@phdthesis{Schwedhelm2019, author = {Schwedhelm, Ivo Peter}, title = {A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors}, doi = {10.25972/OPUS-19298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{SoaresMachado2019, author = {Soares Machado, J{\´e}ssica}, title = {Dosimetry-based Assessment of Radiation-associated Cancer risk for \(^9\)\(^9\)\(^m\)Tc-MAG3 Scans in Infants and Optimization of Administered Activities for \(^6\)\(^8\)Ga-labelled Peptides in Children and Adolescents}, doi = {10.25972/OPUS-19264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In 2006, 0.18 Mio pediatric nuclear medicine diagnostic exams were performed worldwide. However, for most of the radiopharmaceuticals used data on biokinetics and, as a consequence on dosimetry, are missing or have not been made publicly available. Therefore, most of the dosimetry assessments presented today for diagnostic agents in children and adolescents rely on the biokinetics data of adults. Even for one of the most common nuclear medicine exams for this patient group, renal scintigraphy with 99mTc-MAG3 for assessing renal function measured data on biokinetics is available only from a study performed on four children of different ages. In particular, renal scans are among the most frequent exams performed on infants and toddlers. Due to the young age, this patient group can be classified as a risk group with a higher probability of developing stochastic radiation effects compared to adults. As there are only limited data on biokinetics and dosimetry in this patient group, the aim of this study is to reassess the dosimetry and the associated radiation risk for a larger number of infants undergoing 99mTc-MAG3 renal scans based on a retrospective analysis of existing patient data. Data were collected retrospectively from 34 patients younger than 20 months with normal (20 patients) and abnormal renal function (14 patients) undergoing 99mTc-MAG3 scans. The patient-specific organ activity was estimated based on a retrospective calibration which was performed based on a set of two 3D-printed infant kidneys (newborns: 8.6 ml; 1-year-old: 23.4 ml) filled with known activities. Both phantoms were scanned at different positions along the anteroposterior axis inside a water phantom, providing depth- and size-dependent attenuation correction factors for planar imaging. Time-activity curves were determined by drawing kidney, bladder, and whole body regions-of-interest for each patient, and subsequently applying the calibration factor for conversion of counts to activity. Patient-specific time-integrated activity coefficients were obtained by integrating the organ-specific time-activity curves. Absorbed and effective dose coefficients for each patient were assessed with OLINDA/EXM for the provided newborn and 1-year-old phantom. Based on absorbed dose values, the radiation risk estimation was performed individually for each of the 34 patients with the National Cancer Institute's Radiation Risk Assessment Tool. The patients' organ-specific mean absorbed dose coefficients for the patients with normal renal function were 0.04±0.03 mGy/MBq for the kidneys and 0.27±0.24 mGy/MBq for the bladder. This resulted in a mean effective dose coefficient of 0.02±0.02 mSv/MBq. Based on the dosimetry results, the evaluation of the excess lifetime risk (ELR) for the development of radiation-induced cancer showed that the group of newborns has an ELR of 16.8 per 100,000 persons, which is higher in comparison with the 1-year-old group with an ELR of 14.7 per 100,000 persons. With regard to the 14 patients with abnormal renal function, the mean values for the organ absorbed dose coefficients for the patients were: 0.40±0.34 mGy/MBq for the kidneys and 0.46±0.37 mGy/MBq for the bladder. The corresponding effective dose coefficients (mSv/MBq) was: 0.05±0.02 mSv/MBq. The mean ELR (per 100,000 persons) for developing cancer from radiation exposure for patients with abnormal renal function was 29.2±18.7 per 100,000 persons. As a result, the radiation-associated stochastic risk increases with the organ doses, taking age- and gender-specific influences into account. Overall, the lifetime radiation risk associated with the 99mTc-MAG3 scans is very low in comparison to the general population risk for developing cancer. Furthermore, due to the increasing demand for PET-scans in children and adolescents with 68Ga-labelled peptides, in this work published data sets for those compounds were analyzed to derive recommendations for the administered activities in children and adolescents. The recommendation for the activities to be administered were based on the weight-independent effective dose model, proposed by the EANM Pediatric Dosage Card for application in pediatric nuclear medicine. The aim was to derive recommendations on administered activities for obtaining age-independent effective doses. Consequently, the corresponding weight-dependent effective dose coefficients were rescaled according to the formalism of the EANM dosage card, to determine the radiopharmaceutical class of 68Ga-labeled peptides ("multiples"), and to calculate the baseline activities based on the biokinetics of these compounds and an upper limit of the administered activity of 185 MBq for an adult. Analogous to 18F-fluoride, a minimum activity of 14 MBq is recommended. As a result, for those pediatric nuclear medicine applications involving 68Ga-labeled peptides, new values for the EANM dosage card were proposed and implemented based on the results derived in this work. Overall, despite the low additional radiation-related cancer risk, all efforts should be undertaken to optimize administered activities in children and adolescents for obtaining sufficient diagnostic information with minimal associated radiation risk.}, subject = {Biokinetics}, language = {en} } @phdthesis{ALHijailan2019, author = {AL-Hijailan, Reem Saud}, title = {Establishment of endothelialized cardiac tissue using human induced pluripotent stem cells generated cardiomyocytes}, doi = {10.25972/OPUS-17397}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173979}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Cardiovascular diseases are considered the leading cause of death worldwide according to the World Health Organization. Heart failure is the last stage of most of these diseases, where loss of myocardium leads to architectural and functional decline. The definitive treatment option for patients with CVDs is organ or tissue transplantation, which relies on donor availability. Therefore, generating an autologous bioengineered myocardium or heart could overcome this limitation. In addition, generating cardiac patches will provide ventricular wall support and enable reparative stem cells delivery to damaged areas. Although many hurdles still exist, a good number of researches have attempted to create an engineered cardiac tissue which can induce endogenous cardiac repair by replacing damaged myocardium. The present study provided cardiac patches in two models, one by a detergent coronary perfusion decellularization protocol that was optimized, and the other that resulted in a 3D cell-free extracellular matrix with intact architecture and preserved s-glycosaminoglycan and vasculature conduits. Perfusion with 1\% Sodium dodecyle sulfate (SDS) under constant pressure resulted in cell-free porcine scaffold within two and cell-free rat scaffold in 7 days, whereas scaffold perfused with 4\% sodium deoxycholate (SDO) was not able to remove cells completely. Re-reendothelialization of tissue vasculature was obtained by injecting human microvascular endothelial cell and human fibroblast in 2:1 ratio in a dynamic culture. One-week later, CD31 positive cells and endothelium markers were observed, indicating new blood lining. Moreover, functionality test of re-endothelialized tissue revealed improvement in clotting seen in decellularized tissues. When the tissue was ready to be repopulated, porcine induced pluripotent stem cells (PiPSc) were generated by transfected reprogramming of porcine skin fibroblast and then differentiated to cardiac cells following a robust protocol, for an autologous cardiac tissue model. However, due to the limitation in the PiPSc cell number, alternatively, human induced pluripotent stem cells generated cardiac cells were used. For reseeding a coculture of human iPSc generated cardiac cells, human mesenchymal stem cells and human fibroblast in 2:1:1 ratio respectively were used in a dynamic culture for 6-8 weeks. Contractions at different areas of the tissue were recorded at an average beating rate of 67 beats/min. In addition, positive cardiac markers (Troponin T), Fibroblast (vemintin), and mesenchymal stem cells (CD90) were detected. Not only that, but by week 3, MSC started differentiating to cardiac cells progressively until few CD90 positive cells were very few by week 6 with increasing troponin t positive cells in parallel. Electrophysiological and drug studies were difficult to obtain due to tissue thickness and limited assessment sources. However, the same construct was established using small intestine submucosa (SISer) scaffold, which recorded a spontaneous beating rate between 0.88 and 1.2 Hz, a conduction velocity of 23.9 ± 0.74 cm s-1, and a maximal contraction force of 0.453 ± 0.015 mN. Moreover, electrophysiological studies demonstrated a drug-dependent response on beating rate; a higher adrenalin frequency was revealed in comparison to the untreated tissue and isoproterenol administration, whereas a decrease in beating rate was observed with propranolol and untreated tissue. The present study demonstrated the establishment of vascularized cardiac tissue, which can be used for human clinical application.}, language = {en} } @phdthesis{Gorelashvili2019, author = {Gorelashvili, Maximilian Georg}, title = {Investigation of megakaryopoiesis and the acute phase of ischemic stroke by advanced fluorescence microscopy}, doi = {10.25972/OPUS-18600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186002}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In mammals, anucleate platelets circulate in the blood flow and are primarily responsible for maintaining functional hemostasis. Platelets are generated in the bone marrow (BM) by megakaryocytes (MKs), which mainly reside directly next to the BM sinusoids to release proplatelets into the blood. MKs originate from hematopoietic stem cells and are thought to migrate from the endosteal to the vascular niche during their maturation, a process, which is, despite being intensively investigated, still not fully understood. Long-term intravital two photon microscopy (2PM) of MKs and vasculature in murine bone marrow was performed and mean squared displacement analysis of cell migration was performed. The MKs exhibited no migration, but wobbling-like movement on time scales of 3 h. Directed cell migration always results in non-random spatial distribution. Thus, a computational modelling algorithm simulating random MK distribution using real 3D light-sheet fluorescence microscopy data sets was developed. Direct comparison of real and simulated random MK distributions showed, that MKs exhibit a strong bias to vessel-contact. However, this bias is not caused by cell migration, as non-vessel-associated MKs were randomly distributed in the intervascular space. Furthermore, simulation studies revealed that MKs strongly impair migration of other cells in the bone marrow by acting as large-sized obstacles. MKs are thought to migrate from the regions close to the endosteum towards the vasculature during their maturation process. MK distribution as a function of their localization relative to the endosteal regions of the bones was investigated by light sheet fluorescence microscopy (LSFM). The results show no bone-region dependent distribution of MKs. Taken together, the newly established methods and obtained results refute the model of MK migration during their maturation. Ischemia reperfusion (I/R) injury is a frequent complication of cerebral ischemic stroke, where brain tissue damage occurs despite successful recanalization. Platelets, endothelial cells and immune cells have been demonstrated to affect the progression of I/R injury in experimental mouse models 24 h after recanalization. However, the underlying Pathomechanisms, especially in the first hours after recanalization, are poorly understood. Here, LSFM, 2PM and complemental advanced image analysis workflows were established for investigation of platelets, the vasculature and neutrophils in ischemic brains. Quantitative analysis of thrombus formation in the ipsilateral and contralateral hemispheres at different time points revealed that platelet aggregate formation is minimal during the first 8 h after recanalization and occurs in both hemispheres. Considering that maximal tissue damage already is present at this time point, it can be concluded that infarct progression and neurological damage do not result from platelet aggregated formation. Furthermore, LSFM allowed to confirm neutrophil infiltration into the infarcted hemisphere and, here, the levels of endothelial cell marker PECAM1 were strongly reduced. However, further investigations must be carried out to clearly identify the role of neutrophils and the endothelial cells in I/R injury.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @phdthesis{Mohammadi2019, author = {Mohammadi, Milad}, title = {Role of oxidized phospholipids in inflammatory pain}, doi = {10.25972/OPUS-19240}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192402}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Introduction: During inflammation, reactive oxygen species (ROS) such as Hydrogen peroxide accumulate at the inflammation site and by oxidizing lipids, they produce metabolites such as 4-hydroxynonenal (4-HNE) and oxidized phospholipids (OxPLs). Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are ligand gated ion channels that are expressed on nociceptors and their activation elicits pain. Hydrogen peroxide and 4-HNE are endogenous ligands for TRPA1 and their role in inflammatory pain conditions has been shown. OxPLs play a major pro-inflammatory role in many pathologies including atherosclerosis and multiple sclerosis. E06/T15 is a mouse IgM mAb that specifically binds oxidized phosphatidylcholine. D-4F is an apolipoprotein A-I mimetic peptide with a very high affinity for OxPLs and possess anti-inflammatory properties. E06 mAb and D-4F peptide protect against OxPLs-induced damage in atherosclerosis in vivo. Methods: To investigate the role of ROS and their metabolites in inflammatory pain, I utilized a combination of diverse and complex behavioral pain measurements and binding assays. I examined E06 mAb and D-4F as local treatment options for hypersensitivity evoked by endogenous and exogenous activators of TRPA1 and TRPV1 as well as in inflammatory and OxPL-induced pain models in vivo. 4-HNE, hydrogen peroxide as ROS source and mustard oil (AITC) were used to activate TRPA1, while capsaicin was used to activate TRPV1. Results: Intraplantar injection of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) into rats' hind paw elicited thermal and mechanical hypersensitivity. Genetic and pharmacological evidence in vivo confirmed the role of TRPA1 in OxPLs-induced hypersensitivity. OxPLs formation increased in complete Freund's adjuvant (CFA)-induced inflamed rats' paw. E06 mAb and D-4F prevented OxPAPC-induced mechanical and thermal hypersensitivity (hyperalgesia) as well as CFA-induced mechanical hypersensitivity. Also, all irritants induced thermal and mechanical hypersensitivity as well as affective-emotional responses and spontaneous nocifensive behaviors. E06 mAb blocked prolonged mechanical hypersensitivity by all but hydrogen peroxide. In parallel, D-4F prevented mechanical hypersensitivity induced by all irritants as well as thermal hypersensitivity induced by capsaicin and 4-HNE. In addition, competitive binding assays showed that all TRPA1/V1 agonists induced prolonged formation of OxPLs in the paw tissue explaining the anti-nociceptive properties of E06 mAb and D-4F. Finally, the potential of gait analysis as a readout for non-provoked pain behavioral measurements were examined. Conclusion and implications: OxPLs were characterized as novel targets in inflammatory pain. Treatment with the monoclonal antibody E06 or apolipoprotein A-I mimetic peptide D-4F are suggested as potential inflammatory pain medications. OxPLs' role in neuropathic pain is yet to be investigated.}, language = {en} } @phdthesis{Nelke2019, author = {Nelke, Lena}, title = {Establishment and optimization of 3-dimensional mamma carcinoma models for therapy simulation and drug testing}, doi = {10.25972/OPUS-17228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172280}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Breast cancer is the most common cancer among women worldwide and the second most common cause of cancer death in the developed countries. As the current state of the art in first-line drug screenings is highly ineffective, there is an urgent need for novel test systems that allow for reliable predictions of drug sensitivity. In this study, a tissue engineering approach was used to successfully establish and standardize a 3-dimensional (3D) mamma carcinoma test system that was optimized for the testing of anti-tumour therapies as well as for the investigation of tumour biological issues. This 3D test system is based on the decellularised scaffold of a porcine small intestinal segment and represents the three molecular subsets of oestrogen receptor-positive, HER2/Neu-overexpressing and triple negative breast cancer (TNBC). The characterization of the test system with respect to morphology as well as the expression of markers for epithelial-mesenchymal transition (EMT) and differentiation indicate that the 3D tumour models cultured under static and dynamic conditions reflect tumour relevant features and have a good correlation with in vivo tumour tissue from the corresponding xenograft models. In this respect, the dynamic culture in a flow bioreactor resulted in the generation of tumour models that exhibited best reflection of the morphology of the xenograft material. Furthermore, the proliferation indices of 3D models were significantly reduced compared to 2-dimensional (2D) cell culture and therefore better reflect the in vivo situation. As this more physiological proliferation index prevents an overestimation of the therapeutic effect of cytostatic compounds, this is a crucial advantage of the test system compared to 2D culture. Moreover, it could be shown that the 3D models can recapitulate different tumour stages with respect to tumour cell invasion. The scaffold SISmuc with the preserved basement membrane structure allowed the investigation of invasion over this barrier which tumour cells of epithelial origin have to cross in in vivo conditions during the process of metastasis formation. Additionally, the data obtained from ultrastructural analysis and in situ zymography indicate that the invasion observed is connected to a tumour cell-associated change in the basement membrane in which matrix metalloproteinases (MMPs) are also involved. This features of the model in combination with the mentioned methods of analysis could be used in the future to mechanistically investigate invasive processes and to test anti-metastatic therapy strategies. The validation of the 3D models as a test system with respect to the predictability of therapeutic effects was achieved by the clinically relevant targeted therapy with the monoclonal antibody trastuzumab which induces therapeutic response only in patients with HER2/Neu-overexpressing mamma carcinomas due to its specificity for HER2. While neither in 2D nor in 3D models of all molecular subsets a clear reduction of cell viability or an increase in apoptosis could be observed, a distinct increase in antibody-dependent cell-mediated cytotoxicity (ADCC) was detected only in the HER2/NEU-overexpressing 3D model with the help of an ADCC reporter gene assay that had been adapted for the application in the 3D model in the here presented work. This correlates with the clinical observations and underlines the relevance of ADCC as a mechanism of action (MOA) of trastuzumab. In order to measure the effects of ADCC on the tumour cells in a direct way without the indirect measurement via a reporter gene, the introduction of an immunological component into the models was required. This was achieved by the integration of peripheral blood mononuclear cells (PBMCs), thereby allowing the measurement of the induction of tumour cell apoptosis in the HER2/Neu-overexpressing model. Hence, in this study an immunocompetent model could be established that holds the potential for further testing of therapies from the emergent field of cancer immunotherapies. Subsequently, the established test system was used for the investigation of scientific issues from different areas of application. By the comparison of the sensitivity of the 2D and 3D model of TNBC towards the water-insoluble compound curcumin that was applied in a novel nanoformulation or in a DMSO-based formulation, the 3D test system was successfully applied for the evaluation of an innovative formulation strategy for poorly soluble drugs in order to achieve cancer therapy-relevant concentrations. Moreover, due to the lack of targeted therapies for TNBC, the TNBC model was applied for testing novel treatment strategies. On the one hand, therapy with the WEE1 kinase inhibitor MK 1775 was evaluated as a single agent as well as in combination with the chemotherapeutic agent doxorubicin. This therapy approach did not reveal any distinct benefits in the 3D test system in contrast to testing in 2D culture. On the other hand, a novel therapy approach from the field of cellular immunotherapies was successfully applied in the TNBC 3D model. The treatment with T cells that express a chimeric antigen receptor (CAR) against ROR1 revealed in the static as well as in the dynamic model a migration of T cells into the tumour tissue, an enhanced proliferation of T cells as well as an efficient lysis of the tumour cells via apoptosis and therefore a specific anti-cancer effect of CAR-transduced T cells compared to control T cells. These results illustrate that the therapeutic application of CAR T cells is a promising strategy for the treatment of solid tumours like TNBC and that the here presented 3D models are suitable for the evaluation and optimization of cellular immunotherapies. In the last part of this work, the 3D models were expanded by components of the tumour stroma for future applications. By coculture with fibroblasts, the natural structures of the intestinal scaffold comprising crypts and villi were remodelled and the tumour cells formed tumour-like structures together with the fibroblasts. This tissue model displayed a strong correlation with xenograft models with respect to morphology, marker expression as well as the activation of dermal fibroblasts towards a cancer-associated fibroblast (CAF) phenotype. For the integration of adipocytes which are an essential component of the breast stroma, a coculture with human adipose-derived stromal/stem cells (hASCs) which could be successfully differentiated along the adipose lineage in 3D static as well as dynamic models was established. These models are suitable especially for the mechanistic analysis of the reciprocal interaction between tumour cells and adipocytes due to the complex differentiation process. Taken together, in this study a human 3D mamma carcinoma test system for application in the preclinical development and testing of anti-tumour therapies as well as in basic research in the field of tumour biology was successfully established. With the help of this modular test system, relevant data can be obtained concerning the efficacy of therapies in tumours of different molecular subsets and different tumour stages as well as for the optimization of novel therapy strategies like immunotherapies. In the future this can contribute to improve the preclinical screening and thereby to reduce the high attrition rates in pharmaceutical industry as well as the amount of animal experiments.}, subject = {Brustkrebs}, language = {en} } @phdthesis{Anany2019, author = {Anany, Mohamed Ahmed Mohamed Mohamed}, title = {Enhancement of Toll-like receptor3 (TLR3)-induced death signaling by TNF-like weak inducer of apoptosis (TWEAK)}, doi = {10.25972/OPUS-18975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily (TNFSF) and is as such initially expressed as type II class transmembrane glycoprotein from which a soluble ligand form can be released by proteolytic processing. While the expression of TWEAK has been detected at the mRNA level in various cell lines and cell types, its cell surface expression has so far only been documented for dendritic cells, monocytes and interferon-γ stimulated NK cells. The fibroblast growth factor-inducible-14 (Fn14) is a TRAF2-interacting receptor of the TNF receptor superfamily (TNFRSF) and is the only receptor for TWEAK. The expression of Fn14 is strongly induced in a variety of non-hematopoietic cell types after tissue injury. The TWEAK/Fn14 system induces pleiotropic cellular activities such as induction of proinflammatory genes, stimulation of cellular angiogenesis, proliferation, differentiation, migration and in rare cases induction of apoptosis. On the other side, Toll-like receptor3 (TLR3) is one of DNA- and RNA-sensing pattern recognition receptors (PRRs), plays a crucial role in the first line of defense against virus and invading foreign pathogens and cancer cells. Polyinosinic-polycytidylic acid poly(I:C) is a synthetic analog of dsRNA, binds to TLR3 which acts through the adapter TRIF/TICAM1, leading to cytokine secretion, NF-B activation, IRF3 nuclear translocation, inflammatory response and may also elicit the cell death. TWEAK sensitizes cells for TNFR1-induced apoptosis and necroptosis by limiting the availability of protective TRAF2-cIAP1 and TRAF2-cIAP2 complexes, which interact with the TNFR1-binding proteins TRADD and RIPK1. In accordance with the fact that poly(I:C)-induced signaling also involves these proteins, we found enhanced necroptosis-induction in HaCaT and HeLa-RIPK3 by poly(I:C) in the presence of TWEAK (Figure 24). Analysis of a panel of TRADD, FADD, RIPK1 and caspase-8 knockout cells revealed furthermore similarities and differences in the way how these molecules act in cell death signaling by poly(I:C)/TWEAK and TNF and TRAIL. RIPK1 turned out to be essential for poly(I:C)/TWEAK-induced caspase-8-mediated apoptosis but was dispensable for these responses in TNF and TRAIL signaling. Lack of FADD protein abrogated TRAIL- but not TNF- and poly(I:C)-induced necroptosis. Moreover, we observed that both long and short FLIP rescued HaCaT and HeLa-RIPK3 cells from poly(I:C)-induced apoptosis or necroptosis. To sum up, our results demonstrate that TWEAK, which is produced by interferon stimulated myeloid cells, controls the induction of apoptosis and necroptosis by the TLR3 ligand poly(I:C) and may thus contribute to cancer or anti-viral immunity treatment.}, subject = {Immunologe}, language = {en} } @phdthesis{Schiele2019, author = {Schiele, Miriam}, title = {Interaction of 5-HTT/NPSR1 variants with distal and acute stress on dimensional and neuroendocrine anxiety endophenotypes - A multi-dimensional model of anxiety risk}, doi = {10.25972/OPUS-14860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148600}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The etiology of anxiety disorders is multifactorial with contributions from both genetic and environmental factors. Several susceptibility genes of anxiety disorders or anxiety-related intermediate phenotypes have been identified, including the serotonin transporter gene (5-HTT) and the neuropeptide S receptor gene (NPSR1), which have been shown to modulate responses to distal and acute stress experiences. For instance, gene-environment interaction (GxE) studies have provided evidence that both 5-HTT and NPSR1 interact with environmental stress, particularly traumatic experiences during childhood, in the moderation of anxiety traits, and both 5-HTT and NPSR1 have been implicated in hypothalamic-pituitary-adrenal (HPA) axis reactivity - an intermediate phenotype of mental disorders - in response to acute stress exposure. The first part of this thesis aimed to address the interplay of variations in both 5-HTT and NPSR1 genes and distal stress experiences, i.e. childhood trauma, in the moderation of anxiety-related traits, extended by investigation of the potentially protective effect of positive influences, i.e. elements of successful coping such as general self-efficacy (GSE), on a GxE risk constellation by introducing GSE as an indicator of coping ability ("C") as an additional dimension in a GxExC approach conferring - or buffering - vulnerability to anxiety. Increased anxiety was observed in 5-HTTLPR/rs25531 LALA genotype and NSPR1 rs324981 AA genotype carriers, respectively, with a history of childhood maltreatment but only in the absence of a person's ability to cope with adversity, whereas a dose-dependent effect on anxiety traits as a function of maltreatment experiences irrespective of coping characteristics was observed in the presence of at least one 5-HTT S/LG or NSPR1 T allele, respectively. The second part of this thesis addressed the respective impact of 5-HTT and NPSR1 variants on the neuroendocrine, i.e. salivary cortisol response to acute psychosocial stress by applying the Maastricht Acute Stress Test (MAST). A direct effect of NPSR1 - but not 5-HTT - on the modulation of acute stress reactivity could be discerned, with carriers of the more active NPSR1 T allele Summary III displaying significantly higher overall salivary cortisol levels in response to the MAST compared to AA genotype carriers. In summary, study 1 observed a moderating effect of GSE in interaction with childhood maltreatment and 5-HTT and NPSR1, respectively, in an extended GxExC model of anxiety risk, which may serve to inform targeted preventive interventions mitigating GxE risk constellations and to improve therapeutic interventions by strengthening coping ability as a protective mechanism to promote resilient functioning. In study 2, a modulation of HPA axis function, considered to be an endophenotype of stress-related mental disorders, by NPSR1 gene variation could be discerned, suggesting neuroendocrine stress reactivity as an important potential intermediate phenotype of anxiety given findings linking NPSR1 to dimensional and categorical anxiety. Results from both studies may converge within the framework of a multi-level model of anxiety risk, integrating neurobiological, neuroendocrine, environmental, and psychological factors that act together in a highly complex manner towards increasing or decreasing anxiety risk.}, subject = {Angst}, language = {en} } @phdthesis{Agnetta2019, author = {Agnetta, Luca}, title = {Novel Photoswitchable and Dualsteric Ligands Acting on Muscarinic Acetylcholine Receptors for Receptor Function Investigation}, doi = {10.25972/OPUS-18717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187170}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {G protein-coupled receptor research looks out for new technologies to elucidate the complex processes of receptor activation, function and downstream signaling with spatiotemporal resolution, preferably in living cells and organisms. A thriving approach consists in making use of the unsurpassed properties of light, including its high precision in space and time, noninvasiveness and high degree of orthogonality regarding biological processes. This is realized by the incorporation of molecular photoswitches, which are able to effectively respond to light, such as azobenzene, into the structure of a ligand of a given receptor. The muscarinic acetylcholine receptors belong to class A GPCRs and have received special attention in this regard due to their role as a prototypic pharmacological system and their therapeutic potential. They mediate the excitatory and inhibitory effects of the neurotransmitter acetylcholine and thus regulate diverse important biological processes, especially many neurological functions in our brain. In this work, the application of photopharmacological tool compounds to muscarinic receptors is presented, consisting of pharmacophores extended with azobenzene as light-responsive motif. Making use of the dualsteric concept, such photochromic ligands can be designed to bind concomitantly to the orthosteric and allosteric binding site of the receptor, which is demonstrated for BQCAAI (M1) and PAI (M2) and may lead to subtype- and functionalselective photoswitchable ligands, suitable for further ex vivo and in vivo studies. Moreover, photoswitchable ligands based on the synthetic agonist iperoxo were investigated extensively with regard to their photochemical behavior and pharmacological profile, outlining the advantages and challenges of using red-shifted molecular photoswitches, such as tetraortho- fluoro azobenzene. For the first time on a GPCR it was examined, which impact the different substitution pattern has on both the binding and the activity on the M1 receptor. Results show that substituted azobenzenes in photopharmacological compounds (F4-photoiperoxo and F4-iper-azo-iper) not just represent analogs with other photophysical properties but can exhibit a considerably different biological profile that has to be investigated carefully. The achievements gained in this study can give important new insights into the binding mode and time course of activation processes, enabling precise spatial and temporal resolution of the complex signaling pathway of muscarinic receptors. Due to their role as exemplary model system, these findings may be useful for the investigation into other therapeutically relevant GPCRs.}, subject = {Muscarinrezeptor}, language = {en} } @phdthesis{Derakhshani2019, author = {Derakhshani, Shaghayegh}, title = {Measles virus infection enhances dendritic cell migration in a 3D environment}, doi = {10.25972/OPUS-18918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189182}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The respiratory system is amongst the most important compartments in the human body. Due to its connection to the external environment, it is one of the most common portals of pathogen entry. Airborne pathogens like measles virus (MV) carried in liquid droplets exhaled from the infected individuals via a cough or sneeze enter the body from the upper respiratory tract and travel down to the lower respiratory tract and reach the alveoli. There, pathogens are captured by the resident dendritic cells (DCs) or macrophages and brought to the lymph node where immune responses or, as in case of MV, dissemination via the hematopoietic cell compartment are initiated. Basic mechanisms governing MV exit from the respiratory tract, especially virus transmission from infected immune cells to the epithelial cells have not been fully addressed before. Considering the importance of these factors in the viral spread, a complex close-to-in-vivo 3D human respiratory tract model was generated. This model was established using de-cellularized porcine intestine tissue as a biological scaffold and H358 cells as targets for infection. The scaffold was embedded with fibroblast cells, and later on, an endothelial cell layer seeded at the basolateral side. This provided an environment resembling the respiratory tract where MV infected DCs had to transmigrate through the collagen scaffold and transmit the virus to epithelial cells in a Nectin-4 dependent manner. For viral transmission, the access of infected DCs to the recipient epithelial cells is an essential prerequisite and therefore, this important factor which is reflected by cell migration was analyzed in this 3D system. The enhanced motility of specifically MV-infected DCs in the 3D models was observed, which occurred independently of factors released from the other cell types in the models. Enhanced motility of infected DCs in 3D collagen matrices suggested infection-induced cytoskeletal remodeling, as also verified by detection of cytoskeletal polarization, uropod formation. This enforced migration was sensitive to ROCK inhibition revealing that MV infection induces an amoeboid migration mode in DCs. In support of this, the formation of podosome structures and filopodia, as well as their activity, were reduced in infected DCs and retained in their uninfected siblings. Differential migration modes of uninfected and infected DCs did not cause differential maturation, which was found to be identical for both populations. As an underlying mechanism driving this enforced migration, the role of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) was studied in MV-exposed cultures. It was shown in this thesis that MV-infection increased S1P production, and this was identified as a contributing factor as inhibition sphingosine kinase activity abolished enforced migration of MV-infected DCs. These findings revealed that MV infection induces a fast push-and-squeeze amoeboid mode of migration, which is supported by SphK/S1P axis. However, this push-and-squeeze amoeboid migration mode did not prevent the transendothelial migration of MV-infected DCs. Altogether, this 3D system has been proven to be a suitable model to study specific parameters of mechanisms involved in infections in an in vivo-like conditions.}, subject = {Dendritische Zelle}, language = {en} } @phdthesis{TshitengeTshitenge2019, author = {Tshitenge Tshitenge, Dieudonn{\´e}}, title = {Isolation and Structural Elucidation of Novel Anti-Infective Naphthylisoquinoline Alkaloids from Ancistrocladus ealaensis, and Phytochemical Analysis of Two Congolese Medicinal Plants}, doi = {10.25972/OPUS-15417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154175}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Herein described are the isolation, structural elucidation, and biological evaluation of highly thrilling monomeric and dimeric new naphthylisoquinoline alkaloids from A. ealaensis. The separation, chiral resolution, and characterization of a series of stereoisomeric 2,3-dihydrobenzofuran neolignans are also reported. The analytical and phytochemical analysis on two Congolese antimalarial herbal drugs is part of the last chapter of the results. In this last case, major concerns on widely used Congolese herbal drugs are discussed.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @phdthesis{RamirezPasos2019, author = {Ramirez Pasos, Uri Eduardo}, title = {Subthalamic Nucleus Neural Synchronization and Connectivity during Limbic Processing of Emotional Pictures: Evidence from Invasive Recordings in Patients with Parkinson's Disease}, doi = {10.25972/OPUS-16985}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In addition to bradykinesia and tremor, patients with Parkinson's disease (PD) are known to exhibit non-motor symptoms such as apathy and hypomimia but also impulsivity in response to dopaminergic replacement therapy. Moreover, a plethora of studies observe differences in electrocortical and autonomic responses to both visual and acoustic affective stimuli in PD subjects compared to healthy controls. This suggests that the basal ganglia (BG), as well as the hyperdirect pathway and BG thalamocortical circuits, are involved in affective processing. Recent studies have shown valence and dopamine-dependent changes in synchronization in the subthalamic nucleus (STN) in PD patients during affective tasks. This thesis investigates the role of dopamine, valence, and laterality in STN electrophysiology by analyzing event-related potentials (ERP), synchronization, and inter-hemispheric STN connectivity. STN recordings were obtained from PD patients with chronically implanted electrodes for deep brain stimulation during a passive affective picture presentation task. The STN exhibited valence-dependent ERP latencies and lateralized 'high beta' (28-40 Hz) event-related desynchronization. This thesis also examines the role of dopamine, valence, and laterality on STN functional connectivity with the anterior cingulate cortex (ACC) and the amygdala. The activity of these limbic structures was reconstructed using simultaneously recorded electroencephalographic signals. While the STN was found to establish early coupling with both structures, STN-ACC coupling in the 'alpha' range (7-11 Hz) and uncoupling in the 'low beta' range (14-21 Hz) were lateralized. Lateralization was also observed at the level of synchrony in both reconstructed sources and for ACC ERP amplitude, whereas dopamine modulated ERP latency in the amygdala. These results may deepen our current understanding of the STN as a limbic node within larger emotional-motor networks in the brain.
}, subject = {Nucleus subthalamicus}, language = {en} } @phdthesis{Loeffler2019, author = {L{\"o}ffler, Mona Christina}, title = {Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity}, doi = {10.25972/OPUS-18859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188593}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Adaptation to alterations in nutrient availability ensures the survival of organisms. In vertebrates, adipocytes play a decisive role in this process due to their ability to store large amounts of excess nutrients and release them in times of food deprivation. In todays western world, a rather unlimited excess of nutrients leads to high-caloric food consumption in humans. Nutrient overload together with a decreased energy dissipation result in obesity as well as associated diseases such as insulin resistance, diabetes, and liver steatosis. Obesity causes a hormonal imbalance, which in combination with altered nutrient levels can aberrantly activate G-protein coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D (PKD) 1 is a DAG effector integrating multiple hormonal and nutritional inputs. Nevertheless, its physiological role in adipocytes has not been investigated so far. In this thesis, evidence is provided that the deletion of PKD1 in adipocytes suppresses lipogenesis as well as the accumulation of triglycerides. Furthermore, PKD1 depletion results in increased mitochondrial biogenesis as well as decoupling activity. Moreover, PKD1 deletion promotes the expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancer-binding protein (C/EBP)-α and δ-dependent manner. This results in elevated expression levels of beige markers in adipocytes in the presence of a β-agonist. Contrarily, adipocytes expressing a constitutive active form of PKD1 present a reversed phenotype. Additionally, PKD1 regulates adipocyte metabolism in an AMP-activated protein kinase (AMPK)-dependent manner by suppressing its activity through phosphorylation of AMPK α1/α2 subunits. Thus, PKD1 deletion results in an enhanced activity of the AMPK complex. Consistent with the in vitro findings, mice lacking PKD1 in adipocytes demonstrate a resistance to high-fat diet-induced obesity due to an elevated energy expenditure caused by trans-differentiation of white into beige adipocytes. Moreover, deletion of PKD1 in murine adipocytes improves systemic insulin sensitivity and ameliorates liver steatosis. Finally, PKD1 levels positively correlate with HOMA-IR as well as insulin levels in human subjects. Furthermore, inhibition of PKD1 in human adipocytes leads to metabolic alterations, which are comparable to the alterations seen in their murine counterparts. Taken together, these data demonstrate that PKD1 suppresses energy dissipation, drives lipogenesis, and adiposity. Therefore, increased energy dissipation induced by several complementary mechanisms upon PKD1 deletion might represent an attractive strategy to treat obesity and its related complications.}, subject = {Proteinkinase D}, language = {en} } @phdthesis{Gomes2019, author = {Gomes, Sara Ferreira Martins}, title = {Induced Pluripotent Stem Cell-derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection}, doi = {10.25972/OPUS-18855}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Bacterial meningitis occurs when blood-borne bacteria are able to penetrate highly specialized brain endothelial cells (BECs) and gain access to the meninges. Neisseria meningitidis (Nm) is a human-exclusive pathogen for which suitable in vitro models are severely lacking. Until recently, modeling BEC-Nm interactions has been almost exclusively limited to immortalized human cells that lack proper BEC phenotypes. Specifically, these in vitro models lack barrier properties, and continuous tight junctions. Alternatively, humanized mice have been used, but these must rely on known interactions and have limited translatability. This motivates the need to establish novel human-based in vitro BEC models that have barrier phenotypes to research Nm-BEC interactions. Recently, a human induced pluripotent stem cell (iPSC) model of BECs has been developed that possesses superior BEC phenotypes and closely mimics the in vivo blood vessels present at the blood-meningeal barrier. Here, iPSC-BECs were tested as a novel cellular model to study Nm-host pathogen interactions, with focus on host responses to Nm infection. Two wild type strains and three mutant strains of Nm were used to confirm that these followed similar phenotypes to previously described models. Importantly, the recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, at distinct time points of infection, and the secretion of IFN γ and RANTES by iPSC-BECs. Nm was directly observed to disrupt tight junction proteins ZO-1, Occludin, and Claudin-5 at late time points of infection, which became frayed and/or discontinuous upon infection. This destruction is preceded by, and might be dependent on, SNAI1 activation (a transcriptional repressor of tight junction proteins). In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability was observed at late infection time points. Notably, bacterial transmigration correlated with junctional disruption, indicating that the paracellular route contributes for bacterial crossing of BECs. Finally, RNA-Sequencing (RNA-Seq) of sorted, infected iPSC-BECs was established through the use of fluorescence-activated cell sorting (FACS) techniques following infection. This allowed the detection of expression data of Nm-responsive host genes not previously described thus far to play a role during meningitidis. In conclusion, here the utility of iPSC-BECs in vitro to study Nm infection could be demonstrated. This is the first BEC in vitro model to express all major BEC tight junctions and to display high barrier potential. Altogether, here this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes and suggests that the paracellular route contributes to Nm traversal of BECs.}, subject = {Neisseria meningitidis}, language = {en} } @phdthesis{Gerner2019, author = {Gerner, Frank}, title = {Functional analysis of polarization and podosome formation of murine and human megakaryocytes}, doi = {10.25972/OPUS-16050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160508}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In mammals, blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MK) that extend polarized cell protrusions (proplateles) into BM sinusoids. Proplatelet formation (PPF) requires substantial cytoskeletal rearrangements that have been shown to involve the formation of podosomes, filamentous actin (F-actin) and integrin-rich structures. However, the exact molecular mechanisms regulating MK podosome formation, polarization and migration within the BM are poorly defined. According to current knowledge obtained from studies with other cell types, these processes are regulated by Rho GTPase proteins like RhoA and Cdc42. In this thesis, polarization and podosome formation were investigated in MKs from genetically modified mice, as well as the cell lines K562 and Meg01 by pharmacological modulation of signaling pathways. The first part of this thesis describes establishment of the basic assays for investigation of MK polarization. Initial data on polarization of the MK-like erythroleukemia cell line K562 revealed first insights into actin and tubulin dynamics of wild type (WT) and RhoA knock-out (RhoA-/-) K562 cells. Phorbol 12-myristate 13-acetate (PMA)-induction of K562 cells led to the expected MK-receptor upregulation but also RhoA depletion and altered polarization patterns. The second part of this thesis focuses on podosome formation of MKs. RhoA is shown to be dispensable for podosome formation. Cdc42 is revealed as an important, but not essential regulator of MK spreading and podosome formation. Studies of signaling pathways of podosome formation reveal the importance of the tyrosine kinases Src, Syk, as well as glycoprotein (GP)VI in MK spreading and podosome formation. This thesis provides novel insights into the mechanisms underlying polarization and podosome formation of MKs and reveals new, important information about cytoskeletal dynamics of MKs and potentially also platelets.}, subject = {Megakaryozyt}, language = {en} } @phdthesis{Bathon2019, author = {Bathon, Kerstin}, title = {Mutations in protein kinase A catalytic subunit as a cause of adrenal Cushing's syndrome: mechanisms and functional consequences}, doi = {10.25972/OPUS-16893}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168937}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Protein kinase A (PKA) is the main effector of cyclic-adenosine monophosphate (cAMP) and plays an important role in steroidogenesis and proliferation of adrenal cells. In a previous study we found two mutations (L206R, 199_200insW) in the main catalytic subunit of protein kinase A (PKA C) to be responsible for cortisol-producing adrenocortical adenomas (CPAs). These mutations interfere with the formation of a stable holoenzyme, thus causing constitutive PKA activation. More recently, we identified additional mutations affecting PKA C in CPAs associated with overt Cushing syndrome: S213R+insIILR, 200_201insV, W197R, d244 248+E249Q, E32V. This study reports a functional characterization of those PKA Cmutations linked to CPAs of Cushing's patients. All analyzed mutations except for E32V showed a reduced interaction with at least one tested regulatory (R) subunit. Interestingly the results of the activity differed among the mutants and between the assays employed. For three mutants (L206R, 199_200insW, S213R+insIILR), the results showed enhanced translocation to the nucleus. This was also observed in CRISPR/Cas9 generated PRKACA L206R mutated HEK293T cells. The enhanced nuclear translocation of this mutants could be due to the lack of R subunit binding, but also other mechanisms could be at play. Additionally, I used an algorithm, which predicted an effect of the mutation on substrate specificity for four mutants (L206R, 199_200insW, 200_201insV, d244 248+E249Q). This was proven using phosphoproteomics for three mutants (L206R, 200_201insV, d244 248+E249Q). In PRKACA L206R mutated CPAs this change in substrate specificity also caused hyperphosphorylation of H1.4 on serine 36, which has been reported to be implicated in mitosis. Due to these observations, I hypothesized, that there are several mechanisms of action of PRKACA mutations leading to increased cortisol secretion and cell proliferation in adrenal cells: interference with the formation of a stable holoenzyme, altered subcellular localization and a change in substrate specificity. My data indicate that some PKA C mutants might act via just one, others by a combination of these mechanisms. Altogether, these findings indicate that several mechanisms contribute to the development of CPAs caused by PRKACA mutations. Moreover, these findings provide a highly illustrative example of how alterations in a protein kinase can cause a human disease.}, subject = {Proteinkinase A}, language = {en} } @phdthesis{WeinstockgebPattschull2019, author = {Weinstock [geb. Pattschull], Grit}, title = {Crosstalk between the MMB complex and YAP in transcriptional regulation of cell cycle genes}, doi = {10.25972/OPUS-17086}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The Myb-MuvB (MMB) multiprotein complex is a master regulator of cell cycle-dependent gene expression. Target genes of MMB are expressed at elevated levels in several different cancer types and are included in the chromosomal instability (CIN) signature of lung, brain, and breast tumors. This doctoral thesis showed that the complete loss of the MMB core subunit LIN9 leads to strong proliferation defects and nuclear abnormalities in primary lung adenocarcinoma cells. Transcriptome profiling and genome-wide DNA-binding analyses of MMB in lung adenocarcinoma cells revealed that MMB drives the expression of genes linked to cell cycle progression, mitosis, and chromosome segregation by direct binding to promoters of these genes. Unexpectedly, a previously unknown overlap between MMB-dependent genes and several signatures of YAP-regulated genes was identified. YAP is a transcriptional co-activator acting downstream of the Hippo signaling pathway, which is deregulated in many tumor types. Here, MMB and YAP were found to physically interact and co-regulate a set of mitotic and cytokinetic target genes, which are important in cancer. Furthermore, the activation of mitotic genes and the induction of entry into mitosis by YAP were strongly dependent on MMB. By ChIP-seq and 4C-seq, the genome-wide binding of MMB upon YAP overexpression was analyzed and long-range chromatin interaction sites of selected MMB target gene promoters were identified. Strikingly, YAP strongly promoted chromatin-association of B-MYB through binding to distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. Together, the findings of this thesis provide a so far unknown molecular mechanism by which YAP and MMB cooperate to regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, subject = {Krebs }, language = {en} } @phdthesis{delOlmoToledo2019, author = {del Olmo Toledo, Valentina}, title = {Evolution of DNA binding preferences in a family of eukaryotic transcription regulators}, doi = {10.25972/OPUS-18789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Regulation of gene expression by the control of transcription is essential for any cell to adapt to the environment and survive. Transcription regulators, i.e. sequence-specific DNA binding proteins that regulate gene expression, are central elements within the gene networks of most organisms. Transcription regulators are grouped into distinct families based on structural features that determine, to a large extent, the DNA sequence(s) that they can recognise and bind. Less is known, however, about how the DNA binding preferences can diversify within transcription regulator families during evolutionary timescales, and how such diversification can affect the biology of the organism. In this dissertation I study the SREBP (sterol regulatory element binding protein) family of transcriptional regulators in yeasts, and in Candida albicans in particular, as an experimental system to address these questions. The SREBPs are conserved from fungi to humans and represent a subgroup of basic helix-loop-helix DNA binding proteins. Early chromatin immunoprecipitation experiments with SREBPs from humans and yeasts showed that these proteins bound in vivo to the canonical DNA sequence, termed E-box, most basic helix-loop-helix proteins bind to. By contrast, most recent analysis carried out with less-studied fungal SREBPs revealed a non-canonical DNA motif to be the most overrepresented sequence in the bound regions. This study aims to establish the intrinsic DNA binding preferences of key branches of this family and to determine how the divergence in DNA binding affinities originated. To this end, I combined phylogenetic and ancestral reconstruction with extensive biochemical characterisation of key SREBP proteins. The results indicated that while the most-studied SREBPs (in mammals) indeed show preference for the E-box, a second branch of the family preferentially binds the non-E-box, and a third one is able to bind both sequences with similar affinity. The preference for one or the other DNA sequence is an intrinsic property of each protein because their purified DNA binding domain was sufficient to recapitulate their in vivo binding preference. The ancestor that gave rise to these two different types of SREBPs (the branch that binds E-box and the one that binds non-E-box DNA) appears to be a protein with a broader DNA binding capability that had a slight preference for the non-canonical motif. Thus, the results imply these two branches originated by either enhancing the original ancestral preference for non-E-box or tilting it towards the E-box DNA and flipping the preference for this sequence. The main function associated with members of the SREBP family in most eukaryotes is the control of lipid biosynthesis. I have further studied the function of these proteins in the lineage that encompasses the human associated yeast C. albicans. Strikingly, the three SREBPs present in the fungus' genome contribute to the colonisation of the mammalian gut by regulating cellular processes unrelated to lipid metabolism. Here I describe that two of the three C. albicans SREBPs form a regulatory cascade that regulates morphology and cell wall modifications under anaerobic conditions, whereas the third SREBP has been shown to be involved in the regulation of glycolysis genes. Therefore, I posit that the described diversification in DNA binding specificity in these proteins and the concomitant expansion of targets of regulation were key in enabling this fungal lineage to associate with animals.}, subject = {Candida albicans}, language = {en} } @phdthesis{Lyutova2019, author = {Lyutova, Radostina}, title = {Functional dissection of recurrent feedback signaling within the mushroom body network of the Drosophila larva}, doi = {10.25972/OPUS-18728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187281}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Behavioral adaptation to environmental changes is crucial for animals' survival. The prediction of the outcome of one owns action, like finding reward or avoiding punishment, requires recollection of past experiences and comparison with current situation, and adjustment of behavioral responses. The process of memory acquisition is called learning, and the Drosophila larva came up to be an excellent model organism for studying the neural mechanisms of memory formation. In Drosophila, associative memories are formed, stored and expressed in the mushroom bodies. In the last years, great progress has been made in uncovering the anatomical architecture of these brain structures, however there is still a lack of knowledge about the functional connectivity. Dopamine plays essential roles in learning processes, as dopaminergic neurons mediate information about the presence of rewarding and punishing stimuli to the mushroom bodies. In the following work, the function of a newly identified anatomical connection from the mushroom bodies to rewarding dopaminergic neurons was dissected. A recurrent feedback signaling within the neuronal network was analyzed by simultaneous genetic manipulation of the mushroom body Kenyon cells and dopaminergic neurons from the primary protocerebral anterior (pPAM) cluster, and learning assays were performed in order to unravel the impact of the Kenyon cells-to-pPAM neurons feedback loop on larval memory formation. In a substitution learning assay, simultaneous odor exposure paired with optogenetic activation of Kenyon cells in fruit fly larvae in absence of a rewarding stimulus resulted in formation of an appetitive memory, whereas no learning behavior was observed when pPAM neurons were ablated in addition to the KC activation. I argue that the activation of Kenyon cells may induce an internal signal that mimics reward exposure by feedback activation of the rewarding dopaminergic neurons. My data further suggests that the Kenyon cells-to-pPAM communication relies on peptidergic signaling via short neuropeptide F and underlies memory stabilization.}, subject = {Lernen}, language = {en} } @phdthesis{Tian2019, author = {Tian, Yuehui}, title = {Characterization of novel rhodopsins with light-regulated cGMP production or cGMP degradation}, doi = {10.25972/OPUS-16814}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168143}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Photoreceptors are widely occurring in almost all kingdoms of life. They mediate the first step in sensing electromagnetic radiation of different wavelength. Absorption spectra are found within the strongest radiation from the sun and absorption usually triggers downstream signaling pathways. Until now, mainly 6 classes of representative photoreceptors are known: five water-soluble proteins, of these three classes of blue light-sensitive proteins including LOV (light-oxygen-voltage), BLUF (blue-light using FAD), and cryptochrome modules with flavin (vitamin B-related) nucleotides as chromophore; while two classes of yellow and red light-sensitive proteins consist of xanthopsin and phytochrome, respectively. Lastly, as uniquely integral membrane proteins, the class of rhodopsins can usually sense over a wide absorption spectrum, ranging from ultra-violet to green and even red light. Rhodopsins can be further divided into two types, i.e., microbial (type I) and animal (type II) rhodopsins. Rhodopsins consist of the protein opsin and the covalently bound chromophore retinal (vitamin A aldehyde). In this thesis, I focus on identification and characterization of novel type I opsins with guanylyl cyclase activity from green algae and a phosphodiesterase opsin from the protist Salpingoeca rosetta. Until 2014, all known type I and II rhodopsins showed a typical structure with seven transmembrane helices (7TM), an extracellular N-terminus and a cytosolic C-terminus. The proven function of the experimentally characterized type I rhodopsins was membrane transport of ions or the coupling to a transducer which enables phototaxis via a signaling chain. A completely new class of type I rhodopsins with enzymatic activity was identified in 2014. A light-activated guanylyl cyclase opsin was discovered in the fungus Blastocladiella emersonii which was named Cyclop (Cyclase opsin) by Gao et al. (2015), after heterologous expression and rigorous in-vitro characterization. BeCyclop is the first opsin for which an 8 transmembrane helices (8TM) structure was demonstrated by Gao et al. (2015). Earlier (2004), a novel class of enzymatic rhodopsins was predicted to exist in C. reinhardtii by expressed sequence tag (EST) and genome data, however, no functional data were provided up to now. The hypothetical rhodopsin included an N-terminal opsin domain, a fused two-component system with histidinekinase and response regulator domain, and a C-terminal guanylyl cyclase (GC) domain. This suggested that there could be a biochemical signaling cascade, integrating light-induction and ATP-dependent phosphate transfer, and as output the light-sensitive cGMP production. One of my projects focused on characterizing two such opsins from the green algae Chlamydomonas reinhardtii and Volvox carteri which we then named 2c-Cyclop (two-component Cyclase opsin), Cr2c-Cyclop and Vc2c-Cyclop, respectively. My results show that both 2c-Cyclops are light-inhibited GCs. Interestingly, Cr2c-Cyclop and Vc2c-Cyclop are very sensitive to light and ATP-dependent, whereby the action spectra of Cr2c-Cyclop and Vc2c-Cyclop peak at ~540 nm and ~560 nm, respectively. More importantly, guanylyl cyclase activity is dependent on continuous phosphate transfer between histidine kinase and response regulator. However, green light can dramatically block phosphoryl group transfer and inhibit cyclase activity. Accordingly, mutation of the retinal-binding lysine in the opsin domain resulted in GC activity and lacking light-inhibition. A novel rhodopsin phosphodiesterase from the protist Salpingoeca rosetta (SrRhoPDE) was discovered in 2017. However, the previous two studies of 2017 claimed a very weak or absent light-regulation. Here I give strong evidence for light-regulation by studying the activity of SrRhoPDE, expressed in Xenopus laevis oocytes, in-vitro at different cGMP concentrations. Surprisingly, hydrolysis of cGMP shows a ~100-fold higher turnover than that of cAMP. Light can enhance substrate affinity by decreasing the Km value for cGMP from 80 μM to 13 μM, but increases the maximum turnover only by ~30\%. In addition, two key single mutants, SrRhoPDE K296A or K296M, can abolish the light-activation effect by interrupting a covalent bond of Schiff base type to the chromophore retinal. I also demonstrate that SrRhoPDE shows cytosolic N- and C- termini, most likely via an 8-TM structure. In the future, SrRhoPDE can be a potentially useful optogenetic tool for light-regulation of cGMP concentration, possibly after further improvements by genetic engineering.}, language = {en} }