@article{RagerJakowetzGoleetal.2019, author = {Rager, Sabrina and Jakowetz, Andreas C. and Gole, Bappaditya and Beuerle, Florian and Medina, Dana D. and Bein, Thomas}, title = {Scaffold-Induced Diketopyrrolopyrrole Molecular Stacks in a Covalent Organic Framework}, series = {Chemistry of Materials}, volume = {31}, journal = {Chemistry of Materials}, number = {8}, doi = {10.1021/acs.chemmater.8b02882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224927}, pages = {2707-2712}, year = {2019}, abstract = {In recent years, covalent organic frameworks (COFs) have attracted considerable attention due to their crystalline and porous nature, which positions them as intriguing candidates for diverse applications such as catalysis, sensing, or optoelectronics. The incorporation of dyes or semiconducting moieties into a rigid two-dimensional COF can offer emergent features such as enhanced light harvesting or charge transport. However, this approach can be challenging when dealing with dye molecules that exhibit a large aromatic backbone, since the steric demand of solubilizing side chains also needs to be integrated into the framework. Here, we report the successful synthesis of DPP2-HHTP-COF consisting of diketopyrrolopyrrole (DPP) diboronic acid and hexahydroxytriphenylene (HHTP) building blocks. The well-known boronate ester coupling motif guides the formation of a planar and rigid backbone and long-range molecular DPP stacks, resulting in a highly crystalline and porous material. DPP2-HHTP-COF exhibits excellent optical properties including strong absorption over the visible spectral range, broad emission into the NIR and a singlet lifetime of over 5 ns attributed to the formation of molecular stacks with J-type interactions between the DPP subcomponents in the COF. Electrical measurements of crystalline DPP2-HHTP-COF pellets revealed conductivity values of up to 10(-6) S cm(-1).}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on the One- and Two-Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212887}, pages = {13164 -- 13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{ZhangMichailSaaletal.2019, author = {Zhang, Fangyuan and Michail, Evripidis and Saal, Fridolin and Krause, Ana-Maria and Ravat, Prince}, title = {Stereospecific Synthesis and Photophysical Properties of Propeller-Shaped C\(_{90}\)H\(_{48}\) PAH}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {71}, doi = {10.1002/chem.201904962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208682}, pages = {16241-16245}, year = {2019}, abstract = {Herein, we have synthesized an enantiomerically pure propeller-shaped PAH, C\(_{90}\)H\(_{48}\), possessing three [7]helicene and three [5]helicene subunits. This compound can be obtained in gram quantities in a straightforward manner. The photophysical and chiroptical properties were investigated using UV/Vis absorption and emission, optical rotation and circular dichroism spectroscopy, supported by DFT calculations. The nonlinear optical properties were investigated by two-photon absorption measurements using linearly and circularly polarized light. The extremely twisted structure and packing of the homochiral compound were investigated by single-crystal X-ray diffraction analysis.}, language = {en} } @article{HattoriMichailSchmiedeletal.2019, author = {Hattori, Yohei and Michail, Evripidis and Schmiedel, Alexander and Moos, Michael and Holzapfel, Marco and Krummenacher, Ivo and Braunschweig, Holger and M{\"u}ller, Ulrich and Pflaum, Jens and Lambert, Christoph}, title = {Luminescent Mono-, Di-, and Tri-radicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {68}, doi = {10.1002/chem.201903007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208162}, pages = {15463-15471}, year = {2019}, abstract = {Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6-dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed-shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two-photon absorption spectroscopy and OLED devices.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on One- and Two-Photon Absorption, Cell Viability and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204829}, pages = {13164-13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{PoepplerLuebtowSchlauersbachetal.2019, author = {P{\"o}ppler, Ann-Christin and L{\"u}btow, Michael M. and Schlauersbach, Jonas and Wiest, Johannes and Meinel, Lorenz and Luxenhofer, Robert}, title = {Loading dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {51}, doi = {10.1002/anie.201908914}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206705}, pages = {18540-18546}, year = {2019}, abstract = {Detailed insight into the internal structure of drug-loaded polymeric micelles is scarce, but important for developing optimized delivery systems. We observed that an increase in the curcumin loading of triblock copolymers based on poly(2-oxazolines) and poly(2-oxazines) results in poorer dissolution properties. Using solid-state NMR spectroscopy and complementary tools we propose a loading-dependent structural model on the molecular level that provides an explanation for these pronounced differences. Changes in the chemical shifts and cross-peaks in 2D NMR experiments give evidence for the involvement of the hydrophobic polymer block in the curcumin coordination at low loadings, while at higher loadings an increase in the interaction with the hydrophilic polymer blocks is observed. The involvement of the hydrophilic compartment may be critical for ultrahigh-loaded polymer micelles and can help to rationalize specific polymer modifications to improve the performance of similar drug delivery systems.}, language = {en} } @article{FarrellGrandeSchmidtetal.2019, author = {Farrell, Jeffrey M. and Grande, Vincenzo and Schmidt, David and W{\"u}rthner, Frank}, title = {A Highly Warped Heptagon-Containing sp\(^2\) Carbon Scaffold via Vinylnaphthyl π-Extension}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {46}, doi = {10.1002/anie.201909975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206682}, pages = {16504-16507}, year = {2019}, abstract = {A new strategy is demonstrated for the synthesis of warped, negatively curved, all-sp\(^2\)-carbon π-scaffolds. Multifold C-C coupling reactions are used to transform a polyaromatic borinic acid into a saddle-shaped polyaromatic hydrocarbon (2 ) bearing two heptagonal rings. Notably, this Schwarzite substructure is synthesized in only two steps from an unfunctionalized alkene. A highly warped structure of 2 was revealed by X-ray crystallographic studies and pronounced flexibility of this π-scaffold was ascertained by experimental and computational studies. Compound 2 exhibits excellent solubility, visible range absorption and fluorescence, and readily undergoes two reversible one-electron oxidations at mild potentials.}, language = {en} } @article{WenNowakKrolNagleretal.2019, author = {Wen, Xinbo and Nowak-Kr{\´o}l, Agnieszka and Nagler, Oliver and Kraus, Felix and Zhu, Na and Zheng, Nan and M{\"u}ller, Matthias and Schmidt, David and Xie, Zengqi and W{\"u}rthner, Frank}, title = {Tetrahydroxy-perylene bisimide embedded in zinc oxide thin film as electron transporting layer for high performance non-fullerene organic solar cells}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {37}, doi = {10.1002/anie.201907467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204723}, pages = {13051-13055}, year = {2019}, abstract = {By introduction of four hydroxy (HO) groups into the two perylene bisimide (PBI) bay areas, new HO-PBI ligands were obtained which upon deprotonation can complex ZnII ions and photosensitize semiconductive zinc oxide thin films. Such coordination is beneficial for dispersing PBI photosensitizer molecules evenly into metal oxide films to fabricate organic-inorganic hybrid interlayers for organic solar cells. Supported by the photoconductive effect of the ZnO:HO-PBI hybrid interlayers, improved electron collection and transportation is achieved in fullerene and non-fullerene polymer solar cell devices, leading to remarkable power conversion efficiencies of up to 15.95 \% for a non-fullerene based organic solar cell.}, language = {en} } @article{SchmidtStolteSuessetal.2019, author = {Schmidt, David and Stolte, Matthias and S{\"u}ß, Jasmin and Liess, Dr. Andreas and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Protein-like enwrapped perylene bisimide chromophore as bright microcrystalline emitter material}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {38}, doi = {10.1002/ange.201907618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204809}, pages = {13385-13389}, year = {2019}, abstract = {Strongly emissive solid-state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer-like absorption and emission profiles as well as fluorescence quantum yields over 90 \% in its crystalline solid state. The material was synthesized by attaching two bulky tris(4-tert-butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments.}, language = {en} } @article{LuebtowMarciniakSchmiedeletal.2019, author = {L{\"u}btow, Michael M. and Marciniak, Henning and Schmiedel, Alexander and Roos, Markus and Lambert, Christoph and Luxenhofer, Robert}, title = {Ultra-high to ultra-low drug loaded micelles: Probing host-guest interactions by fluorescence spectroscopy}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {54}, doi = {10.1002/chem.201902619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206128}, pages = {12601-12610}, year = {2019}, abstract = {Polymer micelles are an attractive means to solubilize water insoluble compounds such as drugs. Drug loading, formulations stability and control over drug release are crucial factors for drug-loaded polymer micelles. The interactions between the polymeric host and the guest molecules are considered critical to control these factors but typically barely understood. Here, we compare two isomeric polymer micelles, one of which enables ultra-high curcumin loading exceeding 50 wt.\%, while the other allows a drug loading of only 25 wt.\%. In the low capacity micelles, steady-state fluorescence revealed a very unusual feature of curcumin fluorescence, a high energy emission at 510 nm. Time-resolved fluorescence upconversion showed that the fluorescence life time of the corresponding species is too short in the high-capacity micelles, preventing an observable emission in steady-state. Therefore, contrary to common perception, stronger interactions between host and guest can be detrimental to the drug loading in polymer micelles.}, subject = {Polymer-drug interaction}, language = {en} } @article{MuellerLuettigMalyetal.2019, author = {Mueller, Stefan and L{\"u}ttig, Julian and Mal{\´y}, Pavel and Ji, Lei and Han, Jie and Moos, Michael and Marder, Todd B. and Bunz, Uwe H. F. and Dreuw, Andreas and Lambert, Christoph and Brixner, Tobias}, title = {Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12602-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202529}, pages = {4735}, year = {2019}, abstract = {Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions.}, language = {en} } @article{FayezFeineisAkeAssietal.2019, author = {Fayez, Shaimaa and Feineis, Doris and Ak{\´e} Assi, Laurent and Seo, Ean-Jeong and Efferth, Thomas and Bringmann, Gerhard}, title = {Ancistrobreveines A-D and related dehydrogenated naphthylisoquinoline alkaloids with antiproliferative activities against leukemia cells, from the West African liana Ancistrocladus abbreviatus}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, number = {28}, doi = {10.1039/C9RA03105G}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201686}, pages = {15738-15748}, year = {2019}, abstract = {A unique series of six biaryl natural products displaying four different coupling types (5,10 , 7,10 , 7,80 , and 5,80) were isolated from the roots of the West African liana Ancistrocladus abbreviatus (Ancistrocladaceae). Although at first sight structurally diverse, these secondary metabolites all have in common that they belong to the rare group of naphthylisoquinoline alkaloids with a fully dehydrogenated isoquinoline portion. Among the African Ancistrocladus species, A. abbreviatus is so far only the second one that was found to produce compounds with such a molecular entity. Here, we report on four new representatives, named ancistrobreveines A-D (12-14, and 6). They were identified along with the two known alkaloids 6-O-methylhamateine (4) and entdioncophylleine A (10). The two latter naphthylisoquinolines had so far only been detected in Ancistrocladus species from Southeast Asia. All of these fully dehydrogenated alkaloids have in common being optically active despite the absence of stereogenic centers, due to the presence of the rotationally hindered biaryl axis as the only element of chirality. Except for ent-dioncophylleine A (10), which lacks an oxygen function at C-6, the ancistrobreveines A-D (12-14, and 6) and 6-O-methylhamateine (4) are 6-oxygenated alkaloids, and are, thus, typical 'Ancistrocladaceae-type' compounds. Ancistrobreveine C (14), is the first - and so far only - example of a 7,80-linked fully dehydrogenated naphthylisoquinoline discovered in nature that is configurationally stable at the biaryl axis. The stereostructures of the new alkaloids were established by spectroscopic (in particular HRESIMS, 1D and 2D NMR) and chiroptical (electronic circular dichroism) methods. Ancistrobreveine C (14) and 6-O-methylhamateine (4) exhibited strong antiproliferative activities against drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrugresistant subline, CEM/ADR5000.}, language = {en} } @article{MufusamaFeineisMudogoetal.2019, author = {Mufusama, Jean-Pierre and Feineis, Doris and Mudogo, Virima and Kaiser, Marcel and Brun, Reto and Bringmann, Gerhard}, title = {Antiprotozoal dimeric naphthylisoquinolines, mbandakamines B\(_3\) and B\(_4\), and related 5,8′-coupled monomeric alkaloids, ikelacongolines A-D, from a Congolese Ancistrocladus liana}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, number = {21}, doi = {10.1039/C9RA01784D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201141}, pages = {12034-12046}, year = {2019}, abstract = {From the leaves of a botanically and phytochemically as yet unexplored Ancistrocladus liana discovered in the rainforests of the Central region of the Democratic Republic of the Congo in the vicinity of the town of Ikela, six new naphthylisoquinoline alkaloids were isolated, viz., two constitutionally unsymmetric dimers, the mbandakamines B\(_3\) (3) and B\(_4\) (4), and four related 5,8′-linked monomeric alkaloids, named ikelacongolines A-D (5a, 5b, 6, and 7). The dimers 3 and 4 are structurally unusual quateraryls comprising two 5,8′-coupled monomers linked via a sterically strongly constrained 6′,1′′-connection between their naphthalene units. These compounds contain seven elements of chirality, four stereogenic centers and three consecutive chiral axes. They were identified along with two known related compounds, the mbandakamines A (1) and B\(_2\) (2), which had so far only been detected in two Ancistrocladus species indigenous to the Northwestern Congo Basin. In addition, five known monomeric alkaloids, previously found in related Central African Ancistrocladus species, were isolated from the here investigated Congolese liana, three of them belonging to the subclass of 5,8′-coupled naphthylisoquinoline alkaloids, whereas two compounds exhibited a less frequently occurring 7,8′-biaryl linkage. The stereostructures of the new alkaloids were established by spectroscopic (in particular HRESIMS, 1D and 2D NMR), chemical (oxidative degradation), and chiroptical (electronic circular dichroism) methods. The mbandakamines B\(_3\) (3) and B\(_4\) (4) displayed pronounced activities in vitro against the malaria parasite Plasmodium falciparum and the pathogen of African sleeping sickness, Trypanosoma brucei rhodesiense.}, language = {en} } @article{TshitengeTshitengeBruhnFeineisetal.2019, author = {Tshitenge Tshitenge, Dieudonn{\´e} and Bruhn, Torsten and Feineis, Doris and Mudogo, Virima and Kaiser, Marcel and Brun, Reto and Bringmann, Gerhard}, title = {An unusually broad series of seven cyclombandakamines, bridged dimeric naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus ealaensis}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-46336-z.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200759}, pages = {9812}, year = {2019}, abstract = {A series of seven unusual dimeric naphthylisoquinoline alkaloids was isolated from the leaves of the tropical liana Ancistrocladus ealaensis J. L{\´e}onard, named cyclombandakamine A (1), 1-epi-cyclombandakamine A (2), and cyclombandakamines A3-7 (3-7). These alkaloids have a chemically thrilling structural array consisting of a twisted dihydrofuran-cyclohexenone-isochromene system. The 1′″-epimer of 4, cyclombandakamine A1 (8), had previously been discovered in an unidentified Ancistrocladus species related to A. ealaensis. Both lianas produce the potential parent precursor, mbandakamine A (9), but only A. ealaensis synthesizes the corresponding cyclized form, along with a broad series of slightly modified analogs. The challenging isolation required, besides multi-dimensional chromatography, the use of a pentafluorophenyl stationary phase. Featuring up to six stereocenters and two types of chiral axes, their structures were elucidated by means of 1D and 2D NMR, HRESIMS, in combination with oxidative chemical degradation experiments as well as chiroptical (electronic circular dichroism spectroscopy) and quantum chemical calculations. Compared to the 'open-chain' parent compound 9, these dimers displayed rather moderate antiplasmodial activities.}, language = {en} } @article{HollmannWieseDennstaedtetal.2019, author = {Hollmann, Claudia and Wiese, Teresa and Dennst{\"a}dt, Fabio and Fink, Julian and Schneider-Schaulies, J{\"u}rgen and Beyersdorf, Niklas}, title = {Translational approaches targeting ceramide generation from sphingomyelin in T cells to modulate immunity in humans}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2363}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.02363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198806}, year = {2019}, abstract = {In T cells, as in all other cells of the body, sphingolipids form important structural components of membranes. Due to metabolic modifications, sphingolipids additionally play an active part in the signaling of cell surface receptors of T cells like the T cell receptor or the co-stimulatory molecule CD28. Moreover, the sphingolipid composition of their membranes crucially affects the integrity and function of subcellular compartments such as the lysosome. Previously, studying sphingolipid metabolism has been severely hampered by the limited number of analytical methods/model systems available. Besides well-established high resolution mass spectrometry new tools are now available like novel minimally modified sphingolipid subspecies for click chemistry as well as recently generated mouse mutants with deficiencies/overexpression of sphingolipid-modifying enzymes. Making use of these tools we and others discovered that the sphingolipid sphingomyelin is metabolized to ceramide to different degrees in distinct T cell subpopulations of mice and humans. This knowledge has already been translated into novel immunomodulatory approaches in mice and will in the future hopefully also be applicable to humans. In this paper we are, thus, summarizing the most recent findings on the impact of sphingolipid metabolism on T cell activation, differentiation, and effector functions. Moreover, we are discussing the therapeutic concepts arising from these insights and drugs or drug candidates which are already in clinical use or could be developed for clinical use in patients with diseases as distant as major depression and chronic viral infection.}, language = {en} } @phdthesis{Buschmann2019, author = {Buschmann, Rachel Abigail}, title = {Synthesis of annulated pi-systems based on a tribenzotriquinacene core}, doi = {10.25972/OPUS-19349}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193491}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The aim of this work was the selective functionalisation of tribenzotriquinacene (TBTQ) in order to extend the aromatic system and tune the electronic properties. The synthesised molecules could be starting materials for a model system of a defective graphene fragment. The "triple cyclisation pathway" by Hopf et al. was adapted and fluorinated tribenzotriquinacenes were synthesised for the first time. Phenanthrene groups were also introduced in other model systems and the crystal structures of phenanthrene functionalised TBTQs were compared with the parent molecules. In addition, the arrangement of TBTQ and centro methyl functionalised TBTQ was investigated on a Ag(111) surface for the first time using scanning transmission microscopy (STM). Different arrangements were observed, depending on the coverage of the surface. The insights gained about the interaction between TBTQs as well as their synthesis provide a foundation for further work and potential applications as components in organic electronic devices.}, subject = {Triquinacenderivate}, language = {en} } @phdthesis{Wagner2019, author = {Wagner, Wolfgang}, title = {Supramolecular Block Copolymers by Seeded Living Supramolecular Polymerization of Perylene Bisimides}, doi = {10.25972/OPUS-19300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The research on supramolecular polymerization has undergone a rapid development in the last two decades, particularly since supramolecular polymers exhibit a broad variety of functionalities and applications in organic electronics, biological science or as functional materials (Chapter 2.1). Although former studies have focused on investigation of the thermodynamics of supramolecular polymerization (Chapter 2.2), the academic interest in the recent years shifted towards gaining insight into kinetically controlled self-assembly and pathway complexity to generate novel out-of-equilibrium architectures with interesting nanostructures and features (Chapter 2.3). Along this path, the concepts of seeded and living supramolecular polymerization were recently developed to enable the formation of supramolecular polymers with controlled length and low polydispersity under precise kinetic control (Chapter 2.4). Besides that, novel strategies were developed to achieve supramolecular copolymerization resulting in complex multicomponent nanostructures with different structural motives. The classification of these supramolecular copolymers on the basis of literature examples and an overview of previously reported principles to create such supramolecular architectures are provided in Chapter 2.5. The aim of the thesis was the non-covalent synthesis of highly desirable supramolecular block copolymers by the approach of living seeded supramolecular polymerization and to study the impact of the molecular shape of the monomeric building blocks on the supramolecular copolymerization. Based on the structure of the previously investigated PBI organogelator H-PBI a series of novel PBIs, bearing identical hydrogen-bonding amide side-groups in imide-position and various kind or number of substituents in bay-position, was synthesized and analyzed within this thesis. The new PBIs were successfully obtained in three steps starting from the respective bromo-substituted perylene-3,4:9,10-tetracarboxylic acid tetrabutylesters or from the N,N'-dicyclohexyl-1,7-dibromoperylene-3,4:9,10-tetracarboxylic acid bisimide. All target compounds were obtained in the final step by imidization reactions of the respective perylene tetracarboxylic acid bisanhydride precursors with N-(2-aminoethyl)-3,4,5-tris(dodecyloxy)-benzamide and were fully characterized by 1H and 13C NMR spectroscopy as well as high resolution mass spectrometry. The variation of bay-substituents strongly changes the optical properties of the monomeric PBIs which were investigated by UV/vis and fluorescence spectroscopy. The increase of the number of the methoxy-substituents provokes, for example, a red-shift of the absorption maxima concomitant with a decrease of extinction coefficients and leads to a drastic increase of the fluorescence quantum yields. Furthermore, the molecular geometry of the PBIs is also affected by variations of the bay-substituents. Thus, increasing the steric demand of the bay-substituents leads to an enlargement of the twist angles of the PBI cores as revealed by DFT calculations. Especially the 1,7-dimethoxy bay-substituted MeO-PBI proved to be very well-suited for the studies envisioned within this thesis. The self-assembly of this PBI derivative was analyzed in detail by UV/vis, fluorescence and FT-IR spectroscopy as well as atomic force microscopy (Chapter 3). These studies revealed that MeO-PBI forms in a solvent mixture of methylcyclohexane and toluene (2:1, v/v) kinetically trapped off-pathway H-aggregated nanoparticles upon fast cooling of a monomeric solution from 90 to 20 °C. However, upon slow cooling of the monomer solution fluorescent J-type nanofibers are formed by π π interactions and intermolecular hydrogen-bonding. The kinetically metastable off-pathway H-aggregates can be transformed into the thermodynamically more favored J-type aggregates by addition of seeds, which are produced by ultrasonication of the polymeric nanofibers. Interestingly, the living character of this seed-induced supramolecular polymerization process was proven by a newly designed multicycle polymerization experimental protocol. This living polymerization experiment clearly proves, that the polymerization can only occur at the "active" ends of the polymeric seed and that almost no recombination or chain termination processes are present. Hence, the approach of living supramolecular polymerization enables the formation of supramolecular polymers with controlled length and narrow polydispersity. In Chapter 4 the copolymerization of MeO-PBI with the structurally similar 1,7-dichloro (Cl-PBI) and 1,7-dimethylthio (MeS-PBI) bay-substituted PBIs is studied in detail. Both PBIs form analogous to MeO-PBI kinetically trapped off-pathway aggregates, which can be converted into the thermodynamically stable supramolecular polymers by seed-induced living supramolecular polymerization under precise kinetic control. However, the stability of the kinetically trapped aggregates of Cl-PBI and MeS-PBI is distinctly reduced compared to that of MeO-PBI, because the π-π-interactions of the kinetically metastable aggregates are hampered through the increased twisting of the PBI-cores of the former PBIs. UV/vis studies revealed that the two-component seeded copolymerization of the kinetically trapped state of MeO-PBI with seeds of Cl-PBI leads to the formation of unprecedented supramolecular block copolymers with A-B-A pattern by a living supramolecular polymerization process at the termini of the seeds. Remarkably, the resulting A-B-A block pattern of the obtained copolymers was clearly confirmed by atomic force microscopy studies as the respective blocks formed by the individual monomeric units could be distinguished by the pitches of the helical nanofibers. Moreover, detailed UV/vis and AFM studies have shown that by inverted two-component seed-induced polymerization, e.g., upon addition of seeds of MeO-PBI to the kinetically trapped aggregates of Cl-PBI, triblock supramolecular copolymers with B-A-B pattern can be generated. The switching of the block pattern could only be achieved because of the perfectly matching conditions for the copolymerization process and the tailored molecular geometry of the individual building blocks of both PBIs. These studies have demonstrated for the first time, that the block pattern of a supramolecular copolymer can be modulated by the experimental protocol through the approach of living supramolecular polymerization. Furthermore, by UV/vis analysis of the living copolymerization of MeO-PBI and MeS-PBI similar results were obtained showing also the formation of both A-B-A and B-A-B type supramolecular block copolymers. Although for these two PBIs the individual blocks could not be identified by AFM because the helical nanofibers of both PBIs exhibit identical helical pitches, these studies revealed for the first time that the approach of seeded living polymerization is not limited to a special pair of monomeric building blocks. In the last part of the thesis (Chapter 5) a systematic study on the two-component living copolymerization of PBIs with various sterical demanding bay-substituents is provided. Thus, a series of PBIs containing identical hydrogen-bonding amide groups in imide position but variable number (1-MeO-PBI, MeO-PBI, 1,6,7-MeO-PBI, 1,6,7,12-MeO-PBI) or size (EtO-PBI, iPrO-PBI) of alkoxy bay-substituents was investigated. The molecular geometry of the monomeric building blocks has a strong impact on the thermodynamically and even more pronounced on the kinetically controlled aggregation in solvent mixtures of MCH and Tol. While the mono- and dialkoxy-substituted PBIs form kinetically metastable species, the self-assembly of the tri- and tetramethoxy-substituted PBIs (1,6,7-MeO-PBI and 1,6,7,12-MeO-PBI) is completely thermodynamically controlled. The two 1,7-alkoxy substituted PBIs (EtO-PBI, iPrO-PBI) form very similar to MeO-PBI kinetically off-pathway H-aggregates and thermodynamically more favored J-type aggregates. However, the stability of the kinetically metastable state is drastically lower and the conversion into the thermodynamically favored state much faster than for MeO-PBI. In contrast, the monomethoxy-substituted PBI derivative (1-MeO-PBI) forms a kinetically trapped species by intramolecular hydrogen-bonding of the monomers, which can be transformed into the thermodynamically favored nanofibers by seeded polymerization. Importantly, the two-component seeded copolymerization of the kinetically trapped MeO PBI with seeds of other PBIs of the present series was studied by UV/vis and AFM revealing that the formation of supramolecular block copolymers is only possible for appropriate combinations of PBI building blocks. Thus, the seeded polymerization of the trapped state of the moderately core-twisted MeO-PBI with the, according to DFT-calculations, structurally similar PBIs (EtO-PBI and iPrO-PBI) leads to the formation of A-B-A block copolymers, like in the seeded copolymerization of MeO-PBItrapped with seeds of Cl-PBI and MeS-PBI already described in Chapter 4. However, by addition of seeds of the almost planar PBIs (H-PBI and 1-MeO-PBI) or seeds of the strongly core-twisted PBIs (1,6,7-MeO-PBI and 1,6,7,12-MeO-PBI) to the kinetically trapped state of MeO-PBI no block copolymers can be obtained. The mismatching geometry of these molecular building blocks strongly hampers both the intermolecular hydrogen-bonding and the π-π-interactions between the two different PBIs and consequently prevents the copolymerization process. Furthermore, the studies of the two-component seeded copolymerization of the kinetically trapped species of 1-MeO-PBI with seeds of the other PBIs also corroborated that a precise shape complementarity is crucial to generate supramolecular block copolymers. Thus, by addition of seeds of H-PBI to the kinetically trapped monomers of 1-MeO-PBI supramolecular block copolymers were generated. Both PBIs exhibit an almost planar PBI core according to DFT-calculations leading to strong non-covalent interactions between these PBIs. This perfectly matching geometry of both PBIs also enables the inverted seeded copolymerization of the kinetically trapped monomers of H-PBI with 1-MeO-PBIseed concomitant with a switching of the block pattern of the supramolecular copolymer from A-B-A to B-A-B type. In contrast, the seeding with the moderately twisted (MeO-PBI, EtO-PBI and iPrO-PBI) and the strongly twisted PBIs (1,6,7-MeO-PBI and 1,6,7,12 MeO-PBI) has no effect on the kinetically trapped state of 1-MeO-PBI, because the copolymerization of these PBIs is prevented by the mismatching geometry of the molecular building blocks. In conclusion, the supramolecular polymerization and two-component seeded copolymerization of a series of PBI monomers was investigated within this thesis. The studies revealed that the thermodynamically and kinetically controlled self-assembly can be strongly modified by subtle changes of the monomeric building blocks. Moreover, the results have shown that living supramolecular polymerization is an exceedingly powerful method to generate unprecedented supramolecular polymeric nanostructures with controlled block pattern and length distribution. The formation of supramolecular block copolymers can only be achieved under precise kinetic control of the polymerization process and is strongly governed by the shape complementarity already imparted in the individual components. Thus, these insightful studies might enable a more rational design of monomeric building blocks for the non-covalent synthesis of highly complex supramolecular architectures with interesting properties for possible future applications, e.g., as novel functional materials.}, subject = {Supramolekulare Chemie}, language = {en} } @article{SteinmetzgerBessiLenzetal.2019, author = {Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and H{\"o}bartner, Claudia}, title = {Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer}, series = {Nucleic Acids Research}, journal = {Nucleic Acids Research}, doi = {10.1093/nar/gkz1084/5628921}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192340}, pages = {gkz1084}, year = {2019}, abstract = {The Chili RNA aptamer is a 52 nt long fluorogen-activating RNA aptamer (FLAP) that confers fluorescence to structurally diverse derivatives of fluorescent protein chromophores. A key feature of Chili is the formation of highly stable complexes with different ligands, which exhibit bright, highly Stokes-shifted fluorescence emission. In this work, we have analyzed the interactions between the Chili RNA and a family of conditionally fluorescent ligands using a variety of spectroscopic, calorimetric and biochemical techniques to reveal key structure - fluorescence activation relationships (SFARs). The ligands under investigation form two categories with emission maxima of ~540 nm or ~590 nm, respectively, and bind with affinities in the nanomolar to low-micromolar range. Isothermal titration calorimetry was used to elucidate the enthalpic and entropic contributions to binding affinity for a cationic ligand that is unique to the Chili aptamer. In addition to fluorescence activation, ligand binding was also observed by NMR spectroscopy, revealing characteristic signals for the formation of a G-quadruplex only upon ligand binding. These data shed light on the molecular features required and responsible for the large Stokes shift and the strong fluorescence enhancement of red and green emitting RNA-chromophore complexes.}, language = {en} } @phdthesis{MufusamaKoySita2019, author = {Mufusama Koy Sita, Jean-Pierre}, title = {Quality Assessment of Antimalarial Medicines Sold in the Democratic Republic of the Congo and Phytochemical Investigations on a Congolese Ancistrocladus Liana}, doi = {10.25972/OPUS-19238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192382}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Nowadays, the management of infectious diseases is especially threatened by the rapid emergence of drug resistance. It has been suggested that the medicine quality assurance combined with good medication adherence may help to reduce this impendence. Moreover, the search for new antimicrobial agents from medicinal plants is strongly encouraged for the exploration of alternatives to existing therapies. In this context, the present work focused on both the quality evaluation of commercialized antimalarial medicines from the Democratic Republic of the Congo and on the phytochemical investigations of a Congolese Ancistrocladus species.}, subject = {Antimalariamittel}, language = {en} } @unpublished{MaghamiScheitlHoebartner2019, author = {Maghami, Mohammad Ghaem and Scheitl, Carolin P. M. and H{\"o}bartner, Claudia}, title = {Direct in vitro selection of trans-acting ribozymes for posttranscriptional, site-specific, and covalent fluorescent labeling of RNA}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.9b10531}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192333}, year = {2019}, abstract = {General and efficient tools for site-specific fluorescent or bioorthogonal labeling of RNA are in high demand. Here, we report direct in vitro selection, characterization, and application of versatile trans-acting 2'-5' adenylyl transferase ribozymes for covalent and site-specific RNA labeling. The design of our partially structured RNA pool allowed for in vitro evolution of ribozymes that modify a predetermined nucleotide in cis (i.e. intramolecular reaction), and were then easily engineered for applications in trans (i.e. in an intermolecular setup). The resulting ribozymes are readily designed for specific target sites in small and large RNAs and accept a wide variety of N6-modified ATP analogues as small molecule substrates. The most efficient new ribozyme (FH14) shows excellent specificity towards its target sequence also in the context of total cellular RNA.}, language = {en} }