@phdthesis{Wietek2001, author = {Wietek, Irina}, title = {Human Interleukin-4 binding protein epitope involved in high-affinity binding of interleukin-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {No abstract available}, subject = {Mensch}, language = {en} } @phdthesis{Wong2001, author = {Wong, Amanda}, title = {Implications of Advanced Glycation Endproducts in Oxidative Stress and Neurodegenerative Disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The reactions of reducing sugars with primary amino groups are the most common nonenzymatic modifications of proteins. Subsequent rearrangements, oxidations, and dehydrations yield a heterogeneous group of mostly colored and fluorescent compounds, termed "Maillard products" or advanced glycation end products (AGEs). AGE formation has been observed on long-lived proteins such as collagen, eye lens crystalline, and in pathological protein deposits in Alzheimer's (AD) and Parkinson's disease (PD) and dialysis-related amyloidosis. AGE-modified proteins are also involved in the complications of diabetes. AGEs accumulate in the the ß-amyloid plaques and neurofibrillary tangles (NFT) associated with AD and in the Lewy bodies characteristic of PD. Increasing evidence supports a role for oxidative stress in neurodegenerative disorders such as AD and PD. AGEs have been shown to contribute towards oxidative damage and chronic inflammation, whereby activated microglia secrete cytokines and free radicals, including nitric oxide (NO). Roles proposed for NO in the pathophysiology of the central nervous system are increasingly diverse and range from intercellular signaling, through necrosis of cells and invading pathogens, to the involvement of NO in apoptosis. Using in vitro experiments, it was shown that AGE-modified bovine serum albumin (BSA-AGE) and AGE-modified ß-amyloid, but not their unmodified proteins, induce NO production in N-11 murine microglia cells. This was mediated by the receptor for AGEs (RAGE) and upregulation of the inducible nitric oxide synthase (iNOS). AGE-induced enzyme activation and NO production could be blocked by intracellular-acting antioxidants: Ginkgo biloba special extract EGb 761, the estrogen derivative, 17ß-estradiol, R-(+)-thioctic acid, and a nitrone-based free radical trap, N-tert.-butyl-*-phenylnitrone (PBN). Methylglyoxal (MG) and 3-deoxyglucosone (3-DG), common precursors in the Maillard reaction, were also tested for their ability to induce the production of NO in N-11 microglia. However, no significant changes in nitrite levels were detected in the cell culture medium. The significance of these findings was supported by in vivo immunostaining of AD brains. Single and double immunostaining of cryostat sections of normal aged and AD brains was performed with polyclonal antibodies to AGEs and iNOS and monoclonal antibodies to Aß and PHF-1 (marker for NFT) and reactive microglia. In aged normal individuals as well as early stage AD brains (i.e. no pathological findings in isocortical areas), a few astrocytes showed co-localisation of AGE and iNOS in the upper neuronal layers of the temporal (Area 22) and entorhinal (Area 28, 34) cortices compared with no astrocytes detected in young controls. In late AD brains, there was a much denser accumulation of astrocytes co-localised with AGE and iNOS in the deeper and particularly upper neuronal layers. Also, numerous neurons with diffuse AGE but not iNOS reactivity and some AGE and iNOS-positive microglia were demonstrated, compared with only a few AGE-reactive neurons and no microglia in controls. Finally, astrocytes co-localised with AGE and iNOS as well as AGE and ß-amyloid were found surrounding mature but not diffuse ß-amyloid plaques in the AD brain. Parts of NFT were AGE-immunoreactive. Immunohistochemical staining of cryostat sections of normal aged and PD brains was performed with polyclonal antibodies to AGEs. The sections were counterstained with monoclonal antibodies to neurofilament components and a-synuclein. AGEs and a-synuclein were colocalized in very early Lewy bodies in the substantia nigra of cases with incidental Lewy body disease. These results support an AGE-induced oxidative damage due to the action of free radicals, such as NO, occurring in the AD and PD brains. Furthermore, the involvement of astrocytes and microglia in this pathological process was confirmed immunohistochemically in the AD brain. It is suggested that oxidative stress and AGEs participate in the very early steps of Lewy body formation and resulting cell death in PD. Since the iNOS gene can be regulated by redox-sensitive transcription factors, the use of membrane permeable antioxidants could be a promising strategy for the treatment and prevention of chronic inflammation in neurodegenerative disorders.}, subject = {Maillard-Reaktion}, language = {en} } @phdthesis{Weidenmueller2001, author = {Weidenm{\"u}ller, Anja}, title = {From individual behavior to collective structure}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2448}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The social organization of insect colonies has long fascinated naturalists. One of the main features of colony organization is division of labor, whereby each member of the colony specializes in a subset of all tasks required for successful group functioning. The most striking aspect of division of labor is its plasticity: workers switch between tasks in response to external challenges and internal perturbations. The mechanisms underlying flexible division of labor are far from being understood. In order to comprehend how the behavior of individuals gives rise to flexible collective behavior, several questions need to be addressed: We need to know how individuals acquire information about their colony's current demand situation; how they then adjust their behavior according; and which mechanisms integrate dozens or thousands of insect into a higher-order unit. With these questions in mind I have examined two examples of collective and flexible behavior in social bees. First, I addressed the question how a honey bee colony controls its pollen collection. Pollen foraging in honey bees is precisely organized and carefully regulated according to the colony's needs. How this is achieved is unclear. I investigated how foragers acquire information about their colony's pollen need and how they then adjust their behavior. A detailed documentation of pollen foragers in the hive under different pollen need conditions revealed that individual foragers modulate their in-hive working tempo according to the actual pollen need of the colony: Pollen foragers slowed down and stayed in the hive longer when pollen need was low and spent less time in the hive between foraging trips when pollen need of their colony was high. The number of cells inspected before foragers unloaded their pollen load did not change and thus presumably did not serve as cue to pollen need. In contrast, the trophallactic experience of pollen foragers changed with pollen need conditions: trophallactic contacts were shorter when pollen need was high and the number and probability of having short trophallactic contacts increased when pollen need increased. Thus, my results have provided support for the hypothesis that trophallactic experience is one of the various information pathways used by pollen foragers to assess their colony's pollen need. The second example of collective behavior I have examined in this thesis is the control of nest climate in bumble bee colonies, a system differing from pollen collection in honey bees in that information about task need (nest climate parameters) is directly available to all workers. I have shown that an increase in CO2 concentration and temperature level elicits a fanning response whereas an increase in relative humidity does not. The fanning response to temperature and CO2 was graded; the number of fanning bees increased with stimulus intensity. Thus, my study has evidenced flexible colony level control of temperature and CO2. Further, I have shown that the proportion of total work force a colony invests into nest ventilation does not change with colony size. However, the dynamic of the colony response changes: larger colonies show a faster response to perturbations of their colony environment than smaller colonies. Thus, my study has revealed a size-dependent change in the flexible colony behavior underlying homeostasis. I have shown that the colony response to perturbations in nest climate is constituted by workers who differ in responsiveness. Following a brief review of current ideas and models of self-organization and response thresholds in insect colonies, I have presented the first detailed investigation of interindividual variability in the responsiveness of all workers involved in a collective behavior. My study has revealed that bumble bee workers evidence consistent responses to certain stimulus levels and differ in their response thresholds. Some consistently respond to low stimulus intensities, others consistently respond to high stimulus intensities. Workers are stimulus specialists rather than task specialists. Further, I have demonstrated that workers of a colony differ in two other parameters of responsiveness: response probability and fanning activity. Response threshold, response probability and fanning activity are independent parameters of individual behavior. Besides demonstrating and quantifying interindividual variability, my study has provided empirical support for the idea of specialization through reinforcement. Response thresholds of fanning bees decreased over successive trials. I have discussed the importance of interindividual variability for specialization and the collective control of nest climate and present a general discussion of self-organization and selection. This study contributes to our understanding of individual behavior and collective structure in social insects. A fascinating picture of social organization is beginning to emerge. In place of centralized systems of communication and information transmission, insect societies frequently employ mechanisms based upon self-organization. Self-organization promises to be an important and unifying principle in physical, chemical and biological systems.}, subject = {Hummeln}, language = {en} } @phdthesis{Spaethe2001, author = {Spaethe, Johannes}, title = {Sensory Ecology of Foraging in Bumblebees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179692}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Pollinating insects exhibit a complex behavior while foraging for nectar and pollen. Many studies have focused on ultimate mechanisms of this behavior, however, the sensory-perceptual processes that constrain such behavior have rarely been considered. In the present study I used bumblebees (Bombus terrestris), an important pollinating insect, to investigate possible sensory constraints on foraging behavior. Additionally, I survey inter-individual variation in the sensory capabilities and behavior of bumblebees caused by the pronounced size polymorphism among members of a single colony. In the first chapter I have focused on the sensory-perceptual processes that constrain the search for flowers. I measured search time for artificial flowers of various sizes and colors, a key variable defining the value of a prey type in optimal foraging theory. When flowers were large, search times correlate well with the color contrast of the targets with their green foliage-type background, as predicted by a model of color opponent coding using inputs from the bee's UV, blue, and green receptors. Targets which made poor color contrast with their backdrop, such as white, UV-reflecting ones, or red flowers, take longest to detect, even though brightness contrast with the background is pronounced. When searching for small targets, bumblebees change their strategy in several ways. They fly significantly slower and closer to the ground, so increasing the minimum detectable area subtended by an object on the ground. In addition they use a different neuronal channel for flower detection: instead of color contrast, they now employ only the green receptor signal for detection. I related these findings to temporal and spatial limitations of different neuronal channels involved in stimulus detection and recognition. Bumblebees do not only possess species-specific sensory capacities but they also exhibit inter-individual differences due to size. Therefore, in the next two chapters I have examined size-related effects on the visual and olfactory system of Bombus terrestris. Chapter two deals with the effect of scaling on eye architecture and spatial resolving power of workers. Foraging efficiency in bees is strongly affected by proficiency of detecting flowers. Both floral display size and bee spatial vision limit flower detection. In chapter one I have shown that search times for flowers strongly increases with decreasing floral display size. The second factor, bee spatial vision, is mainly limited by two properties of compound eyes: (a) the interommatidial angle {\c{C}}{\aa} and (b) the ommatidial acceptance angle {\c{C}}{\´a}. When a pollinator strives to increase the resolving power of its eyes, it is forced to increase both features simultaneously. Bumblebees show a large variation in body size. I found that larger workers with larger eyes possess more ommatidia and larger facet diameters. Large workers with twice the size of small workers (thorax width) have about 50 per cent more ommatidia, and a 1.5 fold enlarged facet diameter. In a behavioral test, large and small workers were trained to detect the presence of a colored stimulus in a Y-maze apparatus. The stimulus was associated with a sucrose reward and was presented in one arm, the other arm contained neither stimulus nor reward. The minimum visual angle a bee is able to detect was estimated by testing the bee at different stimuli sizes subtending angles between 30° and 3° on the bee's eye. Minimum visual detection angles range from 3.4° to 7.0° among tested workers. Larger bumblebees are able to detect objects subtending smaller visual angles, i.e. they are able to detect smaller objects than their small conspecifics. Thus morphological and behavioral findings indicate an improved visual system in larger bees. Beside vision, olfaction is the most important sensory modality while foraging in bees. Bumblebees utilize species-specific odors for detecting and identifying nectar and pollen rich flowers. In chapter three I have investigated the olfactory system of Bombus terrestris and the effect of scaling on antennal olfactory sensilla and the first olfactory neuropil in the bumblebee brain, the antennal lobes. I found that the pronounced size polymorphism exhibited by bumblebees also effects their olfactory system. Sensilla number (I measured the most common olfactory sensilla type, s. placodea), sensilla density, volume of antennal lobe neuropil and volume of single identified glomeruli correlate significantly with worker's size. The enlarged volume of the first olfactory neuropil in large individuals is caused by an increase in glomeruli volume and coarse neuropil volume. Additionally, beside an overall increase of brain volume with scaling I found that the olfactory neuropil increases disproportionately compared to a higher order neuropil, the central body. The data predict a higher odor sensitivity in larger bumblebee workers. In the last chapter I have addressed the question if scaling alters foraging behavior and rate in freely foraging bumblebees. I observed two freely foraging B. terrestris colonies and measured i) trip number, ii) trip time, iii) proportion of nectar trips, and iv) nectar foraging rate of different sized foragers. In all observation periods large foragers exhibit a significantly higher foraging rate than small foragers. None of the other three foraging parameters is affected by workers' size. Thus, large foragers contribute disproportionately more to the current nectar influx of their colony. To summarize, this study shows that understanding the mechanisms of visual information processing and additionally comprising inter-individual differences of sensory capabilities is crucial to interpret foraging behavior of bees.}, subject = {Hummeln}, language = {en} } @phdthesis{Raffelsbauer2001, author = {Raffelsbauer, Diana}, title = {Identification and characterization of the inlGHE gene cluster of Listeria monocytogenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180595}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {In the present study, a new gene cluster of Listeria monocytogenes EGD containing three internalin genes was identified and characterized. These genes, termed inlG, inlH and inlE, encode proteins of 490, 548 and 499 amino acids, respectively, which belong to the class of large, surface-bound internalins. Each of these proteins contains a signal peptide, two regions of repeats (Leucine-rich repeats and B repeats), an inter-repeat region and a putative cell wall anchor sequence containing the sorting motiv LPXTG. PCR analysis revealed the presence of the inlGHE gene cluster in most L. monocytogenes serotypes. A similar gene cluster termed inlC2DE localised to the same position on the chromosome was described in a different L. monocytogenes EGD isolate. Sequence comparison of the two clusters indicates that inlG is a new internalin gene, while inlH was generated by a site-specific recombination leading to an in-frame deletion which removed the 3'-terminal end of inlC2 and a 5'-portion of inlD. The genes inlG, inlH and inlE seem to be transcribed extracellularly and independent of PrfA. To study the function of the inlGHE gene cluster several in-frame deletion mutants were constructed which lack the genes of the inlGHE cluster individually or in combination with other inl genes. When tested in the mouse model, the inlGHE mutant showed a significant reduction of bacterial counts in liver and spleen in comparison to the wild type strain, indicating that the inlGHE gene cluster plays an important role in virulence of L. monocytogenes. The ability of this mutant to invade non-phagocytic cells in vitro was however two- to three-fold higher than that of the parental strain. To examine whether deletion of the single genes from the cluster has the same stimulatory effect on invasiveness as deletion of the complete gene cluster, the single in-frame deletion mutants inlG, inlH and inlE were constructed. These mutants were subsequently reverted to the wild type by introducing a copy of the corresponding intact gene into the chromosome by homologous recombination using knock-in plasmids. To determine a putative contribution of InlG, InlH and InlE in combination with other internalins to the entry of L. monocytogenes into mammalian cells, the combination mutants inlA/GHE, inlB/GHE, inlC/GHE, inlA/B/GHE, inlB/C/GHE, inlA/C and inlA/C/GHE were constructed. Transcription of the genes inlA, inlB and inlC in these mutants was studied by RT-PCR. Deletion of inlGHE enhances transcription of inlA and inlB, but not of inlC. This enhancement is not transient but can be observed at different time-points of the bacterial growth curve. Deletion of inlA also increases transcription of inlB and vice-versa. In contrast, the amounts of inlA and inlB transcripts in the single deletion mutants inlG, inlH and inlE were similar to those from the wild type.}, subject = {Listeria monocytogenes}, language = {en} } @phdthesis{Paul2001, author = {Paul, J{\"u}rgen}, title = {The Mouthparts of Ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Ant mandible movements cover a wide range of forces, velocities and precision. The key to the versatility of mandible functions is the mandible closer muscle. In ants, this muscle is generally composed of distinct muscle fiber types that differ in morphology and contractile properties. Volume proportions of the fiber types are species-specific and correlate with feeding habits. Two biomechanical models explain how the attachment angles are optimized with respect to force and velocity output and how filament-attached fibers help to generate the largest force output from the available head capsule volume. In general, the entire mandible closer muscle is controlled by 10-12 motor neurons, some of which exclusively supply specific muscle fiber groups. Simultaneous recordings of muscle activity and mandible movement reveal that fast movements require rapid contractions of fast muscle fibers. Slow and accurate movements result from the activation of slow muscle fibers. Forceful movements are generated by simultaneous co-activation of all muscle fiber types. For fine control, distinct fiber bundles can be activated independently of each other. Retrograde tracing shows that most dendritic arborizations of the different sets of motor neurons share the same neuropil in the suboesophageal ganglion. In addition, some motor neurons invade specific parts of the neuropil. The labiomaxillary complex of ants is essential for food intake. I investigated the anatomical design of the labiomaxillary complex in various ant species focusing on movement mechanisms. The protraction of the glossa is a non muscular movement. Upon relaxation of the glossa retractor muscles, the glossa protracts elastically. I compared the design of the labiomaxillary complex of ants with that of the honey bee, and suggest an elastic mechanism for glossa protraction in honey bees as well. Ants employ two different techniques for liquid food intake, in which the glossa works either as a passive duct (sucking), or as an up- and downwards moving shovel (licking). For collecting fluids at ad libitum food sources, workers of a given species always use only one of both techniques. The species-specific feeding technique depends on the existence of a well developed crop and on the resulting mode of transporting the fluid food. In order to evaluate the performance of collecting liquids during foraging, I measured fluid intake rates of four ant species adapted to different ecological niches. Fluid intake rate depends on sugar concentration and the associated fluid viscosity, on the species-specific feeding technique, and on the extent of specialization on collecting liquid food. Furthermore, I compared the four ant species in terms of glossa surface characteristics and relative volumes of the muscles that control licking and sucking. Both probably reflect adaptations to the species-specific ecological niche and determine the physiological performance of liquid feeding. Despite species-specific differences, single components of the whole system are closely adjusted to each other according to a general rule.}, subject = {Ameisen}, language = {en} } @phdthesis{Ng2001, author = {Ng, Eva Yee Wah}, title = {How did Listeria monocytogenes become pathogenic?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1752}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Listeriae are Gram positive, facultative, saprophytic bacteria capable of causing opportunistic infections in humans and animals. This thesis presents three separate lines of inquiries that can lead to the eventual convergence of a global view of Listeria as pathogen in the light of evolution, genomics, and function. First, we undertook to resolve the phylogeny of the genus Listeria with the goal of ascertaining insights into the evolution of pathogenic capability of its members. The phylogeny of Listeriae had not yet been clearly resolved due to a scarcity of phylogenetically informative characters within the 16S and 23S rRNA molecules. The genus Listeria contains six species: L. monocytogenes, L. ivanovii, L. innocua, L. seeligeri, L. welshimeri, and L. grayi; of these, L. monocytogenes and L. ivanovii are pathogenic. Pathogenicity is enabled by a 10-15Kb virulence gene cluster found in L. seeligeri, L. monocytogenes and L. ivanovii. The genetic contents of the virulence gene cluster loci, as well as some virulence-associated internalin loci were compared among the six species. Phylogenetic analysis based on a data set of nucleic acid sequences from prs, ldh, vclA, vclB, iap, 16S and 23S rRNA genes identified L. grayi as the ancestral branch of the genus. This is consistent with previous 16S and 23S rRNA findings. The remainder 5 species formed two groupings. One lineage represents L. monocytogenes and L. innocua, while the other contains L. welshimeri, L. ivanovii and L. seeligeri, with L. welshimeri forming the deepest branch within this group. Deletion breakpoints of the virulence gene cluster within L. innocua and L. welshimeri support the proposed tree. This implies that the virulence gene cluster was present in the common ancestor of L. monocytogenes, L. innocua, L. ivanovii, L. seeligeri and L. welshimeri; and that pathogenic capability has been lost in two separate events represented by L. innocua and L. welshimeri. Second, we attempted to reconstitute L. innocua of its deleted virulence gene cluster, in its original chromosomal location, from the L. monocytogenes 12 Kb virulence gene cluster. This turned out particularly difficult because of the limits of genetic tools presently available for the organism. The reconstitution was partially successful. The methods and approaches are presented, and all the components necessary to complete the constructs are at hand for both L. innocua and the parallel, positive control of L. monocytogenes mutant deleted of its virulence gene cluster. Third, the sequencing of the entire genome of L. monocytogenes EGDe was undertaken as part of an EU Consortium. Our lab was responsible for 10 per cent of the labor intensive gap-closure and annotation efforts, which I helped coordinate. General information and comparisons with sister species L. innocua and a close Gram positive relative Bacillus subtilis are presented in context. The areas I personally investigated, namely, sigma factors and stationary phase functions, are also presented. L. monocytogenes and L. innocua both possess surprisingly few sigma factors: SigA, SigB, SigH, SigL, and an extra-cytoplasmic function type sigma factor (SigECF). The stationary phase genes of L. monocytogenes is compared to the well-studied, complex, stationary phase networks of B. subtilis. This showed that while genetic competence functions may be operative in unknown circumstances, non-sporulating Listeria opted for very different approaches of regulation from B. subtilis. There is virtually no overlap of known, stationary phase genes between Listeria and Gram negative model organism E. coli.}, subject = {Listeria monocytogenes}, language = {en} } @phdthesis{Lampert2001, author = {Lampert, Kathrin P.}, title = {Alternative life history strategies in the West African reed frog, Hyperolius nitidulus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1677}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Distinct juvenile behaviour differences, changes in adult sizes and reproductive capacity and a long reproductive period triggered the working hypothesis of two alternative life-cycle strategies favouring aestivation or immediate reproduction. The hypothesis for the life-cycles of Hyperolius nitidulus that differed from the commonly assumed reproductive strategy for this species was confirmed by the results of this study. Aestivated juveniles start to mature at the beginning of the rainy season and reproduce subsequently. Their tadpoles grow until metamorphosis and either reproduce in this same season, in which case their offspring aestivates (one year - two generations), or they delay reproduction to the following year and aestivate themselves (one year - one generation). Juveniles trying to reproduce as fast as possible will invest in growth and differentiation and show no costly adaptations to aestivation, while juveniles delaying reproduction to the following rainy season will be well adapted to dry season conditions. Indirect evidence for the existence of a second generation was found in all three investigation years: adult size decreased abruptly towards the end of the rainy season, mainly due to the arrival of very small individuals, and clutch size decreased abruptly. Also at the end of the rainy season juveniles had two behavioural types: one hiding on the ground and clearly avoiding direct sunlight and another sitting freely above ground showing higher tolerance towards dry season conditions (high air temperatures and low humidity). Skin morphology differed between the types showing many more purine crystals in a higher order in the dry-season adapted juveniles. The final proof for the existence of a second generation came with the recapture of individuals marked as juveniles when they left the pond. The 45 recaptured frogs definitely came back to the pond to reproduce during the same season in 1999. Second generation frogs (males and females) were significantly smaller than the rest of all adults and egg diameter was reduced. Clutch size did not differ significantly. It was found that females did not discriminate against second generation males when coming to the ponds to reproduce. Second generation males had a similar chance to be found in amplexus as first generation males. Indirect and direct evidence for a second generation matched very well. The sudden size decrease in adults occurred just at the time when the first marked frogs returned. The observation that freshly metamorphosed froglets were able to sit in the sun directly after leaving the water led to the assumption that the decision whether to aestivate or to reproduce already happens during the frogs' larval period. Water chemistry and the influence of light was investigated to look for the factors triggering the decision, but only contaminated water increased the number of juveniles ready for aestivation. Whether the life history polymorphism observed in Hyperolius nitidulus is due to phenotypic plasticity or genetic polymorphism is still not known. Despite this uncertainty, there is no doubt that the optimal combination of different life histories is profitable and may be a reason for the wide range and high local abundance of Hyperolius nitidulus.}, subject = {Westafrika}, language = {en} } @phdthesis{Jordan2001, author = {Jordan, Bruce}, title = {The identification of NRAGE}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180090}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The inhibitor of apoptosis proteins (IAPs) have been shown to interact with a growing number of intracellular proteins and signalling pathways in order to fulfil their anti-apoptotic role. In order to investigate in detail how the avian homologue ITA interfered with both TNF induced apoptosis and the NGF mediated differentiation in PC12 cells, a two hybrid screen was performed with a PC12 library using ITA as a bait. The screen resulted in the identification of several overlapping fragments of a previously unknown gene. The complete cDNA for this gene was isolated, the analysis of which revealed a high homology with a large family of tumour antigens known as MAGE (melanoma associated antigens). This newly identified member of the MAGE family, which was later named NRAGE, exhibited some unique characteristics that suggested for the first time a role in normal cellular physiology for this protein family. MAGE proteins are usually restricted in their expression to malignant or tumour cells, however NRAGE was also expressed in terminally differentiated adult tissue. NRAGE also interacted with the human XIAP in direct two-hybrid tests. The interactions observed in yeast cells were confirmed in mammalian cell culture, employing both coimmunoprecipitation and mammalian two-hybrid methods. Moreover, the results of the coimmunoprecipitation experiments indicated that this interaction requires the RING domain. The widely studied 32D cell system was chosen to investigate the effect of NRAGE on apoptosis. NRAGE was stably transduced in 32D cells, and found to augment cell death induced by the withdrawal of Interleukin-3. One reason for this reduced cell viability in NRAGE expressing cells could be the binding of endogenous XIAP, which occurred inducibly after growth factor withdrawal. Interestingly, NRAGE was able to overcome the protection afforded to 32D cells by the exogenous expression of human Bcl-2. Thus NRAGE was identified during this research doctorate as a novel pro-apoptotic, IAP-interacting protein, able to accelerate apoptosis in a pathway independent of Bcl-2 cell protection.}, subject = {Apoptosis}, language = {en} } @phdthesis{Gloeckner2001, author = {Gl{\"o}ckner, Herma}, title = {Characterization of a new miniaturized hollow-fiber bioreactor for cultivation of cell lines and primary cells to improve cytostatic drug testing in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1181317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Monolayer or suspension cell cultures are of only limited value as experimental models for human cancer. Therefore, more sophisticated, three-dimensional culture systems like spheroid cultures or histocultures are used, which more closely mimic the tumor in individual patients compared to monolayer or suspension cultures. As tissue culture or tissue engineering requires more sophisticated culture, specialized in vitro techniques may also improve experimental tumor models. In the present work, a new miniaturized hollow-fiber bioreactor system for mammalian cell culture in small volumes (up to 3 ml) is characterized with regard to transport characteristics and growth of leukemic cell lines (chapter 2). Cell and medium compartment are separated by dialysis membranes and oxygenation is accomplished using oxygenation membranes. Due to a transparent housing, cells can be observed by microscopy during culture. The leukemic cell lines CCRF-CEM, HL-60 and REH were cultivated up to densities of 3.5 x 107/ml without medium change or manipulation of the cells. Growth and viability of the cells in the bioreactor were the same or better, and the viable cell count was always higher compared to culture in Transwell{\^a} plates. As shown using CCRF-CEM cells, growth in the bioreactor was strongly influenced and could be controlled by the medium flow rate. As a consequence, consumption of glucose and generation of lactate varied with the flow rate. Influx of low molecular weight substances in the cell compartment could be regulated by variation of the concentration in the medium compartment. Thus, time dependent concentration profiles (e.g. pharmacokinetic profiles of drugs) can be realized as illustrated using glucose as a model compound. Depending on the molecular size cut-off of the membranes used, added growth factors like GM-CSF and IL-3 as well as factors secreted from the cells are retained in the cell compartment for up to one week. Second, a method for monitoring cell proliferation the hollow-fiber bioreactor by use of the Alamar BlueTM dye was developed (chapter 3). Alamar BlueTM is a non-fluorescent compound which yields a fluorescent product after reduction e.g. by living cells. In contrast to the MTT-assay, the Alamar BlueTM-assay does not lead to cell death. However, when not removed from the cells, the Alamar BlueTM dye shows a reversible, time- and concentration-dependent growth inhibition as observed for leukemic cell lines. When applied in the medium compartment of a hollow-fiber bioreactor system, the dye is delivered to the cells across the hollow-fiber membrane, reduced by the cells and released from the cell into the medium compartment back again. Thus, fluorescence intensity can be measured in medium samples reflecting growth of the cells in the cell compartment. This procedure offers several advantages. First, exposure of the cells to the dye can be reduced compared to conventional culture in plates. Second, handling steps are minimized since no sample of the cells needs to be taken for readout. Moreover, for the exchange of medium, a centrifugation step can be avoided and the cells can be cultivated further. Third, the method allows to discriminate between cell densities of 105, 106 and 107 of proliferating HL-60 cells cultivated in the cell compartment of the bioreactor. Measurement of fluorescence in the medium compartment is more sensitive compared to glucose or lactate measurement for cell counts below 106 cells/ml, in particular. In conclusion, the Alamar BlueTM-assay combined with the hollow-fiber bioreactor offers distinct advantages for the non-invasive monitoring of cell viability and proliferation in a closed system. In chapter 4 the use of the hollow-fiber bioreactor as a tool for toxicity testing was investigated, as current models for toxicity as well as efficacy testing of drugs in vitro allow only limited conclusions with regard to the in vivo situation. Examples of the drawbacks of current test systems are the lack of realistic in vitro tumor models and difficulties to model drug pharmacokinetics. The bioreactor proved to be pyrogen free and is steam-sterilizable. Leukemic cell lines like HL-60 and primary cells such as PHA-stimulated lymphocytes can be grown up to high densities of 1-3 x 107 and analyzed during growth in the bioreactor by light-microscopy. The cytostatic drug Ara-C shows a dose-dependent growth inhibition of HL-60 cells and a dose-response curve similar to controls in culture plates. The bioreactor system is highly flexible since several systems can be run in parallel, soluble drugs can be delivered continuously via a perfusion membrane and gaseous compounds via an oxygenation membrane which also allows to control pO2 and pH (via pCO2) during culture in the cell compartment. The modular concept of the bioreactor system allows realization of a variety of different design properties, which may lead to an improved in vitro system for toxicity testing by more closely resembling the in vivo situation. Whereas several distinct advantages of the new system have been demonstrated, more work has to be done to promote in vitro systems in toxicity testing and drug development further and to reduce the need for animal tests.}, subject = {Hohlfaserreaktor}, language = {en} } @phdthesis{Forstmeier2001, author = {Forstmeier, Wolfgang}, title = {Individual reproductive strategies in the dusky warbler (Phylloscopus fuscatus)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1232}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {This study investigates mechanisms and consequences of sexual selection in a polygynous population of dusky warblers Phylloscopus fuscatus, breeding near Magadan in the Russian Far East. In particular, the study focuses on individual variation in the reproductive behaviours of both females and males. The mating system of this population is characterised by facultative polygyny (17 per cent of the males mated with more than one female), and by an outstandingly high rate of extra-pair paternity (45 per cent of the offspring was not sired by the social partner of the female). The occurrence of polygyny is best explained by the 'polygyny-threshold model' (PTM). A novel finding of this study is that female mating decisions follow a conditional strategy. First-year females that have no prior breeding experience prefer monogamy over territory quality, while older females more often mate polygynously. I argue that the costs of receiving no male help may be higher for inexperienced females, while the benefits of having a free choice between territories may be higher for individuals that know which territories had the highest breeding success in previous years. Furthermore, I find support for the existence of two female mating strategies. The 'emancipated' female which is not dependent on male help, is free to choose the best territory and the best copulation partners. The 'help-dependent' female, in contrast, is bound to find a partner who is willing to assist her with brood care, thus she will have to accept territories and genetic fathers of lesser quality. The most unexpected finding on female mating behaviours is that this dichotomy between emancipated and help-dependent females is accompanied by morphological specialisation, which indicates that there is genetic variation underlying these female mating strategies. Male mating behaviours are characterised by competition for ownership of the best territories and by advertisement of male quality to females, as these are the factors which largely determine male reproductive success. Male success in obtaining copulations depended on the quality of their song, a fact that explains why males spend most of the daytime singing during the period when females are fertile. Individuals that were able to maintain a relatively high sound amplitude during rapid frequency modulations were consistently preferred by females as copulation partners. Studies of physiological limitations on sound production suggest that such subtle differences in male singing performance can provide an honest reflection of male quality. The present study is the first to indicate that females may judge the quality of a male's song by his performance in sound production. Quality of song was also related to winter survival, which suggests that females can enhance the viability of their offspring by seeking extra-pair fertilisations from good singers (good-genes hypothesis). In general, the present study demonstrates that a complete understanding of avian mating systems is not possible without a detailed analysis of alternative behavioural strategies and of how individuals adjust their reproductive tactics according to their individual needs and abilities.}, subject = {Laubs{\"a}nger}, language = {en} } @phdthesis{Eltz2001, author = {Eltz, Thomas}, title = {Ecology of stingless bees (Apidae, Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, and an evaluation of logging impact on populations and communities}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The present thesis reports on four years of field research on stingless bee ecology in Sabah, Malaysia. Hereby, it was the main focus to evaluate the effect of selective logging for timber extraction on communities of bees, and to elucidate causative relationships involved in regulating bee populations. Included were background studies on resource use (3.1, 3.2, 3.3) and nesting biology (3.4) as well as comparative studies on stingless bee diversity and abundance in logged and unlogged lowland rainforest sites (4.1, 4.2). Stingless bees proved to be generalist foragers that used a large range of plant species as pollen sources. Nevertheless, different species of bees had rather distinct pollen diets, a findind that was independent of fluctuations in flowering activity in the habitat. At one particular point in time colonies of one species (Trigona collina)collected mold spores (Rhizopus sp.) as a pollen surrogate. In order to obtain low-effort estimates of meliponine pollen sources a new method was developed: Trapping of bee garbage (with funnel traps) and the quantitative analysis of pollen in garbage samples. Pollen in bee garbage reflected pollen import with a certain time lag and could therefore be used for an assessment of long-term pollen foraging (see below). The majority of stingless bee nests (275 nests of 12 species) were found in cavities in trunks or under the bases of large, living canopy trees. Nest trees mostly belonged to commercial species and were of the correct size and (partly) timber quality to warrant harvesting. It was estimated that roughly one third of stingless bee nests in an given forest area would be killed during a selective logging operation. Besides causing direct mortality, logging may also indirectly affect bee populations by reducing the availability of potential nest sites (trees). However, in a comparison of primary and differentially logged forest sites (10 to 30 years after logging) no effect of the degree of disturbance on meliponine nest density was found. Instead, the variation in nest density (0 to 16.2 nest/ha) was best explained by differences in the available floral resources (assessed by analysis of pollen in bee garbage). Bee populations in forest edge situations were favored: there was a positive correlation between nest density and the proportion of external non-forest pollen (e.g. from crop plants, road edge vegetation, mangroves) in the bees' diet. The highest nest density was found in a site bordering the mangroves in Sandakan Bay. Here, the mangrove tree Rhizophora apiculata represented a extraordinary large fraction of the pollen volume. Presumably, external pollen sources effectively supplement bee diets at times when little flowering occurs inside the forest, thus increasing overall bee carrying-capacity. The idea of differential pollen limitation was strengthened by direct measurements of pollen import and foraging activity over a period of five months. Both were elevated in colonies in a site with high bee density. It is concluded that the abundance of stingless bees in forests in Sabah is chiefly dependent on the local availability of food resources. Hereby, bee populations strongly benefit from edge effects and increased habitat diversity. Although direct negative effects of selective logging are strongly indicated by a close association of bee nests with commercial trees, no clear effects were detected in regenerating forests ten to 30 years after logging.}, subject = {Sabah}, language = {en} } @phdthesis{Dinev2001, author = {Dinev, Dragomir}, title = {Analysis of the role of extracellular signal regulated kinase (ERK5) in the differentiation of muscle cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The MEK5/ ERK5 kinase module is a relatively new discovered mitogen-activated protein kinase (MAPK) signalling pathway with a poorly defined physiological function. Since ERK5 and its upstream activator MEK5 are abundant in skeletal muscle a function of the cascade during muscle differentiation was examined. ERK5 becomes activated upon induction of differentiation in mouse myoblasts. The selective activation of the pathway results in promoter activation of differentiation-specific genes, such as the cdk-inhibitor p21 gene, the myosin light chain (MLC1A) gene, or an E-box containing promoter element, where myogenic basic-helix-loop-helix proteins such as MyoD or myogenin bind. Moreover, myogenic differentiation is completely blocked, when ERK5 expression is inhibited by antisense RNA. The effect can be detected also on the expression level of myogenic determination and differentiation markers such as p21, MyoD and myogenin. Another new finding is that stable expression of ERK5 in C2C12 leads to differentiation like phenotype and to increased p21 expression levels under growth conditions. These results provide first evidence that the MEK5/ERK5 MAP kinase cascade is critical for early steps of muscle cell differentiation.}, subject = {Muskelzelle}, language = {en} } @phdthesis{Bruehl2001, author = {Br{\"u}hl, Carsten A.}, title = {Leaf litter ant communities in tropical lowland rain forests in Sabah, Malaysia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1042}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Large parts of the tropical lowland rain forests of Sabah (Malaysia) were transformed into secondary forests due to heavy logging. Additionally the remaining forest remnants are isolated from each other by large scale oil palm plantations. Biodiversity patterns and responses of the community of leaf litter ants were studied in anthropogenically disturbed habitats and primary forests of different size. In logged over forests, only 70 per cent of the species of a primary forest were present even 25 years after timber extraction. The ant communities were thinned and could be described by a lower species density producing lower species numbers and a different community composition. The similarity in species number and community composition between logged over forests of different degrees of disturbance was explained by source-sink dynamics within a heterogeneous forest matrix. Rain forest fragments displayed even higher reductions in species density, numbers and diversity due to a more pronounced thinning effect. Even forest isolates exceeding 4 000 ha in size did not support more than 50 per cent of the species of the leaf litter ant community of a contiguous primary rain forest. Additionally, an increase in tramp species was recorded with decreasing size of the forest fragments, leading to a very different community composition. Regarding the leaf litter ant community, the remaining rain forest fragments of Sabah are effectively isolated by a barrier of oil palm plantation, now stretching all over the lowlands of the east coast. Only 13 species, which belonged to the forest ant community in highly disturbed areas were collected in these plantations. Some of the 10 other species of the highly reduced ground-dwelling ant community in the plantations are known as invasive tramp species, forming large exclusive territories. Correlative evidence and a field experiment implied, that leaf litter humidity, volume and temperature affect the distribution and community composition of forest leaf litter ant species. The smaller primary forests and the most disturbed logged over forests in this study revealed higher temperatures and lower humidity levels and a reduction in leaf litter volume compared to a large primary forest or forests affected by a lower impact of timber harvesting. If the pattern for leaf litter ants is confirmed for other taxa, the implications for any efficient management design aiming to preserve the majority of the biodiversity of the country are tremendous and current concepts need rethinking.}, subject = {Sabah}, language = {en} } @phdthesis{Blatt2001, author = {Blatt, Jasmina}, title = {Haemolymph sugar homeostasis and the control of the proventriculus in the honeybee (Apis mellifera carnica L.)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-880}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The proventriculus regulates the food passage from crop to midgut. As the haemolymph provides a constantly updated indication of an insect's nutritional state, it is assumed that the factor controlling the proventri-culus activity is to be found in the haemolymph. The purpose of this doctoral thesis was to investigate how output (metabolic rate), input (food quality and food quantity) and internal state variables (haemolymph osmolarity and haemolymph sugar titer) affect each other and which of these factors controls the activity of the proventriculus in the honeybee. Therefore free-flying foragers were trained to collect con-trolled amounts of different sugar solutions. Immediately after feeding, metabolic rates were measured over different periods of time, then crop-emptying rates and haemolymph sugar titers were measured for the same individual bees. Under all investigated conditions, both the sugar transport rates through the proventriculus and the haemolyph sugar titers depended mainly on the metabolism. For bees collecting controlled amounts of 15 per cent, 30 per cent or 50 per cent sucrose solution haemolymph trehalose, glucose and fructose titers were constant for metabolic rates from 0 to 4.5 mlCO2/h. At higher metabolic rates, trehalose concentration decreased while that of glucose and fructose increased with the exception of bees fed 15 per cent sucrose solution. As the supply of sugar from the crop via the proventriculus was sufficient to support even the highest metabolic rates, the observed pattern must result from an upper limit in the capacity of the fat body to synthesise trehalose. The maximal rate of conversion of glucose to trehalose in the fat body was therefore calculated to average 92.4 µg glucose/min. However, for bees fed 15 per cent sucrose solution both the rate of conversion of glucose to trehalose and the rate of sugar transport from the crop to the midgut were limited, causing an overall decrease in total haemolymph sugar titers for metabolic rates higher than 5 mlCO2/h. Haemolymph sucrose titers were generally low but increased with increasing metabolic rates, even though sucrose was not always detected in bees with high metabolic rates. Though foragers were able to adjust their sugar transport rates precisely to their metabolic rates, a fixed surplus of sugars was transported through the proventriculus under specific feed-ing conditions. This fixed amount of sugars increased with increasing concentration and in-creasing quantity of fed sugar solution, but decreased with progressing time after feeding. This fixed amount of sugars was independent of the metabolic rates of the bees and of the molarity and viscosity of the fed sugar solution. As long as the bees did not exhaust their crop content, the haemolymph sugar titers were unaffected by the sugar surplus, by the time after feeding, by the concentration and by the viscosity of fed sugar solution. When bees were fed pure glucose (or fructose) solutions, un-usually little fructose (or glucose) was found in the haemolymph, leading to lower total haemolymph sugar titers, while the trehalose titer remained unaffected. In order to investigate the mechanisms underlying the regulation of the honeybee proven-triculus, foraging bees were injected either with metabolisable (glucose, fructose, trehalose), or non-metabolisable sugars (sorbose). Bees reacted to injections of metabolisable sugars with reduced crop-emptying rates, but injection of non-metabolisable sugars had no influence on crop emptying. Therefore it is concluded that the proventriculus regulation is controlled by the concentration of metabolisable compounds in the haemolymph, and not by the haemo-lymph osmolarity. A period of 10min was enough to observe reduced crop emptying rates after injections. It is suggested that glucose and fructose have an effect on the proventriculus activity only via their transformation to trehalose. However, when the bees were already in-jected 5min after feeding, no response was detectable. In addition it was investigated whether the overregulation is the result of feed-forward regulation for the imminent take-off and flight. In a first experiment, we investigated whether the bees release an extra amount of sugar solution very shortly before leaving for the hive. In a second experiment, it was tested whether the distance covered by the bees might have an influence on the surplus amount released prior to the take-off. In a third experiment, it was investigated if walking bees fail to release this extra amount of sugars, as they do not have to fly. Though we were not able to demonstrate that the overregulation is the result of feed-forward regulation for the imminent take-off and flight, it is conceivable that this phenome-non is a fixed reaction in foragers that can not be modulated. To investigate whether regulated haemolymph sugar titers are also observed in honeybee foragers returning from natural food sources, their crop contents and haemolymph sugar titers were investigated. While the quantity of the collected nectar was without influence on the haemolymph sugar titers, foragers showed increasing haemolymph sugar titers of glucose, fructose and sucrose with increasing sugar concentration of the carried nectar. In contrast no relationship between crop nectar concentrations and haemolymph trehalose titers was observed. We are sure that the regulation of food passage from crop to midgut is controlled by the trehalose titer. However, under some conditions the balance between consumption and income is not numerically exact. This imprecision depends on the factors which have an impact on the foraging energetics of the bees but are independent of those without influence on the foraging energetics. Therefore we would assume that the proventriculus activity is modulated by the motivational state of the bees.}, subject = {Biene}, language = {en} } @phdthesis{Esch2001, author = {Esch, Mandy}, title = {Novel Nucleic Acid Sensors for the Rapid Detection of Cryptosporidium Parvum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Recent advances in the development of immunoassays and nucleic acid assays have improved the performance and increased the sensitivity of sensors that are based on biochemical recognition. The new approaches taken by researchers include detecting pathogens by detecting their nucleic acids, using new nontoxic reporter entities for generating signals, and downscaling and miniaturizing sensors to micromigration and microfluidic formats. This dissertation connects some of these successful approaches, thereby leading to the development of novel nucleic acid sensors for rapid and easy detection of pathogens. The author's goal was to develop diagnostic tools that enable investigators to detect pathogens rapidly and on site. While the sensors can be used to detect any pathogen, the author first customized them for detecting particularly Cryptosporidium parvum, a pathogen whose detection is important, yet presents many challenges. Chapter 2 of this thesis presents a novel test-strip for the detection of C. parvum. The test-strip is designed to detect nucleic acids rather than proteins or other epitopes. While test strips are commonly used for sensors based on immunological recognition, this format is very new in applications in which nucleic acids are detected. Further, to indicate the presence or absence of a specific target on the test strip, dye-entrapped, oligonucleotide-tagged liposomes are employed. Using liposomes as reporter particles has advantages over using other reporter labels, because the cavity that the phospholipidic membranes of the liposomes form can be filled with up to 106 dye molecules. By using heterobifunctional linkers liposomes can be tagged with oligonucleotides, thereby enabling their use in nucleic acid hybridization assays. The developed test-strip provides an internal control. The limit of detection is 2.7 fmol/mL with a sample volume of 30 mL. In chapter 3 the detection of nucleic acids by means of oligonucleotide-tagged liposomes is scaled down to a microfluidic assay format. Because the application of biosensors to microfluidic formats is very new in the field of analytical chemistry, the first part of this chapter is devoted to developing the design and the method to fabricate the microchip devices. The performance of the microchips is then optimized by investigating the interactions of nucleic acids and liposomes with the material the chips consist of and by passivating the surface of the chips with blocking reagents. The developed microfluidic chip enabled us to reduce the sample volume needed for one assay to 12.5 mL. The limit of detection of this assay was determined to be 0.4 fmol/mL. Chapters 4 and 5 expand on the development of the microfluidic assay. A prototype microfluidic array that is able to detect multiple analytes in a single sample simultaneously is developed. Using such an array will enable investigators to detect pathogens that occur in the same environment, for example, C. parvum and Giardia duodenalis by conducting a single test. The array's ability to perform multiple sample analysis is shown by detecting different concentrations of target nucleic acids. Further, the author developed a microfluidic chip in which interdigitated microelectrode arrays (IDAs) that consist of closely spaced microelectrodes are integrated. The IDAs facilitate electrochemical detection of cryptosporidial RNA. Electrochemical detection schemes offer benefits of technical simplicity, speed, and sensitivity. In this project liposomes are filled with electrochemically active molecules and are then utilized to generate electrochemical signals. Chapter 6 explores the feasibility of liposomes for enhancing signals derived from nucleic acid hybridization in surface plasmon resonance (SPR) spectroscopy. SPR spectroscopy offers advantages because nucleic acid hybridization can be monitored in real time and under homogeneous conditions because no washing steps are required. SPR spectroscopy is very sensitive and it can be expected that, in the future, SPR will be integrated into microfluidic nucleic acid sensors.}, subject = {Cryptosporidium}, language = {en} }