@article{DasariShopovaStroeetal.2018, author = {Dasari, Prasad and Shopova, Iordana A. and Stroe, Maria and Wartenberg, Dirk and Martin-Dahse, Hans and Beyersdorf, Niklas and Hortschansky, Peter and Dietrich, Stefanie and Cseresny{\´e}s, Zolt{\´a}n and Figge, Marc Thilo and Westermann, Martin and Skerka, Christine and Brakhage, Axel A. and Zipfel, Peter F.}, title = {Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {1635}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.01635}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197013}, year = {2018}, abstract = {The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6-7 and SCR20. FHL-1 binds via SCRs6-7, and FHR1 via SCRs3-5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28\% and FHL-1 with 42\% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57\%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20\%) and killed (44\%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.}, language = {en} } @article{RhodesChenWilliamsonetal.2018, author = {Rhodes, David A. and Chen, Hung-Chang and Williamson, James C. and Hill, Alfred and Yuan, Jack and Smith, Sam and Rhodes, Harriet and Trowsdale, John and Lehner, Paul J. and Herrmann, Thomas and Eberl, Matthias}, title = {Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {662}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.00662}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197054}, year = {2018}, abstract = {Activation of human Vγ9/Vδ2 T cells by "phosphoantigens" (pAg), the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR) transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC) transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated with efficiency of T cell activation by cytokine secretion, although direct evidence of a functional role was not obtained by knockdown experiments. Our findings indicate a link between members of the ABC protein superfamily and the BTN3A-dependent activation of γδ T cells by endogenous and exogenous pAg.}, language = {en} } @article{PiegerMengelkampBannert2018, author = {Pieger, Elisabeth and Mengelkamp, Christoph and Bannert, Maria}, title = {Disfluency as a Desirable Difficulty — The Effects of Letter Deletion on Monitoring and Performance}, series = {Frontiers in Education}, volume = {3}, journal = {Frontiers in Education}, number = {101}, issn = {2504-284X}, doi = {10.3389/feduc.2018.00101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197179}, year = {2018}, abstract = {Desirable difficulties initiate learning processes that foster performance. Such a desirable difficulty is generation, e.g., filling in deleted letters in a deleted letter text. Likewise, letter deletion is a manipulation of processing fluency: A deleted letter text is more difficult to process than an intact text. Disfluency theory also supposes that disfluency initiates analytic processes and thus, improves performance. However, performance is often not affected but, rather, monitoring is affected. The aim of this study is to propose a specification of the effects of disfluency as a desirable difficulty: We suppose that mentally filling in deleted letters activates analytic monitoring but not necessarily analytic cognitive processing and improved performance. Moreover, once activated, analytic monitoring should remain for succeeding fluent text. To test our assumptions, half of the students (n = 32) first learned with a disfluent (deleted letter) text and then with a fluent (intact) text. Results show no differences in monitoring between the disfluent and the fluent text. This supports our assumption that disfluency activates analytic monitoring that remains for succeeding fluent text. When the other half of the students (n = 33) first learned with a fluent and then with a disfluent text, differences in monitoring between the disfluent and the fluent text were found. Performance was significantly affected by fluency but in favor of the fluent texts, and hence, disfluency did not activate analytic cognitive processing. Thus, difficulties can foster analytic monitoring that remains for succeeding fluent text, but they do not necessarily improve performance. Further research is required to investigate how analytic monitoring can lead to improved cognitive processing and performance.}, language = {en} } @article{BarYosefGildorRamirezZavalaetal.2018, author = {Bar-Yosef, Hagit and Gildor, Tsvia and Ram{\´i}rez-Zavala, Bernardo and Schmauch, Christian and Weissman, Ziva and Pinsky, Mariel and Naddaf, Rawi and Morschh{\"a}user, Joachim and Arkowitz, Robert A. and Kornitzer, Daniel}, title = {A global analysis of kinase function in Candida albicans hyphal morphogenesis reveals a role for the endocytosis regulator Akl1}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {8}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2018.00017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197204}, year = {2018}, abstract = {The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.}, language = {en} } @article{NadellaMohantySharmaetal.2018, author = {Nadella, Vinod and Mohanty, Aparna and Sharma, Lalita and Yellaboina, Sailu and Mollenkopf, Hans-Joachim and Mazumdar, Varadendra Balaji and Palaparthi, Ramesh and Mylavarapu, Madhavi B. and Maurya, Radheshyam and Kurukuti, Sreenivasulu and Rudel, Thomas and Prakash, Hridayesh}, title = {Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds) Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses}, series = {Frontiers in Immunology}, volume = {8}, journal = {Frontiers in Immunology}, number = {1792}, issn = {1664-3224}, doi = {10.3389/fimmu.2017.01792}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197484}, year = {2018}, abstract = {Apoptosis is a physiological cell death process essential for development, tissue homeostasis, and for immune defense of multicellular animals. Inhibitors of apoptosis proteins (IAPs) regulate apoptosis in response to various cellular assaults. Using both genetic and pharmacological approaches we demonstrate here that the IAPs not only support opportunistic survival of intracellular human pathogens like Chlamydia pneumoniae but also control plasticity of iNOS+ M1 macrophage during the course of infection and render them refractory for immune stimulation. Treatment of Th1 primed macrophages with birinapant (IAP-specific antagonist) inhibited NO generation and relevant proteins involved in innate immune signaling. Accordingly, birinapant promoted hypoxia, angiogenesis, and tumor-induced M2 polarization of iNOS+ M1 macrophages. Interestingly, birinapant-driven changes in immune signaling were accompanied with changes in the expression of various proteins involved in the metabolism, and thus revealing the new role of IAPs in immune metabolic reprogramming in committed macrophages. Taken together, our study reveals the significance of IAP targeting approaches (Smac mimetic compounds) for the management of infectious and inflammatory diseases relying on macrophage plasticity.}, language = {en} } @article{PrausseLehnertTimmeetal.2018, author = {Prauße, Maria T. E. and Lehnert, Teresa and Timme, Sandra and H{\"u}nniger, Kerstin and Leonhardt, Ines and Kurzai, Oliver and Figge, Marc Thilo}, title = {Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {560}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.00560}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197493}, year = {2018}, abstract = {Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism.}, language = {en} } @article{MuhammadRudolfPhametal.2018, author = {Muhammad, Khalid and Rudolf, Ronald and Pham, Duong Anh Thuy and Klein-Hessling, Stefan and Takata, Katsuyoshi and Matsushita, Nobuko and Ellenrieder, Volker and Kondo, Eisaku and  Serfling, Edgar}, title = {Induction of Short NFATc1/αA Isoform Interferes with Peripheral B Cell Differentiation}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {32}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.00032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197501}, year = {2018}, abstract = {In lymphocytes, immune receptor signals induce the rapid nuclear translocation of preformed cytosolic NFAT proteins. Along with co-stimulatory signals, persistent immune receptor signals lead to high levels of NFATc1/αA, a short NFATc1 isoform, in effector lymphocytes. Whereas NFATc1 is not expressed in plasma cells, in germinal centers numerous centrocytic B cells express nuclear NFATc1/αA. When overexpressed in chicken DT40 B cells or murine WEHI 231 B cells, NFATc1/αA suppressed their cell death induced by B cell receptor signals and affected the expression of genes controlling the germinal center reaction and plasma cell formation. Among those is the Prdm1 gene encoding Blimp-1, a key factor of plasma cell formation. By binding to a regulatory DNA element within exon 1 of the Prdm1 gene, NFATc1/αA suppresses Blimp-1 expression. Since expression of a constitutive active version of NFATc1/αA interfered with Prdm1 RNA expression, LPS-mediated differentiation of splenic B cells to plasmablasts in vitro and reduced immunoglobulin production in vivo, one may conclude that NFATc1/αA plays an important role in controlling plasmablast/plasma cell formation.}, language = {en} } @article{VolpatoHolzgrabe2018, author = {Volpato, Daniela and Holzgrabe, Ulrike}, title = {Designing Hybrids Targeting the Cholinergic System by Modulating the Muscarinic and Nicotinic Receptors: A Concept to Treat Alzheimer's Disease}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {12}, issn = {1420-3049}, doi = {10.3390/molecules23123230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197555}, pages = {3230}, year = {2018}, abstract = {The cholinergic hypothesis has been reported first being the cause of memory dysfunction in the Alzheimer's disease. Researchers around the globe have focused their attention on understanding the mechanisms of how this complicated system contributes to processes such as learning, memory, disorientation, linguistic problems, and behavioral issues in the indicated chronic neurodegenerative disease. The present review reports recent updates in hybrid molecule design as a strategy for selectively addressing multiple target proteins involved in Alzheimer's disease (AD) and the study of their therapeutic relevance. The rationale and the design of the bifunctional compounds will be discussed in order to understand their potential as tools to investigate the role of the cholinergic system in AD.}, language = {en} } @article{ZielewskaBuettnerHeurichMuelleretal.2018, author = {Zielewska-B{\"u}ttner, Katarzyna and Heurich, Marco and M{\"u}ller, J{\"o}rg and Braunisch, Veronika}, title = {Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus)}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {12}, issn = {2072-4292}, doi = {10.3390/rs10121972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197565}, year = {2018}, abstract = {Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44-50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management.}, language = {en} } @article{ZimmererFischbachLatoschik2018, author = {Zimmerer, Chris and Fischbach, Martin and Latoschik, Marc Erich}, title = {Semantic Fusion for Natural Multimodal Interfaces using Concurrent Augmented Transition Networks}, series = {Multimodal Technologies and Interaction}, volume = {2}, journal = {Multimodal Technologies and Interaction}, number = {4}, issn = {2414-4088}, doi = {10.3390/mti2040081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197573}, year = {2018}, abstract = {Semantic fusion is a central requirement of many multimodal interfaces. Procedural methods like finite-state transducers and augmented transition networks have proven to be beneficial to implement semantic fusion. They are compliant with rapid development cycles that are common for the development of user interfaces, in contrast to machine-learning approaches that require time-costly training and optimization. We identify seven fundamental requirements for the implementation of semantic fusion: Action derivation, continuous feedback, context-sensitivity, temporal relation support, access to the interaction context, as well as the support of chronologically unsorted and probabilistic input. A subsequent analysis reveals, however, that there is currently no solution for fulfilling the latter two requirements. As the main contribution of this article, we thus present the Concurrent Cursor concept to compensate these shortcomings. In addition, we showcase a reference implementation, the Concurrent Augmented Transition Network (cATN), that validates the concept's feasibility in a series of proof of concept demonstrations as well as through a comparative benchmark. The cATN fulfills all identified requirements and fills the lack amongst previous solutions. It supports the rapid prototyping of multimodal interfaces by means of five concrete traits: Its declarative nature, the recursiveness of the underlying transition network, the network abstraction constructs of its description language, the utilized semantic queries, and an abstraction layer for lexical information. Our reference implementation was and is used in various student projects, theses, as well as master-level courses. It is openly available and showcases that non-experts can effectively implement multimodal interfaces, even for non-trivial applications in mixed and virtual reality.}, language = {en} } @article{RomoliChakrabortyDorneretal.2018, author = {Romoli, Carlo and Chakraborty, Nachiketa and Dorner, Daniela and Taylor, Andrew and Blank, Michael}, title = {Flux Distribution of Gamma-Ray Emission in Blazars: The Example of Mrk 501}, series = {Galaxies}, volume = {6}, journal = {Galaxies}, number = {4}, organization = {FACT and H.E.S.S. Collaborations}, issn = {2075-4434}, doi = {10.3390/galaxies6040135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197580}, year = {2018}, abstract = {Flux distribution is an important tool to understand the variability processes in activegalactic nuclei. We now have available a great deal of observational evidences pointing towards thepresence of log-normal components in the high energy light curves, and different models have beenproposed to explain these data. Here, we collect some of the recent developments on this topic usingthe well-known blazar Mrk 501 as example of complex and interesting aspects coming from its fluxdistribution in different energy ranges and at different timescales. The observational data we refer toare those collected in a complementary manner by Fermi-LAT over multiple years, and by the FirstG-APD Cherenkov Telescope (FACT) telescope and the H.E.S.S. array in correspondence of the brightflare of June 2014}, language = {en} } @incollection{Schmitz2018, author = {Schmitz, Barbara}, title = {King and God : conceptions of rule and God in 3 Maccabees}, series = {Figures who shape scriptures, scriptures that shape figures}, booktitle = {Figures who shape scriptures, scriptures that shape figures}, doi = {10.1515/9783110596373-014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205149}, publisher = {Universit{\"a}t W{\"u}rzburg}, pages = {211-230}, year = {2018}, abstract = {In 3 Maccabees, kingship as a form of rule is addressed on two levels: On the political level the question about a good king is addressed against the background of Hellenistic understandings of kingship, using the example of Ptolemy IV Philopator. This king is portrayed at the beginning of 3 Maccabees as a successful, positive, Hellenistic ruler, but one whose good rule goes off the rails. This analysis of the ideal of Hellenistic rule (cf. 3 Macc. 3:12-29; 6:24-28; 7:1-9) is then taken to a theological level: the God of Israel is portrayed as the true good king, the Soter who saves his people in their time of greatest trial (6:29, 32; 7:16). By these means the many divine epithets that are a striking feature of 3 Maccabees are incorporated into the narrative (cf. 2:2-3). Thereby 3 Maccabees not only thematises the conflict with a Hellenistic king who exploits his power in diverse ways but also focuses in a concentrated way the notion of a good (Hellenistic) king into the notion of God as king and ruler.}, language = {en} } @article{GrandeSoberatsHerbstetal.2018, author = {Grande, Vincenzo and Soberats, Bartolome and Herbst, Stefanie and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Hydrogen-bonded perylene bisimide J-aggregate aqua material}, volume = {9}, issn = {2041-6539}, doi = {10.1039/C8SC02409J}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204715}, pages = {6904-6911}, year = {2018}, abstract = {A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60-95 wt\% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30-50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water.}, language = {en} } @article{HaggMayrMannigetal.2018, author = {Hagg, Wilfried and Mayr, Elisabeth and Mannig, Birgit and Reyers, Mark and Schubert, David and Pinto, Joaquim G. and Peters, Juliane and Pieczonka, Tino and Juen, Martin and Bolch, Tobias and Paeth, Heiko and Mayer, Christoph}, title = {Future climate change and its impact on runoff generation from the debris-covered Inylchek glaciers, Central Tian Shan, Kyrgyzstan}, series = {Water}, volume = {10}, journal = {Water}, number = {11}, issn = {2073-4441}, doi = {10.3390/w10111513}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197592}, pages = {1513}, year = {2018}, abstract = {The heavily debris-covered Inylchek glaciers in the central Tian Shan are the largest glacier system in the Tarim catchment. It is assumed that almost 50\% of the discharge of Tarim River are provided by glaciers. For this reason, climatic changes, and thus changes in glacier mass balance and glacier discharge are of high impact for the whole region. In this study, a conceptual hydrological model able to incorporate discharge from debris-covered glacier areas is presented. To simulate glacier melt and subsequent runoff in the past (1970/1971-1999/2000) and future (2070/2071-2099/2100), meteorological input data were generated based on ECHAM5/MPI-OM1 global climate model projections. The hydrological model HBV-LMU was calibrated by an automatic calibration algorithm using runoff and snow cover information as objective functions. Manual fine-tuning was performed to avoid unrealistic results for glacier mass balance. The simulations show that annual runoff sums will increase significantly under future climate conditions. A sensitivity analysis revealed that total runoff does not decrease until the glacier area is reduced by 43\%. Ice melt is the major runoff source in the recent past, and its contribution will even increase in the coming decades. Seasonal changes reveal a trend towards enhanced melt in spring, but a change from a glacial-nival to a nival-pluvial runoff regime will not be reached until the end of this century.}, language = {en} } @article{WeisShanKuhlmannetal.2018, author = {Weis, Matthias and Shan, Junwen and Kuhlmann, Matthias and Jungst, Tomasz and Tessmar, J{\"o}rg and Groll, J{\"u}rgen}, title = {Evaluation of hydrogels based on oxidized hyaluronic acid for bioprinting}, series = {Gels}, volume = {4}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels4040082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197600}, pages = {82}, year = {2018}, abstract = {In this study, we evaluate hydrogels based on oxidized hyaluronic acid, cross-linked with adipic acid dihydrazide, for their suitability as bioinks for 3D bioprinting. Aldehyde containing hyaluronic acid (AHA) is synthesized and cross-linked via Schiff Base chemistry with bifunctional adipic acid dihydrazide (ADH) to form a mechanically stable hydrogel with good printability. Mechanical and rheological properties of the printed and casted hydrogels are tunable depending on the concentrations of AHA and ADH cross-linkers.}, language = {en} } @article{KhanPirzadehFoersteretal.2018, author = {Khan, Muhammad Usman and Pirzadeh, Maryam and F{\"o}rster, Carola Yvette and Shityakov, Sergey and Shariati, Mohammad Ali}, title = {Role of milk-derived antibacterial peptides in modern food biotechnology: their synthesis, applications and future perspectives}, series = {Biomolecules}, volume = {8}, journal = {Biomolecules}, number = {4}, issn = {2218-273X}, doi = {10.3390/biom8040110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197610}, pages = {110}, year = {2018}, abstract = {Milk-derived antibacterial peptides (ABPs) are protein fragments with a positive influence on the functions and conditions of a living organism. Milk-derived ABPs have several useful properties important for human health, comprising a significant antibacterial effect against various pathogens, but contain toxic side-effects. These compounds are mainly produced from milk proteins via fermentation and protein hydrolysis. However, they can also be produced using recombinant DNA techniques or organic synthesis. This review describes the role of milk-derived ABPs in modern food biotechnology with an emphasis on their synthesis and applications. Additionally, we also discuss the mechanisms of action and the main bioproperties of ABPs. Finally, we explore future perspectives for improving ABP physicochemical properties and diminishing their toxic side-effects.}, language = {en} } @article{MarzoccoFazeliDiMiccoetal.2018, author = {Marzocco, Stefania and Fazeli, Gholamreza and Di Micco, Lucia and Autore, Giuseppina and Adesso, Simona and Dal Piaz, Fabrizio and Heidland, August and Di Iorio, Biagio}, title = {Supplementation of short-chain fatty acid, sodium propionate, in patients on maintenance hemodialysis: beneficial effects on inflammatory parameters and gut-derived uremic toxins, a pilot study (PLAN Study)}, series = {Journal of Clinical Medicine}, volume = {7}, journal = {Journal of Clinical Medicine}, number = {10}, issn = {2077-0383}, doi = {10.3390/jcm7100315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197626}, pages = {315}, year = {2018}, abstract = {Background: In end-stage renal disease (ESRD), gut-derived uremic toxins play a crucial role in the systemic inflammation and oxidative stress promoting the excess morbidity and mortality. The biochemical derangement is in part a consequence of an insufficient generation of short-chain fatty acids (SCFA) due to the dysbiosis of the gut and an insufficient consumption of the fermentable complex carbohydrates. Aim of the study: The primary end-point was to evaluate the potential efficacy of SCFA (specifically, sodium propionate (SP)) for patients on maintenance hemodialysis (MHD) on systemic inflammation. Secondary end-points included potential attenuation of oxidative stress markers, insulin resistance and production of gut-derived uremic toxins indoxyl sulfate and p-cresol sulfate, as well as health status after SP supplementation. Study design: We performed a single-center non-randomized pilot study in 20 MHD patients. They received the food additive SP with a daily intake of 2 × 500 mg in the form of capsules for 12 weeks. Pre-dialysis blood samples were taken at the beginning, after six weeks and at the end of the administration period, as well as four weeks after withdrawal of the treatment. Results: The subjects revealed a significant decline of inflammatory parameters C-reactive protein (-46\%), interleukin IL-2 (-27\%) and IL-17 (-15\%). The inflammatory parameters IL-6 and IFN-gamma showed a mild non-significant reduction and the anti-inflammatory cytokine IL-10 increased significantly (+71\%). While the concentration of bacterial endotoxins and TNF-α remained unchanged, the gut-derived uremic toxins, indoxyl sulfate (-30\%) and p-cresyl sulfate (-50\%), revealed a significant decline. The SP supplementation reduced the parameters of oxidative stress malondialdehyde (-32\%) and glutathione peroxidase activity (-28\%). The serum insulin levels dropped by 30\% and the HOMA-index by 32\%. The reduction of inflammatory parameters was associated with a lowering of ferritin and a significant increase in transferrin saturation (TSAT). Four weeks after the end of the treatment phase, all improved parameters deteriorated again. Evaluation of the psycho-physical performance with the short form 36 (SF-36) questionnaire showed an enhancement in the self-reported physical functioning, general health, vitality and mental health. The SP supplementation was well tolerated and without important side effects. No patient had left the study due to intolerance to the medication. The SP supplementation in MHD patients reduced pro-inflammatory parameters and oxidative stress and improved insulin resistance and iron metabolism. Furthermore, SP effectively lowered the important gut-derived uremic toxins indoxyl and p-cresol sulfate. These improvements were associated with a better quality of life. Further controlled studies are required in a larger cohort to evaluate the clinical outcome.}, language = {en} } @article{YankuBitmanLotanZoharetal.2018, author = {Yanku, Yifat and Bitman-Lotan, Eliya and Zohar, Yaniv and Kurant, Estee and Zilke, Norman and Eilers, Martin and Orian, Amir}, title = {Drosophila HUWE1 ubiquitin ligase regulates endoreplication and antagonizes JNK signaling during salivary gland development}, series = {Cells}, volume = {7}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells7100151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197630}, pages = {151}, year = {2018}, abstract = {The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from Caenorhabditis elegance to Drosophila melanogaster and Humans. Here, we report that the Drosophila ortholog, dHUWE1 (CG8184), is an essential gene whose loss results in embryonic lethality and whose tissue-specific disruption establishes its regulatory role in larval salivary gland development. dHUWE1 is essential for endoreplication of salivary gland cells and its knockdown results in the inability of these cells to replicate DNA. Remarkably, dHUWE1 is a survival factor that prevents premature activation of JNK signaling, thus preventing the disintegration of the salivary gland, which occurs physiologically during pupal stages. This function of dHUWE1 is general, as its inhibitory effect is observed also during eye development and at the organismal level. Epistatic studies revealed that the loss of dHUWE1 is compensated by dMyc proeitn expression or the loss of dmP53. dHUWE1 is therefore a conserved survival factor that regulates organ formation during Drosophila development.}, language = {en} } @article{BuraBeaupreLegareetal.2018, author = {Bura, Thomas and Beaupr{\´e}, Serge and L{\´e}gar{\´e}, Marc-Andr{\´e} and Ibraikulov, Olzhas A. and Leclerc, Nicolas and Leclerc, Mario}, title = {Theoretical calculations for highly selective Direct Heteroarylation Polymerization: new nitrile-substituted Dithienyl-Diketopyrrolopyrrole-based polymers}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules23092324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197648}, pages = {2324}, year = {2018}, abstract = {Direct Heteroarylation Polymerization (DHAP) is becoming a valuable alternative to classical polymerization methods being used to synthesize π-conjugated polymers for organic electronics applications. In previous work, we showed that theoretical calculations on activation energy (Ea) of the C-H bonds were helpful to rationalize and predict the selectivity of the DHAP. For readers' convenience, we have gathered in this work all our previous theoretical calculations on Ea and performed new ones. Those theoretical calculations cover now most of the widely utilized electron-rich and electron-poor moieties studied in organic electronics like dithienyl-diketopyrrolopyrrole (DT-DPP) derivatives. Theoretical calculations reported herein show strong modulation of the Ea of C-H bond on DT-DPP when a bromine atom or strong electron withdrawing groups (such as fluorine or nitrile) are added to the thienyl moiety. Based on those theoretical calculations, new cyanated dithienyl-diketopyrrolopyrrole (CNDT-DPP) monomers and copolymers were prepared by DHAP and their electro-optical properties were compared with their non-fluorinated and fluorinated analogues.}, language = {en} } @article{NyamekyeThielSchoenbrodtStittetal.2018, author = {Nyamekye, Clement and Thiel, Michael and Sch{\"o}nbrodt-Stitt, Sarah and Zoungrana, Benewinde J.-B. and Amekudzi, Leonard K.}, title = {Soil and water conservation in Burkina Faso, West Africa}, series = {Sustainability}, volume = {10}, journal = {Sustainability}, number = {9}, issn = {2071-1050}, doi = {10.3390/su10093182}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197653}, pages = {3182}, year = {2018}, abstract = {Inadequate land management and agricultural activities have largely resulted in land degradation in Burkina Faso. The nationwide governmental and institutional driven implementation and adoption of soil and water conservation measures (SWCM) since the early 1960s, however, is expected to successively slow down the degradation process and to increase the agricultural output. Even though relevant measures have been taken, only a few studies have been conducted to quantify their effect, for instance, on soil erosion and environmental restoration. In addition, a comprehensive summary of initiatives, implementation strategies, and eventually region-specific requirements for adopting different SWCM is missing. The present study therefore aims to review the different SWCM in Burkina Faso and implementation programs, as well as to provide information on their effects on environmental restoration and agricultural productivity. This was achieved by considering over 143 studies focusing on Burkina Faso's experience and research progress in areas of SWCM and soil erosion. SWCM in Burkina Faso have largely resulted in an increase in agricultural productivity and improvement in food security. Finally, this study aims at supporting the country's informed decision-making for extending already existing SWCM and for deriving further implementation strategies.}, language = {en} }