@article{LachaudCastorHainetal.2014, author = {Lachaud, Christophe and Castor, Dennis and Hain, Karolina and Mu{\~n}oz, Ivan and Wilson, Jamie and MacArtney, Thomas J. and Schindler, Detlev and Rouse, John}, title = {Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia}, series = {Journal of Cell Science}, volume = {127}, journal = {Journal of Cell Science}, number = {13}, issn = {1477-9137}, doi = {10.1242/jcs.146167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120908}, pages = {2811-7}, year = {2014}, abstract = {Defects in SLX4, a scaffold for DNA repair nucleases, cause Fanconi anemia due to defective repair of inter-strand DNA crosslinks (ICLs). Some FA patients have an SLX4 deletion removing two tandem UBZ4-type ubiquitin-binding domains, implicated in protein recruitment to sites of DNA damage. Here we show that human SLX4 is recruited to sites of ICL induction but the UBZ-deleted form of SLX4 in cells from FA patients is not. SLX4 recruitment does not require ubiquitination of FANCD2, or the E3 ligases RNF8, RAD18 and BRCA1. We show that the first (UBZ-1), but not the second UBZ domain of SLX4 binds to ubiquitin polymers with a preference for K63-linked chains. Furthermore, UBZ-1 is required for SLX4 recruitment to ICL sites, and for efficient ICL repair in murine fibroblasts. SLX4 UBZ-2 domain does not bind ubiquitin in vitro or contribute to ICL repair, but it is required for resolution of Holliday junctions in vivo. These data shed light on SLX4 recruitment, and suggest that there remain to be identified ubiquitinated ligands and E3 ligases critical for ICL repair.}, language = {en} } @article{FernandezRodriguezQuilesBlancoetal.2012, author = {Fern{\´a}ndez-Rodr{\´i}guez, Juana and Quiles, Francisco and Blanco, Ignacio and Teul{\´e}, Alex and Feliubadal{\´o}, L{\´i}dia and del Valle, Jes{\´u}s and Salinas, M{\´o}nica and Izquierdo, {\´A}ngel and Darder, Esther and Schindler, Detlev and Capell{\´a}, Gabriel and Brunet, Joan and L{\´a}zaro, Conxi and Angel Pujana, Miguel}, title = {Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families}, series = {BMC Cancer}, volume = {12}, journal = {BMC Cancer}, number = {84}, doi = {10.1186/1471-2407-12-84}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131772}, year = {2012}, abstract = {Background: Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods: The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results: This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Conclusions: Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease.}, language = {en} }