@article{PfeifferGoetzXiangetal.2013, author = {Pfeiffer, Verena and G{\"o}tz, Rudolf and Xiang, Chaomei and Camarero, Guadelupe and Braun, Attila and Zhang, Yina and Blum, Robert and Heinsen, Helmut and Nieswandt, Bernhard and Rapp, Ulf R.}, title = {Ablation of BRaf Impairs Neuronal Differentiation in the Postnatal Hippocampus and Cerebellum}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130304}, pages = {e58259}, year = {2013}, abstract = {This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.}, language = {en} } @article{CalebiroMaiellaro2014, author = {Calebiro, Davide and Maiellaro, Isabella}, title = {cAMP signaling microdomains and their observation by optical methods}, series = {Frontiers in Cellular Neuroscience}, volume = {8}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2014.00350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118252}, pages = {350}, year = {2014}, abstract = {The second messenger cyclic AMP (cAMP) is a major intracellular mediator of many hormones and neurotransmitters and regulates a myriad of cell functions, including synaptic plasticity in neurons. Whereas cAMP can freely diffuse in the cytosol, a growing body of evidence suggests the formation of cAMP gradients and microdomains near the sites of cAMP production, where cAMP signals remain apparently confined. The mechanisms responsible for the formation of such microdomains are subject of intensive investigation. The development of optical methods based on fluorescence resonance energy transfer (FRET), which allow a direct observation of cAMP signaling with high temporal and spatial resolution, is playing a fundamental role in elucidating the nature of such microdomains. Here, we will review the optical methods used for monitoring cAMP and protein kinase A (PKA) signaling in living cells, providing some examples of their application in neurons, and will discuss the major hypotheses on the formation of cAMP/PKA microdomains.}, language = {en} }