthesis{Segerer2019, author = {Segerer, Gabriela}, title = {Characterization of cell biological and physiological functions of the phosphoglycolate phosphatase AUM}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123847}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Mammalian haloacid dehalogenase (HAD)-type phosphatases are a large and ubiquitous family of at least 40 human members. Many of them have important physiological functions, such as the regulation of intermediary metabolism and the modulation of enzyme activities, yet they are also linked to diseases such as cardiovascular or metabolic disorders and cancer. Still, most of the mammalian HAD phosphatases remain functionally uncharacterized. This thesis reveals novel cell biological and physiological functions of the phosphoglycolate phosphatase PGP, also referred to as AUM. To this end, PGP was functionally characterized by performing analyses using purified recombinant proteins to investigate potential protein substrates of PGP, cell biological studies using the spermatogonial cell line GC1, primary mouse lung endothelial cells and lymphocytes, and a range of biochemical techniques to characterize Pgp-deficient mouse embryos. To characterize the cell biological functions of PGP, its role downstream of RTK- and integrin signaling in the regulation of cell migration was investigated. It was shown that PGP inactivation elevates integrin- and RTK-induced circular dorsal ruffle (CDR) formation, cell spreading and cell migration. Furthermore, PGP was identified as a negative regulator of directed lymphocyte migration upon integrin- and GPCR activation. The underlying mechanisms were analyzed further. It was demonstrated that PGP regulates CDR formation and cell migration in a PLC- and PKC-dependent manner, and that Src family kinase activities are required for the observed cellular effects. Upon integrin- and RTK activation, phosphorylation levels of tyrosine residues 1068 and 1173 of the EGF receptor were elevated and PLCγ1 was hyper-activated in PGP-deficient cells. Additionally, PGP-inactivated lymphocytes displayed elevated PKC activity, and PKC-mediated cytoskeletal remodeling was accelerated upon loss of PGP activity. Untargeted lipidomic analyses revealed that the membrane lipid phosphatidylserine (PS) was highly upregulated in PGP-depleted cells. These data are consistent with the hypothesis that the accumulation of PS in the plasma membrane leads to a pre-assembly of signaling molecules such as PLCγ1 or PKCs that couple the activation of integrins, EGF receptors and GPCRs to accelerated cytoskeletal remodeling. Thus, this thesis shows that PGP can affect cell spreading and cell migration by acting as a PG-directed phosphatase. To understand the physiological functions of PGP, conditionally PGP-inactivated mice were analyzed. Whole-body PGP inactivation led to an intrauterine growth defect with developmental delay after E8.5, resulting in a gradual deterioration and death of PgpDN/DN embryos between E9.5 and E11.5. However, embryonic lethality upon whole-body PGP inactivation was not caused by a primary defect of the (cardio-) vascular system. Rather, PGP inactivated embryos died during the intrauterine transition from hypoxic to normoxic conditions. Therefore, the potential impact of oxygen on PGP-dependent cell proliferation was investigated. Analyses of mouse embryonic fibroblasts (MEFs) generated from E8.5 embryos and GC1 cells cultured under normoxic and hypoxic conditions revealed that normoxia (~20\% O2) causes a proliferation defect in PGP-inactivated cells, which can be rescued under hypoxic (~1\% O2) conditions. Mechanistically, it was found that the activity of triosephosphate isomerase (TPI), an enzyme previously described to be inhibited by phosphoglycolate (PG) in vitro, was attenuated in PGP-inactivated cells and embryos. TPI constitutes a critical branch point between carbohydrate- and lipid metabolism because it catalyzes the isomerization of the glycolytic intermediates dihydroxyacetone phosphate (DHAP, a precursor of the glycerol backbone required for triglyceride biosynthesis) and glyceraldehyde 3'-phosphate (GADP). Attenuation of TPI activity, likely explains the observed elevation of glycerol 3-phosphate levels and the increased TG biosynthesis (lipogenesis). Analyses of ATP levels and oxygen consumption rates (OCR) showed that mitochondrial respiration rates and ATP production were elevated in PGP-deficient cells in a lipolysis-dependent manner. However under hypoxic conditions (which corrected the impaired proliferation of PGP-inactivated cells), OCR and ATP production was indistinguishable between PGP-deficient and PGP-proficient cells. We therefore propose that the inhibition of TPI activity by PG accumulation due to loss of PGP activity shifts cellular bioenergetics from a pro-proliferative, glycolytic metabolism to a lipogenetic/lipolytic metabolism. Taken together, PGP acts as a metabolic phosphatase involved in the regulation of cell migration, cell proliferation and cellular bioenergetics. This thesis constitutes the basis for further studies of the interfaces between these processes, and also suggests functions of PGP for glucose and lipid metabolism in the adult organism.}, subject = {Phosphoglykolatphosphatase}, language = {en} } @phdthesis{Kauk2018, author = {Kauk, Michael}, title = {Investigating the Molecular Mechanism of Receptor Activation at Muscarinic Receptors by Means of Pathway-Specific Dualsteric Ligands and Partial Agonists}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173729}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {G protein-coupled receptors (GPCRs) form the biggest receptor family that is encoded in the human genome and represent the most druggable target structure for modern therapeutics respectively future drug development. Belonging to aminergic class A GPCRs muscarinic Acetylcholine receptors (mAChRs) are already now of clinical relevance and are also seen as promising future drug targets for treating neurodegenerative diseases like Alzheimer or Parkinson. The mAChR family consist of five subtypes showing high sequence identity for the endogenous ligand binding region and thus it is challenging until now to selectively activate a single receptor subtype. A well accepted method to study ligand binding, dynamic receptor activation and downstream signaling is the fluorescence resonance energy transfer (FRET) application. Here, there relative distance between two fluorophores in close proximity (<10 nm) can be monitored in a dynamic manner. The perquisite for that is the spectral overlap of the emission spectrum of the first fluorophore with the excitation spectrum of the second fluorophore. By inserting two fluorophores into the molecular receptor structure receptor FRET sensors can serve as a powerful tool to study dynamic receptor pharmacology. Dualsteric Ligands consist of two different pharmacophoric entities and are regarded as a promising ligand design for future drug development. The orthosteric part interacts with high affinity with the endogenous ligand binding region whereas the allosteric part binds to a different receptor region mostly located in the extracellular vestibule. Both moieties are covalently linked. Dualsteric ligands exhibit a dynamic ligand binding. The dualsteric binding position is characterized by a simultaneous binding of the orthosteric and allosteric moiety to the receptor and thus by receptor activation. In the purely allosteric binding position no receptor activation can be monitored. In the present work the first receptor FRET sensor for the muscarinic subtype 1 (M1) was generated and characterized. The M1-I3N-CFP sensor showed an unaltered physiological behavior as well as ligand and concentration dependent responses. The sensor was used to characterize different sets of dualsteric ligands concerning their pharmacological properties like receptor activation. It was shown that the hybrids consisting of the synthetic full agonist iperoxo and the positive allosteric modulator of BQCA type is very promising. Furthermore, it was shown for orthosteric as well as dualsteric ligands that the degree of receptor activation is highly dependent on the length of and the chemical properties of the linker moiety. For dualsteric ligands a bell-shaped activation characteristic was reported for the first time, suggesting that there is an optimal linker length for dualsteric ligands. The gained knowledge about hybrid design was then used to generate and characterize the first photo-switchable dualsteric ligand. The resulting hybrids were characterized with the M1-I3N-CFP sensor and were described as photo-inactivatable and dimmable. In addition to the ligand characterization the ligand application methodology was further developed and improved. Thus, a fragment-based screening approach for dualsteric ligands was reported in this study for the first time. With this approach it is possible to investigate dualsteric ligands in greater detail by applying either single ligand fragments alone or in a mixture of building blocks. These studies revealed the insights that the effect of dualsteric ligands on a GPCR can be rebuild by applying the single building blocks simultaneously. The fragment-based screening provides high potential for the molecular understanding of dualsteric ligands and for future screening approaches. Next, a further development of the standard procedure for measuring FRET by sensitized emission was performed. Under normal conditions single cell FRET is measured on glass coverslips. After coating the coverslips surface with a 20 nm thick gold layer an increased FRET efficiency up to 60 \% could be reported. This finding was validated in different approaches und in different configurations. This FRET enhancement by plasmonic surfaces was until yet unreported in the literature for physiological systems and make FRET for future projects even more powerful.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Raab2018, author = {Raab, Annette}, title = {The role of Rgs2 in animal models of affective disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Anxiety and depressive disorders result from a complex interplay of genetic and environmental factors and are common mutual comorbidities. On the level of cellular signaling, regulator of G protein signaling 2 (Rgs2) has been implicated in human and rodent anxiety as well as rodent depression. Rgs2 negatively regulates G protein-coupled receptor (GPCR) signaling by acting as a GTPase accelerating protein towards the Gα subunit. The present study investigates, whether mice with a homozygous Rgs2 deletion (Rgs2-/-) show behavioral alterations as well as an increased susceptibility to stressful life events related to human anxiety and depressive disorders and tries to elucidate molecular underlying's of these changes. To this end, Rgs2-/- mice were characterized in an aversive-associative learning paradigm to evaluate learned fear as a model for the etiology of human anxiety disorders. Spatial learning and reward motivated spatial learning were evaluated to control for learning in non-aversive paradigms. Rgs2 deletion enhanced learning in all three paradigms, rendering increased learning upon deletion of Rgs2 not specific for aversive learning. These data support reports indicating increased long-term potentiation in Rgs2-/- mice and may predict treatment response to conditioning based behavior therapy in patients with polymorphisms associated with reduced RGS2 expression. Previous reports of increased innate anxiety were corroborated in three tests based on the approach-avoidance conflict. Interestingly, Rgs2-/- mice showed novelty-induced hypo-locomotion suggesting neophobia, which may translate to the clinical picture of agoraphobia in humans and reduced RGS2 expression in humans was associated with a higher incidence of panic disorder with agoraphobia. Depression-like behavior was more distinctive in female Rgs2-/- mice. Stress resilience, tested in an acute and a chronic stress paradigm, was also more distinctive in female Rgs2-/- mice, suggesting Rgs2 to contribute to sex specific effects of anxiety disorders and depression. Rgs2 deletion was associated with GPCR expression changes of the adrenergic, serotonergic, dopaminergic and neuropeptide Y systems in the brain and heart as well as reduced monoaminergic neurotransmitter levels. Furthermore, the expression of two stress-related microRNAs was increased upon Rgs2 deletion. The aversive-associative learning paradigm induced a dynamic Rgs2 expression change. The observed molecular changes may contribute to the anxious and depressed phenotype as well as promote altered stress reactivity, while reflecting an alter basal stress level and a disrupted sympathetic tone. Dynamic Rgs2 expression may mediate changes in GPCR signaling duration during memory formation. Taken together, Rgs2 deletion promotes increased anxiety-like and depression-like behavior, altered stress reactivity as well as increased cognitive function.}, subject = {Angst}, language = {en} } @phdthesis{Messerer2017, author = {Messerer, Regina}, title = {Synthesis of Dualsteric Ligands for Muscarinic Acetylcholine Receptors and Cholinesterase Inhibitors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149007}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The study is dealing with the synthesis and pharmacological investigation of newly designed dualsteric ligands of muscarinic acetylcholine receptors belonging to the superfamily of G protein-coupled receptors. Such bipharmacophoric ligands combine the advantages of the orthosteric binding site (high-affinity) and of the topographically distinct allosteric binding site (subtype-selectivity) resulting in compounds with reduced side effects. This opens the way to a new therapeutic approach in the treatment of e.g. chronic pain, drug withdrawal, Parkinson`s and Alzheimer`s disease. Furthermore, the newly synthesized dualsteric compounds were pharmacologically investigated in order to get a better understanding of the activation and signaling processes in muscarinic acetylcholine receptors, especially with regard to partial agonism. The development of the "dynamic ligand binding" concept offers new perspectives for ligand binding and signaling at G protein-coupled receptors. GPCRs are no longer considered as simple on/off switches. Dualsteric ligands can bind in a dualsteric pose, reflecting an active receptor state as well as in a purely allosteric binding pose, characterized by an inactive receptor state resulting in partial agonism. The degree of partial agonism depends on the ratio of active versus inactive receptor populations. On this basis, orthosteric/orthosteric hybrid ligands consisting of the antagonist atropine and scopolamine, respectively, as well as of the agonist iperoxo and isoxazole, respectively, linked via different alkyl chain length were synthesized in order to investigate partial agonism (Figure 1). Figure 1: Structures of the synthesized iperoxo/isoxazole-atropine/scopolamine-hybrids. Furthermore, different sets of quaternary and tertiary homodimers consisting either of two iperoxo or two acetylcholine units were synthesized in order to study their extent on partial agonism (Figure 2). The two agonists were connected by varying alkyl chain length. Binding studies on CHO-hM2 cells of the quaternary compounds revealed that dimerization of the agonist results in a loss of potency. The iperoxo-dimers reached higher maximum effects on the Gi- as well as on the Gs pathway in comparison to the acetylcholine-dimers. Besides the choice of the orthosteric building block (potency of the agonist), the alkyl chain length is also crucial for the degree of partial agonism. Figure 2: Structures of the synthesized quat./tert. iperoxo/acetylcholine-homodimers. Quinolone-based hybrids connected to the superagonist iperoxo and to the endogenous ligand acetylcholine, respectively, linked through an alkyl chain of different length were synthesized in order to develop further partial agonists (Figure 3). FRET studies confirmed M1 subtype-selectivity as well as linker dependent receptor response. The greatest positive FRET signal was observed with quinolone-C6-iper resulting from a positive cooperativity between the two separated moieties, alloster and orthoster. However, the corresponding hybrids with a longer linker led to an inverse FRET signal indicating a different binding mode, e.g. purely allosteric, in contrast to the shorter linked hybrids. Furthermore, the flexible alkyl spacer was replaced by a rigidified linker resulting in the hybrid quinolone-rigid-iperoxo (Figure 3). FRET studies on the M1 receptor showed reduced FRET kinetics, resulting from interactions between the bulky linker and the aromatic lid, located between the orthosteric and allosteric binding site. A bitopic binding mode of the rigidified hybrid is presumed. For further clarity, mutational studies are necessary. Figure 3: M1-selective hybrid compounds. Another aim of this work was the design and synthesis of new hybrid compounds, acting as agonists at the M1 and M2 receptor and as inhibitors for AChE and BChE in the context of M. Alzheimer. Several sets of hybrid compounds consisting of different pharmacophoric units (catalytic active site: phthalimide, naphthalimide, tacrine; peripheric anionic site: iperoxo, isoxazole) linked through a polymethylene chain of varying length were synthesized. Tac-C10-iper (Figure 4), consisting of tacrine and the superagonist iperoxo linked by a C10 polymethylene spacer, was found to have excellent anticholinesterase activity for both AChE (pIC50 = 9.81) and BChE (pIC50 = 8.75). Docking experiments provided a structural model to rationalize the inhibitory power towards AChE. Additionally, the tacrine related hybrids showed affinity to the M1 and M2 receptor. Such compounds, addressing more than one molecular target are favorable for multifactorial diseases such as Alzheimer. Figure 4: Structure of the most active compound regarding anticholinesterase activity. In summary, the choice of the pharmacophoric units, their connecting point as well as the nature, length, and flexibility of the linker play an important role for the activity of designed bivalent ligands. A shorter linker length cannot bridge both binding sites simultaneously in contrast to longer linker chains. On the other hand, too long linker chains can result in unwanted steric interactions. Further investigations with respect to structural variations of hybrid compounds, with or without quaternary ammonium groups, are necessary in the light of drug development.}, subject = {Cholinesteraseinhibitor}, language = {en} } @phdthesis{Stumpf2015, author = {Stumpf, Anette D.}, title = {Development of fluorescent FRET receptor sensors for investigation of conformational changes in adenosine A1 and A2A receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125469}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Adenosine receptors that belong to the rhodopsin-like G protein-coupled receptors (GPCRs) are involved in a lot of regulatory processes and are widely distributed throughout the body which makes them an attractive target for drugs. However, pharmacological knowledge of these receptors is still limited. A big advance regarding the structural knowledge of adenosine receptors was the development of the first crystal structure of the adenosine A2A receptor in 2008. The crystal structure revealed the amino acids that form the ligand binding pocket of the receptor and depicted the endpoint of receptor movement in the ligand binding process. Within the scope of this work two members of the adenosine receptor family were investigated, namely the adenosine A1 and the A2A receptor (A1R, A2AR). A1R was generated on base of the previously developed A2AR. Receptors were tagged with fluorophores, with the cyan fluorescent protein (CFP) at the C-terminal end of receptor and the Fluorescein Arsenical Hairpin binder (FlAsH) binding sequence within the third intracellular loop of receptors. Resulting fluorescent receptor sensors A1 Fl3 CFP and A2A Fl3 CFP were investigated with help of Fluorescence Resonance Energy Transfer (FRET) measurements within living cells. FRET experiments enable the examination of alteration in the distance of two fluorophores and thus the observation of receptor dynamical movements. For comparison of A1R and A2AR regarding receptor dynamical movement upon ligand binding, fluorescent receptor sensors A1 Fl3 CFP and A2A Fl3 CFP were superfused with various ligands and the outcomes of FRET experiments were compared regarding signal height of FRET ratio evoked by the distinct ligand that is correlated to the conformational change of receptor upon ligand binding. Beside the different direction of FRET ratio upon ligand binding at A1R and A2AR sensor, there were differences observable when signal height and association and dissociation kinetics of the various ligands investigated were compared to each other. Differences between the adenosine receptor subtypes were especially remarkable for the A1R subtype selective agonist CPA and the A2AR subtype selective agonist CGS 21680. Another part of the project was to investigate the influence of single amino acids in the ligand binding process within the fluorescent A1R sensor. Amino acid positions were derived from the crystal structure of the A2AR forming the ligand binding pocket and these amino acids were mutated in the A1R structure. Investigation of the A1R sensor and its mutants regarding confocal analysis showed involvement of some amino acids in receptor localization. When these amino acids were mutated receptors were not expressed in the plasma membrane of cells. Some amino acids investigated were found to be involved in the ligand binding process in general whereas other amino acids were found to have an influence on the binding of distinct structural groups of the ligands investigated. In a further step, A1R and A2AR were N-terminally tagged with SNAP or CLIP which allowed to label receptor sensors with multiple fluorophores. With this technique receptor distribution in cells could be investigated with help of confocal analysis. Furthermore, ligand binding with fluorescent adenosine receptor ligands and their competition with help of a non-fluorescent antagonist was examined at the SNAP tagged A1R and A2AR. Finally the previously developed receptor sensors were combined to the triple labeled receptor sensors SNAP A1 Fl3 CFP and SNAP A2A Fl3 CFP which were functional regarding FRET experiments and plasma membrane expression was confirmed via confocal analysis. In the future, with the help of this technique, interaction between fluorescent ligand and SNAP tagged receptor can be monitored simultaneously with the receptor movement that is indicated by the distance alteration between FlAsH and CFP. This can lead to a better understanding of receptor function and its dynamical movement upon ligand binding which may contribute to the development of new and more specific drugs for the A1R and A2AR in the future.}, subject = {Adenosinrezeptor}, language = {en} } @phdthesis{Bellwon2015, author = {Bellwon, Patricia}, title = {Kinetic assessment by in vitro approaches - A contribution to reduce animals in toxicity testing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The adoption of directives and regulations by the EU requires the development of alternative testing strategies as opposed to animal testing for risk assessment of xenobiotics. Additionally, high attrition rates of drugs late in the discovery phase demand improvement of current test batteries applied in the preclinical phase within the pharmaceutical area. These issues were taken up by the EU founded 7th Framework Program "Predict-IV"; with the overall goal to improve the predictability of safety of an investigational product, after repeated exposure, by integration of "omics" technologies applied on well established in vitro approaches. Three major target organs for drug-induced toxicity were in focus: liver, kidney and central nervous system. To relate obtained dynamic data with the in vivo situation, kinetics of the test compounds have to be evaluated and extrapolated by physiologically based pharmacokinetic modeling. This thesis assessed in vitro kinetics of the selected test compounds (cyclosporine A, adefovir dipivoxil and cisplatinum) regarding their reliability and relevance to respective in vivo pharmacokinetics. Cells were exposed daily or every other day to the test compounds at two concentration levels (toxic and non-toxic) for up to 14 days. Concentrations of the test compounds or their major biotransformation products were determined by LC-MS/MS or ICP-MS in vehicle, media, cells and plastic adsorption samples generated at five different time-points on the first and the last treatment day. Cyclosporine A bioaccumulation was evident in primary rat hepatocytes (PRH) at the high concentration, while efficient biotransformation mediated by CYP3A4 and CYP3A5 was determined in primary human hepatocytes (PHH) and HepaRG cells. The lower biotransformation in PRH is in accordance with observation made in vivo with the rat being a poor model for CYP3A biotransformation. Further, inter-assay variability was noticed in PHH caused by biological variability in CYP3A4 and CYP3A5 activity in human donors. The inter-assay variability observed for PRH and HepaRG cells was a result of differences between vehicles regarding their cyclosporine A content. Cyclosporine A biotransformation was more prominent in HepaRG cells due to stable and high CYP3A4 and CYP3A5 activity. In addition, in vitro clearances were calculated and scaled to in vivo. All scaled in vitro clearances were overestimated (PRH: 10-fold, PHH: 2-fold, HepaRG cells: 2-fold). These results should be proven by physiologically-based pharmacokinetic modeling and additional experiments, in order to verify that these overestimations are constant for each system and subsequently can be diminished by implementation of further scaling factors. Brain cell cultures, primary neuronal culture of mouse cortex cells and primary aggregating rat brain cells, revealed fast achieved steady state levels of cyclosporine A. This indicates a chemical distribution of cyclosporine A between the aqueous and organic phases and only minor involvement of biological processes such as active transport and biotransformation. Hence, cyclosporine A uptake into cells is presumably transport mediated, supported by findings of transporter experiments performed on a parallel artificial membrane and Caco-2 cells. Plastic adsorption of cyclosporine A was significant, but different for each model, and should be considered by physiologically based pharmacokinetic modeling. Kinetics of adefovir dipivoxil highlights the limits of in vitro approaches. Active transporters are required for adefovir uptake, but were not functional in RPTECT/TERT1. Therefore, adefovir uptake was limited to passive diffusion of adefovir dipivoxil, which itself degrades time-dependently under culture conditions. Cisplatinum kinetics, studied in RPTEC/TERT1 cells, indicated intracellular enrichment of platinum, while significant bioaccumulation was not noted. This could be due to cisplatinum not reaching steady state levels within 14 days repeated exposure. As shown in vivo, active transport occurred from the basolateral to apical side, but with lower velocity. Hence, obtained data need to be modeled to estimate cellular processes, which can be scaled and compared to in vivo. Repeated daily exposure to two different drug concentrations makes it possible to account for bioaccumulation at toxic concentrations or biotransformation/extrusion at non-toxic concentrations. Potential errors leading to misinterpretation of data were reduced by analyses of the vehicles as the applied drug concentrations do not necessarily correspond to the nominal concentrations. Finally, analyses of separate compartments (medium, cells, plastic) give insights into a compound's distribution, reduce misprediction of cellular processes, e.g. biotransformation, and help to interpret kinetic data. On the other hand, the limits of in vitro approaches have also been pointed out. For correct extrapolation to in vivo, it is essential that the studied in vitro system exhibits the functionality of proteins, which play a key role in the specific drug induced toxicity. Considering the benefits and limitations, it is worth to validate this long-term treatment experimental set-up and expand it on co-culture systems and on organs-on-chips with regard to alternative toxicity testing strategies for repeated dose toxicity studies.}, subject = {Zellkultur}, language = {en} } @phdthesis{Eman2013, author = {Eman, Maher Othman Sholkamy}, title = {In Vitro and In Vivo Analysis of Insulin-Induced Oxidative Stress and DNA Damage}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69274}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Hyperinsulinemia, a condition with excessively high insulin blood levels, is related to an increased cancer incidence. Diabetes mellitus, metabolic syndrome, obesity and polycystic ovarian syndrome are the most common of several diseases accompanied by hyperinsulinemia. Since an elevated cancer risk especially for colon and kidney cancers, was reported for those patients, we investigated for the first time the induction of genomic damage by insulin mainly in HT29 (human colon cells), LLC-PK1 (pig kidney cells), HK2 (human kidney cells) and peripheral lymphocytes, and to confirm the genotoxicity of insulin in other cells from different tissues. To ascertain that the insulin effects were not only limited to permanent cell lines, rat primary colon, kidney, liver and fatty tissue cells were also studied. To connect the study and the findings to in vivo conditions, two in vivo models for hyperinsulinemia were used; Zucker diabetic fatty rats in a lean and diabetic state infused with different insulin concentrations and peripheral lymphocytes from type 2 diabetes mellitus patients. First, the human colon adenocarcinoma cells (HT29) showed significant elevation of DNA damage using comet assay and micronucleus frequency analysis upon treatment with 5 nM insulin in standard protocols. Extension of the treatment to 6 days lowered the concentration needed to reach significance to 0.5-1 nM. Insulin enhanced the cellular ROS production as examined by the oxidation of the dyes 2´,7´-dichlorodihydrofluorescein diacetate (H2DCF-DA) and dihydroethidium (DHE). The FPG modified comet assay and the reduction of damage by the radical scavenger tempol connected the insulin-mediatedDNA damage to ROS production. To investigate the sources of ROS upon insulin stimulation, apocynin and VAS2870 as NADPH oxidase inhibitors and rotenone as mitochondrial inhibitor were applied in combination with insulin and all of them led to a reduction of the genomic damage. Investigation of the signaling pathway started by evaluation of the binding of insulin to its receptor and to the IGF-1 receptor. The results showed the involvement of both receptors in the signaling mechanism. Following the activation of both receptors, PI3K activation occurs leading to phosphorylation of AKT which in turn activates two pathways for ROS production, the first related to mitochondria and the second through activation of Rac1 , resulting in the activation of Nox1. Both pathways could be activated through AKT or through the mitochondrial ROS which in turn could activates Nox1. Studying another human colon cancer cell line, Caco-2 and rat primary colon cells in vitro confirmed the effect of insulin on cellular chromatin. We conclude that pathophysiological levels of insulin can cause DNA damage in colon cells, which may contribute to the induction or progression of colon cancer. Second, in kidney cells, insulin at a concentration of 5 nM caused a significant increase in DNA damage in vitro. This was associated with the formation of reactive oxygen species (ROS). In the presence of antioxidants, blockers of the insulin and IGF-1 receptors, and a phosphatidylinositol 3-kinases (PI3K) inhibitor, the insulin mediated DNA damage was reduced. Phosphorylation of AKT was increased and p53 accumulated. Inhibition of the mitochondrial and NADPH oxidase related ROS production reduced the insulin mediated damage. In primary rat cells insulin also induced genomic damage. HK2 cells were used to investigate the mechanistic pathway in the kidney The signaling is identical to the one in the colon cells untill the activation of the mitochondrial ROS production, because after the activation of PI3K activation of Nox4 occurs at the same time across talk between mitochondria and Nox4 activation has been suggested and might play a role in the observed effects. In the in vivo model, kidneys from healthy, lean ZDF rats, which were infused with insulin to yield normal or high blood insulin levels, while keeping blood glucose levels constant, the amounts of ROS and p53 were elevated in the high insulin group compared to the control level group. ROS and p53 were also elevated in diabetic obese ZDF rats. The treatment of the diabetic rats with metformin reduced the DNA oxidation measured as 8-oxodG as well as the ROS production in that group. HL60 the human premyelocytic cells and cultured lymphocytes as models for the hemopoietic system cells showed a significant induction for DNA damage upon treatment with insulin. The diabetic patients also exhibited an increase in the micronucleus formation over the healthy individuals. In the present study, we showed for the first time that insulin induced oxidative stress resulting in genomic damage in different tissues, and that the source of the produced ROS differs between the tissues. If the same mechanisms are active in patients, hyperinsulinemia might cause genomic damage through the induction of ROS contributing to the increased cancer risk, against which the use of antioxidants as well as mitochondrial and NADPH oxidase inhibitors might exert protective effects with cancer preventive potential under certain conditions. Normal healthy human plasma insulin concentrations are in the order of 0.04 nM after overnight fasting and increase to less than about 0.2 nM after a meal. Pathophysiological levels can reach 1 nM and can stay above 0.2 nM for the majority of the daytime yielding condictions close to the insulin concentrations determined in the present study. Whether the observed effects also occur in vivo and whether they actually initiate or promote tumor formation remains to be determined. However, if proof of that can be obtained, our experiments with inhibitors indicate chances for pharmacological intervention applying antioxidants or enzyme inhibitors. It will not be the aim to reduce ROS in any case or as much as possible because ROS have now been recognized as important signaling molecules and participatants in immune defense, but a reduction to physiological levels instead of pathophysiological levels in the context of a disease associated with ROS overproduction might be beneficial.}, subject = {Insulin}, language = {en} }