@phdthesis{Weinmann2023, author = {Weinmann, Joshua}, title = {Chemical Modifications of Quinolone Amides Against African Trypanosomiasis: Balancing Solubility, Bioactivity, and Cytotoxicity}, doi = {10.25972/OPUS-29659}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296599}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The human African trypanosomiasis is a neglected tropical disease, which is caused by the protozoan Trypanosoma brucei and transmitted by the bite of the tsetse fly. An untreated infection leads to death. However, only a few drugs with significant drawbacks are currently available for treatment. In this thesis, quinolone amides with an antitrypanosomal activity were synthesized and their biological and physicochemical properties were measured. New structure-activity relationships and a promising lead structure were discovered.}, subject = {Trypanosomiase}, language = {en} } @article{WaltherKrmarLeistneretal.2023, author = {Walther, Rasmus and Krmar, Jovana and Leistner, Adrian and Svrkota, Bojana and Otašević, Biljana and Malenović, Andjelija and Holzgrabe, Ulrike and Protić, Ana}, title = {Analytical Quality by Design: achieving robustness of an LC-CAD method for the analysis of non-volatile fatty acids}, series = {Pharmaceuticals}, volume = {16}, journal = {Pharmaceuticals}, number = {4}, issn = {1424-8247}, doi = {10.3390/ph16040478}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311265}, year = {2023}, abstract = {An alternative to the time-consuming and error-prone pharmacopoeial gas chromatography method for the analysis of fatty acids (FAs) is urgently needed. The objective was therefore to propose a robust liquid chromatography method with charged aerosol detection for the analysis of polysorbate 80 (PS80) and magnesium stearate. FAs with different numbers of carbon atoms in the chain necessitated the use of a gradient method with a Hypersil Gold C\(_{18}\) column and acetonitrile as organic modifier. The risk-based Analytical Quality by Design approach was applied to define the Method Operable Design Region (MODR). Formic acid concentration, initial and final percentages of acetonitrile, gradient elution time, column temperature, and mobile phase flow rate were identified as critical method parameters (CMPs). The initial and final percentages of acetonitrile were fixed while the remaining CMPs were fine-tuned using response surface methodology. Critical method attributes included the baseline separation of adjacent peaks (α-linolenic and myristic acid, and oleic and petroselinic acid) and the retention factor of the last compound eluted, stearic acid. The MODR was calculated by Monte Carlo simulations with a probability equal or greater than 90\%. Finally, the column temperature was set at 33 °C, the flow rate was 0.575 mL/min, and acetonitrile linearly increased from 70 to 80\% (v/v) within 14.2 min.}, language = {en} } @phdthesis{Walther2023, author = {Walther, Rasmus}, title = {Analysis of weakly chromophore impurities by means of liquid chromatography coupled with charged aerosol detection and mass spectrometry}, doi = {10.25972/OPUS-32186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321862}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In all the projects presented, it is evident that the selection of suitable separation conditions is only one side of the coin. Equally crucial in the development of methods for the quality assessment of APIs/drugs is the right detection system. The application of CAD as an alternative to UV detection at low wavelength of the two weak chromophore main degradation products of the very polar, zwitterionic API carbocisteine requires the volatility of the mobile phase. Therefore, as a substitute for the non-volatile ion pairing reagent tetrabutylammonium hydroxide (TBAOH), six different volatile alkylamines as well as a RP/SAX mixed-mode column were evaluated. The best selectivity and separation performance comparable to TBAOH was achieved with the RP/SAX column and a mixture of formic acid and trifluoroacetic acid. For the simultaneous optimisation of the evaporation temperature of the CAD as a function of two chromatographic parameters, a central composite design was chosen and the "desirability function" was subsequently applied for modelling. In addition, column bleeding was investigated with a second RP/SAX column (different batch) with the result that the acetonitrile percentage had to be adjusted and preconditioning by injection of concentrated samples is essential. The final mixed-mode method was finally validated with both columns according to the ICH Q2 (R1) guideline. Based on this, an MS-compatible method was developed with little effort using an identical RP/SAX column in UPLC dimension for the untargeted analysis by HRMS of two carbocisteine-containing prototype syrup formulations. For a comprehensive characterisation, HRMS and MS/HRMS data were recorded simultaneously by information dependent acquisition mode. Based on the exact masses, isotope patterns and an in silico plausibility check of the fragment spectra, the prediction of the structures of the unknown impurities was possible. In both syrup samples, which had been stored for nine months at 40 °C and 75 \% r.h., two additional impurities of carbocisteine (i.e. lactam of the sulfoxides and disulphide between cysteine and thioglycolic acid) were identified by comparison with the corresponding prototype placebo samples using general unknown comparative screening. In addition, the formation of Maillard products by binary mixtures with 13C-labelled sugars was revealed in the sucrose-containing formulation. For the promising hyphenation of the UV detector with the CAD for the simultaneous detection of all UV-active impurities of the cholesterol-lowering drug simvastatin and the only weak chromophore dihydrosimvastatin, the Ph. Eur. method had to be adapted. Besides replacing phosphoric acid with trifluoroacetic acid, the gradient also had to be adjusted and a third critical peak pair was observed. Based on validation experiments (according to the ICH Q2 (R1) guideline), the suitability of the CAD for sensitive detection (LOQ = 0.0175 \% m/m) was proven.  To further investigate the robustness of the adapted method and CAD, a Plackett-Burman design was chosen. None of the factors had a statistically significant effect on the S/N of the CAD in the ranges tested. Regarding the three critical peak pairs, on the other hand, the factors to be controlled were statistically established, so that a targeted correction is possible if the system suitability test is not passed. The idea of employing a hyphenated UV-CAD system was finally applied to the structurally closely related lovastatin and its specified impurity dihydrolovastatin. Here, the CAD showed a significantly better S/N compared to the compendial UV detection at 200 nm. The suitability of CAD for the analysis of non-volatile fatty acids in polysorbate 80 (PS80) as favourable alternative to the Ph. Eur. GC method (no time-consuming, error-prone and toxic derivatisation) has already been demonstrated. The aim of this project was therefore to develop a robust method with a focus on the AQbD principles, which can be used for the analysis of other excipients with similar fatty acid composition. After the definition of the analytical target profile and a risk assessment by means of an Ishikawa diagram, a suitable C18 column and the chromatographic framework conditions (formic acid concentration and initial/final gradient conditions) were selected after only few preliminary runs. The remaining critical method parameters were then investigated with the help of DoE and RSM. Using the obtained model equations, Monte Carlo simulations were performed to create the method operable design region as a region of theoretical robustness. After validation according to ICH Q2 (R1), the fatty acid composition of a magnesium stearate batch was successfully analysed as a further application example in addition to PS80. The CAD was able to prove its potential in all the issues investigated in the context of this doctoral thesis. As a cost-effective alternative compared to MS instruments, it thus closes a gap in the quality assessment of APIs or excipients without a suitable chromophore. The easy method transfer to (HR)MS instruments also allows for a unique degree of sample characterisation through untargeted approaches in case of new impurities. For resource- and time-efficient work, the possibilities and limitations of software tools for method development and data evaluation as well as the application of risk-based approaches such as AQbD should also be considered.}, subject = {Carbocistein}, language = {en} } @article{TutovChenWerneretal.2023, author = {Tutov, Anna and Chen, Xinyu and Werner, Rudolf A. and M{\"u}hlig, Saskia and Zimmermann, Thomas and Nose, Naoko and Koshino, Kazuhiro and Lapa, Constantin and Decker, Michael and Higuchi, Takahiro}, title = {Rationalizing the binding modes of PET radiotracers targeting the norepinephrine transporter}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {2}, issn = {1999-4923}, doi = {10.3390/pharmaceutics15020690}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303949}, year = {2023}, abstract = {Purpose: A new PET radiotracer \(^{18}\)F-AF78 showing great potential for clinical application has been reported recently. It belongs to a new generation of phenethylguanidine-based norepinephrine transporter (NET)-targeting radiotracers. Although many efforts have been made to develop NET inhibitors as antidepressants, systemic investigations of the structure-activity relationships (SARs) of NET-targeting radiotracers have rarely been performed. Methods: Without changing the phenethylguanidine pharmacophore and 3-fluoropropyl moiety that is crucial for easy labeling, six new analogs of \(^{18}\)F-AF78 with different meta-substituents on the benzene-ring were synthesized and evaluated in a competitive cellular uptake assay and in in vivo animal experiments in rats. Computational modeling of these tracers was established to quantitatively rationalize the interaction between the radiotracers and NET. Results: Using non-radiolabeled reference compounds, a competitive cellular uptake assay showed a decrease in NET-transporting affinity from meta-fluorine to iodine (0.42 and 6.51 µM, respectively), with meta-OH being the least active (22.67 µM). Furthermore, in vivo animal studies with radioisotopes showed that heart-to-blood ratios agreed with the cellular experiments, with AF78(F) exhibiting the highest cardiac uptake. This result correlates positively with the electronegativity rather than the atomic radius of the meta-substituent. Computational modeling studies revealed a crucial influence of halogen substituents on the radiotracer-NET interaction, whereby a T-shaped π-π stacking interaction between the benzene-ring of the tracer and the amino acid residues surrounding the NET binding site made major contributions to the different affinities, in accordance with the pharmacological data. Conclusion: The SARs were characterized by in vitro and in vivo evaluation, and computational modeling quantitatively rationalized the interaction between radiotracers and the NET binding site. These findings pave the way for further evaluation in different species and underline the potential of AF78(F) for clinical application, e.g., cardiac innervation imaging or molecular imaging of neuroendocrine tumors.}, language = {en} } @article{TriyasmonoSchollmayerSchmitzetal.2023, author = {Triyasmono, Liling and Schollmayer, Curd and Schmitz, Jens and Hovah, Emilie and Lombo, Cristian and Schmidt, Sebastian and Holzgrabe, Ulrike}, title = {Simultaneous determination of the saponification value, acid value, ester value, and iodine value in commercially available red fruit oil (Pandanus conoideus, Lam.) using \(^1\)H qNMR spectroscopy}, series = {Food Analytical Methods}, volume = {16}, journal = {Food Analytical Methods}, number = {1}, issn = {1936-9751}, doi = {10.1007/s12161-022-02401-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324728}, pages = {155-167}, year = {2023}, abstract = {Red fruit oil (RFO) can be extracted from fruits of Pandanus conoideus, Lam., an endogenous plant of Papua, Indonesia. It is a commonly used essential original traditional medicine. By applying a newly developed quantitative \(^1\)H NMR (qNMR) spectroscopy method for quality assessment, a simultaneous determination of the saponification value (SV), acid value (AV), ester value (EV), and iodine value (IV) in RFO was possible. Dimethyl sulfone (DMSO\(_2\)) was used as an internal standard. Optimization of NMR parameters, such as NMR pulse sequence, relaxation delay time, and receiver gain, finally established the \(^1\)H NMR-based quantification approach. Diagnostic signals of the internal standard at δ = 2.98 ppm, SV at δ = 2.37-2.20 ppm, AV at δ = 2.27-2.20 ppm, EV at δ = 2.37-2.27 ppm, and IV at δ = 5.37-5.27 ppm, respectively, were used for quantitative analysis. The method was validated concerning linearity (R\(^2\) = 0.999), precision (less than 0.83\%), and repeatability in the range 99.17-101.17\%. Furthermore, this method was successfully applied to crude RFO, crude RFO with palmitic and oleic acid addition, and nine commercial products. The qNMR results for the respective fat values are in accordance with the results of standard methods, as can be seen from the F- and t-test (< 1.65 and < 1.66, respectively). The fundamental advantages of qNMR, such as its rapidity and simplicity, make it a feasible and existing alternative to titration for the quality control of RFO.}, language = {en} } @article{SealSchwabChiarollaetal.2023, author = {Seal, Rishav and Schwab, Lara S. U. and Chiarolla, Cristina M. and Hundhausen, Nadine and Klose, Georg Heinrich and Reu-Hofer, Simone and Rosenwald, Andreas and Wiest, Johannes and Berberich-Siebelt, Friederike}, title = {Delayed and limited administration of the JAKinib tofacitinib mitigates chronic DSS-induced colitis}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1179311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317815}, year = {2023}, abstract = {In inflammatory bowel disease, dysregulated T cells express pro-inflammatory cytokines. Using a chronic azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis model resembling ulcerative colitis, we evaluated whether and when treatment with the Janus kinase (JAK) inhibitor tofacitinib could be curative. Comparing the treatment with two and three cycles of tofacitinib medication in drinking water - intermittently with DSS induction - revealed that two cycles were not only sufficient but also superior over the 3-x regimen. The two cycles of the 2-x protocol paralleled the second and third cycles of the longer protocol. T cells were less able to express interferon gamma (IFN-γ) and the serum levels of IFN-γ, interleukin (IL)-2, IL-6, IL-17, and tumor necrosis factor (TNF) were significantly reduced in sera, while those of IL-10 and IL-22 increased under the 2-x protocol. Likewise, the frequency and effector phenotype of regulatory T cells (Tregs) increased. This was accompanied by normal weight gain, controlled clinical scores, and restored stool consistency. The general and histologic appearance of the colons revealed healing and tissue intactness. Importantly, two phases of tofacitinib medication completely prevented AOM-incited pseudopolyps and the hyper-proliferation of epithelia, which was in contrast to the 3-x regimen. This implies that the initial IBD-induced cytokine expression is not necessarily harmful as long as inflammatory signaling can later be suppressed and that time-restricted treatment allows for anti-inflammatory and tissue-healing cytokine activities.}, language = {en} } @article{SchmidtZeheHolzgrabe2023, author = {Schmidt, Sebastian and Zehe, Markus and Holzgrabe, Ulrike}, title = {Characterization of binding properties of ephedrine derivatives to human alpha-1-acid glycoprotein}, series = {European Journal of Pharmaceutical Sciences}, volume = {181}, journal = {European Journal of Pharmaceutical Sciences}, doi = {10.1016/j.ejps.2022.106333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300848}, year = {2023}, abstract = {Most drugs, especially those with acidic or neutral moieties, are bound to the plasma protein albumin, whereas basic drugs are preferentially bound to human alpha-1-acid glycoprotein (AGP). The protein binding of the long-established drugs ephedrine and pseudoephedrine, which are used in the treatment of hypotension and colds, has so far only been studied with albumin. Since in a previous study a stereoselective binding of ephedrine and pseudoephedrine to serum but not to albumin was observed, the aim of this study was to check whether the enantioselective binding behavior of ephedrine and pseudoephedrine, in addition to the derivatives methylephedrine and norephedrine, is due to AGP and to investigate the influence of their different substituents and steric arrangement. Discontinuous ultrafiltration was used for the determination of protein binding. Characterization of ligand-protein interactions of the drugs was obtained by saturation transfer difference nuclear magnetic resonance spectroscopy. Docking experiments were performed to analyze possible ligand-protein interactions. The more basic the ephedrine derivative is, the higher is the affinity to AGP. There was no significant difference in the binding properties between the individual enantiomers and the diastereomers of ephedrine and pseudoephedrine.}, language = {en} } @article{SchmidtHolzgrabe2023, author = {Schmidt, Sebastian and Holzgrabe, Ulrike}, title = {Method development, optimization, and validation of the separation of ketamine enantiomers by capillary electrophoresis using design of experiments}, series = {Chromatographia}, volume = {86}, journal = {Chromatographia}, number = {1}, issn = {0009-5893}, doi = {10.1007/s10337-022-04229-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324713}, pages = {87-95}, year = {2023}, abstract = {Capillary electrophoresis was chosen as cost-effective and robust method to separate ketamine enantiomers. For the method development, first different native and modified cyclodextrins were tested. The most promising chiral selector was α-cyclodextrin. A design of experiments (DoE) was carried out, which started with the screening of relevant factors. Based on these results, the method was optimized according to the significant factors (buffer, cyclodextrin concentration, pH value, voltage, temperature) of the screening based on the response resolution and migration time of the later migrating enantiomer. The optimized conditions consisted of a background electrolyte with 275 mM TRIS, adjusted with 85\% phosphoric acid to a pH of 2.50, and 50 mM α-cyclodextrin, at a temperature of 15 °C, an applied voltage of 30 kV and an injection pressure of 1.0 psi for 10 s. A fused-silica capillary with a total length of 70 cm and an effective length to the detector of 60 cm was used. The method was validated according to ICH guideline Q2 R(1). The limit of quantification was 3.51 µg mL\(^{-1}\) for S-ketamine and 3.98 µg mL\(^{-1}\)for R-ketamine. The method showed good linearity for racemic ketamine with R\(^2\) of 0.9995 for S-ketamine and 0.9994 for R-ketamine. The lowest quantifiable content of S-ketamine found in R-ketamine was 0.45\%.}, language = {en} } @phdthesis{Schmidt2023, author = {Schmidt, Sebastian}, title = {A closer look at long-established drugs: enantioselective protein binding and stability studies}, doi = {10.25972/OPUS-34594}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345945}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The aim of this work was to investigate older, established drugs. The extent of the protein binding of chiral ephedra alkaloids to AGP and of ketamine to albumin was determined. Since enantiomers of these drugs are individual available, the focus was on possible enantioselective binding and structural moieties involved in the binding. Previously published work suggested that ephedrine and pseudoephedrine can bind stereoselectively to proteins other than albumin in serum. For the determination of the extent of protein binding, the established ultrafiltration with subsequent chiral CE analysis was used. To determine the influence of basicity on binding, the drugs methylephedrine and norephedrine were also analyzed. Drug binding to AGP increased with increasing basicity as follows: norephedrine < methylephedrine < ephedrine < pseudoephedrine. pKaff was determined both graphically using the Klotz plot and mathematical indicating a low affinity of the ephedra alkaloids to AGP. Using STD-NMR spectroscopy experiments the aromatic protons and the C-CH3 side chain were shown to be most strongly involved in binding, which could be confirmed by molecular docking experiments in more detail. For all drugs, van der Waals-, π π , cationic interactions, hydrogen bonds, and a formation of a salt bridge were observed. The individual enantiomers showed no significant differences and thus the binding of ephedra alkaloids to AGP is not significant. In contrast to the ephedra alkaloids, the possible enantioselective binding to albumin was investigated for R and S ketamine. Again, ultrafiltration followed by CE analysis was performed. The binding of ketamine to one main binding site could be identified. A non-linear fit was used for the determination of pKaff. Using the NMR methods STD-NMR, waterLOGSY-NMR, and CPMG-NMRspectroscopy: the aromatic protons as well as the protons of the NCH3 methyl group showed the largest signal intensity changes, while the cyclohexanone protons showed the smallest changes. pKaff was also determined by the change in the chemical shift at different drug-protein ratios. These obtained values confirm the values obtained from ultrafiltration. Based on this, ketamine is classified as a low-affinity ligand to albumin. There were no significant differences between the individual enantiomers and thus the binding of ketamine to albumin is not a stereoselective process. Using statistical design of experiments an efficient chiral CE method for determining the extent of protein binding of R and S ketamine to albumin was developed and validated according to ICH Q2 (R1) guideline. The stability of ketamine was also investigated because a yellowish discoloration of an aqueous solution of ketamine developed under heat. XRPD investigations showed the same crystal structure for all batches examined. An untargeted screening using LC HRMS as well as LC UV measurements showed no degradation of ketamine or the presence of impurities in stress and non-stressed ketamine solutions, confirming the stability of ketamine under the stress conditions investigated. The lower the quality of the water used in the stress tests, the more intense the yellow discoloration occurred. The impurity or the mechanism that causes the yellow discoloration could not be identified.}, subject = {Proteinbindung}, language = {en} } @phdthesis{Schlauersbach2023, author = {Schlauersbach, Jonas}, title = {The bile-drug-excipient interplay}, doi = {10.25972/OPUS-29653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The bile system in vertebrates is an evolutionary conserved endogenous solubilization system for hydrophobic fats and poorly water-soluble vitamins. Bile pours out from the gallbladder through the common bile duct into the duodenum triggered by cholecystokinin. Cholecystokinin is released from enteroendocrine cells after food intake. The small intestine is also the absorption site of many orally administered drugs. Most emerging drug candidates belong to the class of poorly water-soluble drugs (PWSDs). Like hydrophobic vitamins, these PWSDs might as well be solubilized by bile. Therefore, this natural system is of high interest for drug formulation strategies. Simulated intestinal fluids containing bile salts (e.g., taurocholate TC) and phospholipids (e.g., lecithin L) have been widely applied over the last decade to approximate the behavior of PWSDs in the intestine. Solubilization by bile can enhance the oral absorption of PWSDs being at least in part responsible for the positive "food effect". The dissolution rate of PWSDs can be also enhanced by the presence of bile. Furthermore, some PWSDs profit from supersaturation stabilization by bile salts. Some excipients solubilizing PWSDs seemed to be promising candidates for drug formulation when investigated in vitro without bile. When tested in vivo, these excipients reduced the bioavailability of drugs. However, these observations have been hardly examined on a molecular level and general links between bile interaction in vitro and bioavailability are still missing. This thesis investigated the interplay of bile, PWSDs, and excipients on a molecular level, providing formulation scientists a blueprint for rational formulation design taking bile/PWSD/excipient/ interaction into account. The first chapter focus on an in silico 1H nuclear magnetic resonance (NMR) spectroscopy-based algorithm for bile/drug interaction prediction. Chapter II to IV report the impact of excipients on bioavailability of PWSDs interacting with bile. At last, we summarized helpful in vitro methods for drug formulation excipient choice harnessing biopharmaceutic solubilization in chapter V. Chapter I applies 1H NMR studies with bile and drugs on a large scale for quantitative structure-property relationship analysis. 141 drugs were tested in simulated intestinal media by 1H NMR. Drug aryl-proton signal shifts were correlated to in silico calculated molecular 2D descriptors. The probability of a drug interacting with bile was dependent on its polarizability and lipophilicity, whereas interaction with lipids in simulated intestinal media components was dependent on molecular symmetry, lipophilicity, hydrogen bond acceptor capability, and aromaticity. The probability of a drug to interact with bile was predictive for a positive food effect. This algorithm might help in the future to identify a bile and lipid interacting drug a priori. Chapter II investigates the impact of excipients on bile and free drug fraction. Three different interaction patterns for excipients were observed. The first pattern defined excipients that interacted with bile and irreversibly bound bile. Therefore, the free drug fraction of bile interacting drugs increased. The second pattern categorized excipients that formed new colloidal entities with bile which had a high affinity to bile interacting drugs. These colloids trapped the drug and decreased the free drug fraction. The last excipient pattern described excipients that formed supramolecular structures in coexistence with bile and had no impact on the free drug fraction. These effects were only observed for drugs interacting with bile (Perphenazine and Imatinib). Metoprolol's free drug fraction, a compound not interacting with bile, was unaffected by bile or bile/excipient interaction. We hypothesized that bile/excipient interactions may reduce the bioavailability of bile interacting drugs. Chapter III addresses the hypothesis from chapter II. A pharmacokinetic study in rats revealed that the absorption of Perphenazine was reduced by bile interacting excipients due to bile/excipient interaction. The simultaneous administration of excipient patterns I and II did not further reduce or enhance Perphenazine absorption. Conversely, the absorption of Metoprolol was not impacted by excipients. This reinforced the hypothesis, that drugs interacting with bile should not be formulated with excipients also interacting with bile. Chapter IV further elaborates which in vitro methods using simulated intestinal fluids are predictive for a drug's pharmacokinetic profile. The PWSD Naporafenib was analyzed in vitro with simulated intestinal fluids and in presence of excipients regarding solubility, supersaturation, and free drug fraction. Naporafenib showed a strong interaction with TC/L from simulated bile. Assays with TC/L, but not without identified one excipient as possibly bioavailability reducing, one as supersaturation destabilizing, and the last as bile not interacting and supersaturation stabilizing excipient. A pharmacokinetic study in beagle dogs outlined and confirmed the in vitro predictions. The Appendix summarizes in vivo predictive methods as presented in chapter I to IV and rationalizes experimental design paving the way towards a biopharmaceutic excipient screening. The first presented preliminary decision tree is transformed into a step-by-step instruction. The presented decision matrix might serve as a blueprint for processes in early phase drug formulation development. In summary, this thesis describes how a drug can be defined as bile interacting or non-interacting and gives a guide as well how to rate the impact of excipients on bile. We showed in two in vivo studies that bile/excipient interaction reduced the bioavailability of bile interacting drugs, while bile non-interacting drugs were not affected. We pointed out that the bile solubilization system must be incorporated during drug formulation design. Simulated gastrointestinal fluids offer a well-established platform studying the fate of drugs and excipients in vivo. Therefore, rational implementation of biopharmaceutic drug and excipient screening steers towards efficacy of oral PWSD formulation design.}, subject = {Solubilisation}, language = {en} } @article{ScheupleinLohrVivoliVegaetal.2023, author = {Scheuplein, Nicolas Julian and Lohr, Theresa and Vivoli Vega, Mirella and Ankrett, Dyan and Seufert, Florian and Kirchner, Lukas and Harmer, Nicholas J. and Holzgrabe, Ulrike}, title = {Fluorescent probe for the identification of potent inhibitors of the macrophage infectivity potentiator (Mip) protein of Burkholderia pseudomallei}, series = {SLAS Discovery}, volume = {28}, journal = {SLAS Discovery}, number = {5}, doi = {10.1016/j.slasd.2023.03.004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349784}, pages = {211-222}, year = {2023}, abstract = {Highlights • Synthesis of a new tracer molecule. • Robust and easy screening method for a broad range of compound activities. • FP assay validation considering limited use of starting material, DMSO tolerance, variation in incubation time and temperature. • Possibility of extension to HTP assay. Abstract The macrophage infectivity potentiator (Mip) protein belongs to the immunophilin superfamily. This class of enzymes catalyzes the interconversion between the cis and trans configuration of proline-containing peptide bonds. Mip has been shown to be important for the virulence of a wide range of pathogenic microorganisms, including the Gram-negative bacterium Burkholderia pseudomallei. Small molecules derived from the natural product rapamycin, lacking its immunosuppression-inducing moiety, inhibit Mip's peptidyl-prolyl cis-trans isomerase (PPIase) activity and lead to a reduction in pathogen load in vitro. Here, a fluorescence polarization assay (FPA) to enable the screening and effective development of BpMip inhibitors was established. A fluorescent probe was prepared, derived from previous pipecolic scaffold Mip inhibitors labeled with fluorescein. This probe showed moderate affinity for BpMip and enabled a highly robust FPA suitable for screening large compound libraries with medium- to high-throughput (Z factor ∼ 0.89) to identify potent new inhibitors. The FPA results are consistent with data from the protease-coupled PPIase assay. Analysis of the temperature dependence of the probe's binding highlighted that BpMip's ligand binding is driven by enthalpic rather than entropic effects. This has considerable consequences for the use of low-temperature kinetic assays.}, language = {en} } @phdthesis{Scheuplein2023, author = {Scheuplein, Nicolas Julian}, title = {Synthesis and Characterization of Antimicrobial Inhibitors of the "Macrophage Infectivity Potentiator" Protein and Fluorescent Probes}, doi = {10.25972/OPUS-32189}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321892}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This dissertation focuses on Mip (macrophage infectivity potentiator protein) inhibitors in response to increasing antibiotic resistance. The study follows an antivirulence approach, which aims to inhibit the non-essential Mip protein without exerting too much selective pressure. Three focus areas were (1) development and synthesis of a fluorescent probe for screening Mip inhibitors via fluorescence polarization; (2) design and synthesis of broad spectrum Mip inhibitors bearing a side chain; and (3) understanding the metabolism of Mip inhibitors and identification of active metabolites. A sub-study addressed the biotinylation of anti-leishmanial compounds from Valeriana wallichii rhizomes, with three tracer molecules synthesized for future pull-down experiments.}, subject = {Antibiotikum}, language = {en} } @article{RaschigRamirez‐ZavalaWiestetal.2023, author = {Raschig, Martina and Ram{\´i}rez-Zavala, Bernardo and Wiest, Johannes and Saedtler, Marco and Gutmann, Marcus and Holzgrabe, Ulrike and Morschh{\"a}user, Joachim and Meinel, Lorenz}, title = {Azobenzene derivatives with activity against drug-resistant Candida albicans and Candida auris}, series = {Archiv der Pharmazie}, volume = {356}, journal = {Archiv der Pharmazie}, number = {2}, doi = {10.1002/ardp.202200463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312295}, year = {2023}, abstract = {Increasing resistance against antimycotic drugs challenges anti-infective therapies today and contributes to the mortality of infections by drug-resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'-dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole-susceptible and fluconazole-resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds.}, language = {en} } @article{MateraKaukCirilloetal.2023, author = {Matera, Carlo and Kauk, Michael and Cirillo, Davide and Maspero, Marco and Papotto, Claudio and Volpato, Daniela and Holzgrabe, Ulrike and De Amici, Marco and Hoffmann, Carsten and Dallanoce, Clelia}, title = {Novel Xanomeline-containing bitopic ligands of muscarinic acetylcholine receptors: design, synthesis and FRET investigation}, series = {Molecules}, volume = {28}, journal = {Molecules}, number = {5}, issn = {1420-3049}, doi = {10.3390/molecules28052407}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311249}, year = {2023}, abstract = {In the last few years, fluorescence resonance energy transfer (FRET) receptor sensors have contributed to the understanding of GPCR ligand binding and functional activation. FRET sensors based on muscarinic acetylcholine receptors (mAChRs) have been employed to study dual-steric ligands, allowing for the detection of different kinetics and distinguishing between partial, full, and super agonism. Herein, we report the synthesis of the two series of bitopic ligands, 12-Cn and 13-Cn, and their pharmacological investigation at the M\(_1\), M\(_2\), M\(_4\), and M\(_5\) FRET-based receptor sensors. The hybrids were prepared by merging the pharmacophoric moieties of the M\(_1\)/M\(_4\)-preferring orthosteric agonist Xanomeline 10 and the M\(_1\)-selective positive allosteric modulator 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) 11. The two pharmacophores were connected through alkylene chains of different lengths (C3, C5, C7, and C9). Analyzing the FRET responses, the tertiary amine compounds 12-C5, 12-C7, and 12-C9 evidenced a selective activation of M\(_1\) mAChRs, while the methyl tetrahydropyridinium salts 13-C5, 13-C7, and 13-C9 showed a degree of selectivity for M\(_1\) and M\(_4\) mAChRs. Moreover, whereas hybrids 12-Cn showed an almost linear response at the M\(_1\) subtype, hybrids 13-Cn evidenced a bell-shaped activation response. This different activation pattern suggests that the positive charge anchoring the compound 13-Cn to the orthosteric site ensues a degree of receptor activation depending on the linker length, which induces a graded conformational interference with the binding pocket closure. These bitopic derivatives represent novel pharmacological tools for a better understanding of ligand-receptor interactions at a molecular level.}, language = {en} } @phdthesis{Masota2023, author = {Masota, Nelson Enos}, title = {The Search for Novel Effective Agents Against Multidrug-Resistant Enterobacteriaceae}, doi = {10.25972/OPUS-30263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302632}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis aimed at searching for new effective agents against Multidrug-Resistant Enterobacteriaceae. This is necessitated by the urgent need for new and innovative antibacterial agents addressing the critical priority pathogens prescribed by the World Health Organization (WHO). Among the available means for antibiotics discovery and development, nature has long remained a proven, innovative, and highly reliable gateway to successful antibacterial agents. Nevertheless, numerous challenges surrounding this valuable source of antibiotics among other drugs are limiting the complete realization of its potential. These include the availability of good quality data on the highly potential natural sources, limitations in methods to prepare and screen crude extracts, bottlenecks in reproducing biological potentials observed in natural sources, as well as hurdles in isolation, purification, and characterization of natural compounds with diverse structural complexities. Through an extensive review of the literature, it was possible to prepare libraries of plant species and phytochemicals with reported high potentials against Escherichia coli and Klebsiella pneumnoniae. The libraries were profiled to highlight the existing patterns and relationships between the reported antibacterial activities and studied plants' families and parts, the type of the extracting solvent, as well as phytochemicals' classes, drug-likeness and selected parameters for enhanced accumulation within the Gram-negative bacteria. In addition, motivations, objectives, the role of traditional practices and other crucial experimental aspects in the screening of plant extracts for antibacterial activities were identified and discussed. Based on the implemented strict inclusion criteria, the created libraries grant speedy access to well-evaluated plant species and phytochemicals with potential antibacterial activities. This way, further studies in yet unexplored directions can be pursued from the indicated or related species and compounds. Moreover, the availability of compound libraries focusing on related bacterial species serves a great role in the ongoing efforts to develop the rules of antibiotics penetrability and accumulation, particularly among Gram-negative bacteria. Here, in addition to hunting for potential scaffolds from such libraries, detailed evaluations of large pool compounds with related antibacterial potential can grant a better understanding of structural features crucial for their penetration and accumulation. Based on the scarcity of compounds with broad structural diversity and activity against Gram-negative bacteria, the creation and updating of such libraries remain a laborious but important undertaking. A Pressurized Microwave Assisted Extraction (PMAE) method over a short duration and low-temperature conditions was developed and compared to the conventional cold maceration over a prolonged duration. This method aimed at addressing the key challenges associated with conventional extraction methods which require long extraction durations, and use more energy and solvents, in addition to larger quantities of plant materials. Furthermore, the method was intended to replace the common use of high temperatures in most of the current MAE applications. Interestingly, the yields of 16 of 18 plant samples under PMAE over 30 minutes were found to be within 91-139\% of those obtained from the 24h extraction by maceration. Additionally, different levels of selectivity were observed upon an analytical comparison of the extracts obtained from the two methods. Although each method indicated selective extraction of higher quantities or additional types of certain phytochemicals, a slightly larger number of additional compounds were observed under maceration. The use of this method allows efficient extraction of a large number of samples while sparing heat-sensitive compounds and minimizing chances for cross-reactions between phytochemicals. Moreover, findings from another investigation highlighted the low likelihood of reproducing antibacterial activities previously reported among various plant species, identified the key drivers of poor reproducibility, and proposed possible measures to mitigate the challenge. The majority of extracts showed no activities up to the highest tested concentration of 1024 µg/mL. In the case of identical plant species, some activities were observed only in 15\% of the extracts, in which the Minimum Inhibitory Concentrations (MICs) were 4 - 16-fold higher than those in previous reports. Evaluation of related plant species indicated better outcomes, whereby about 18\% of the extracts showed activities in a range of 128-512 μg/mL, some of the activities being superior to those previously reported in related species. Furthermore, solubilizing plant crude extracts during the preparation of test solutions for Antibacterial Susceptibility Testing (AST) assays was outlined as a key challenge. In trying to address this challenge, some studies have used bacteria-toxic solvents or generally unacceptable concentrations of common solubilizing agents. Both approaches are liable to give false positive results. In line with this challenge, this study has underscored the suitability of acetone in the solubilization of crude plant extracts. Using acetone, better solubility profiles of crude plant extracts were observed compared to dimethyl sulfoxide (DMSO) at up to 10 \%v/v. Based on lacking toxicity against many bacteria species at up to 25 \%v/v, its use in the solubilization of poorly water-soluble extracts, particularly those from less polar solvents is advocated. In a subsequent study, four galloylglucoses were isolated from the leaves of Paeonia officinalis L., whereby the isolation of three of them from this source was reported for the first time. The isolation and characterization of these compounds were driven by the crucial need to continually fill the pre-clinical antibiotics pipeline using all available means. Application of the bioautography-guided isolation and a matrix of extractive, chromatographic, spectroscopic, and spectrometric techniques enabled the isolation of the compounds at high purity levels and the ascertainment of their chemical structures. Further, the compounds exhibited the Minimum Inhibitory Concentrations (MIC) in a range of 2-256 µg/mL against Multidrug-Resistant (MDR) strains of E. coli and K. pneumonia exhibiting diverse MDR phenotypes. In that, the antibacterial activities of three of the isolated compounds were reported for the first time. The observed in vitro activities of the compounds resonated with their in vivo potentials as determined using the Galleria mellonella larvae model. Additionally, the susceptibility of the MDR bacteria to the galloylglucoses was noted to vary depending on the nature of the resistance enzymes expressed by the MDR bacteria. In that, the bacteria expressing enzymes with higher content of aromatic amino acids and zero or positive net charges were generally more susceptible. Following these findings, a plausible hypothesis for the observed patterns was put forward. The generally challenging pharmacokinetic properties of galloylglucoses limit their further development into therapeutic agents. However, the compounds can replace or reduce the use of antibiotics in livestock keeping as well as in the treatment of septic wounds and topical or oral cavity infections, among other potential uses. Using nature-inspired approaches, a series of glucovanillin derivatives were prepared following feasible synthetic pathways which in most cases ensured good yields and high purity levels. Some of the prepared compounds showed MIC values in a range of 128 - 512 μg/mL against susceptible and MDR strains of Klebsiella pneumoniae, Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococcus faecium (VRE). These findings emphasize the previously reported essence of small molecular size, the presence of protonatable amino groups and halogen atoms, as well as an amphiphilic character, as crucial features for potential antibacterial agents. Due to the experienced limited success in the search for new antibacterial agents using purely synthetic means, pursuing semi-synthetic approaches as employed in this study are highly encouraged. This way, it is possible to explore broader chemical spaces around natural scaffolds while addressing their inherent limitations such as solubility, toxicity, and poor pharmacokinetic profiles.}, subject = {Enterobacteriaceae}, language = {en} } @phdthesis{Leistner2023, author = {Leistner, Adrian Dieter}, title = {Improving the quality analysis of monographed drugs - dapsone, baclofen, acarbose and other selected APIs}, doi = {10.25972/OPUS-30331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303318}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {All presented studies aimed on the improvement of the quality analysis of already monographed drugs. Thereby different LC methods were applied and coupled to i.e., the UV/VIS detector, the CAD or a hyphenation of these detectors, respectively. The choice of the chromatographic system including the detector was largely dependent on the physicochemical properties of the respective analytes. With the risk-assessment report on the API cetirizine we presented an exemplary tool, that can help to minimize the risk of the occurrence of unexpected impurities. An in- deep analysis of each step within synthesis pathway by means of reaction matrices of all compounds was performed. It is essential to understand the complete impurity profile of all reactants, solvents, and catalysts and to include them in the matrix. Finally, the API of this synthesis was checked if all impurities are identified by this tool. Of note, a shortcoming of such a targeted approach is that impurities can still occur, but they are not captured. This disadvantage can be partially compensated by non-targeted approaches if they are performed in parallel with the other studies that represent most of the impurities. However, this work also shows that even in a supposedly simple synthesis, potentially hundreds of by-products can be formed. For each of them, it must be decided individually whether their formation is probable or how their quantity can be minimized in order to obtain APIs, that are as pure as possible. In the dapsone project it was aimed to replace the existing old Ph. Eur. TLC method with a modern RP-HPLC method. This was successful and since Ph. Eur. 10.6, the method developed in this work, became a valid monograph. Within the revision process of the monograph, the individual limits for impurities were tightened. However, this new method needs HPLC instrumentation, suitable to perform gradients. As this is not always available in all control laboratories, we also developed an alternative, more simple method using two different isocratic runs for the impurity analysis. The obtained batch results of both, the new pharmacopoeial method and the more simple one, were in a comparable order of magnitude. Furthermore, within the method development stage of the Ph. Eur. method, we could identify one unknown impurity of the impurity reference by high-resolution MS/MS analysis. Also, in the baclofen project it was aimed to replace the existing Ph. Eur. method with the introduction of an additional impurity to be quantified. A corresponding method was developed and validated. However, due to the harmonization process of the pharmacopoeias, it is currently not used. In addition, we tried to find further, non- 116 SUMMARY chromophoric impurities by means of the CAD. However, except for one counterion of an impurity, no further impurities were found. Also, the aforementioned new impurity could not be detected above the reporting threshold in the batches analyzed. As the only individually specified impurity A is also present at a low level, it can be concluded that the examined batches of baclofen are very pure. The use of universal detectors, such as the CAD can be particularly interesting for compounds with no chromophore or those with only a weak chromophore. Therefore, we decided to take a closer look at the impurity profile of acarbose. Currently, acarbose and its impurities are being studied by low wavelength UV detection at 210 nm. Therefore, the question arose whether there are no other impurities in the API that do not show absorption at this wavelength. CAD, which offers consistent detection properties for all non-volatile compounds, is ideally suited for this purpose. However, it was not so easy to use the CAD together with the UV detector, for example, as a hyphenated detection technique, because the Ph. Eur. method uses phosphate buffers. However, this is non-volatile and therefore inappropriate for the CAD. Therefore, an attempt was made to replace the buffer with a volatile one. However, since this did not lead to satisfactory results and rather the self-degradation process of the stationary phase used could be observed by means of the CAD, it was decided to switch to alternative stationary phases. A column screening also revealed further difficulties with acarbose and its impurities: they show an epimerization reaction at the end of the sugar chain. However, since one wanted to have uniform peaks in the corresponding chromatograms, one had to accelerate this reaction significantly to obtain only one peak for each component. This was best achieved by using two stationary phases: PGC and Amide-HILIC. Impurity-profiling methods could be developed on each of the two phases. In addition, as expected, new impurities could be detected, albeit at a low level. Two of them could even be identified by spiking experiments as the sugar fragments maltose and maltotriose. Taken together, it can be concluded, that this work has contributed significantly to the improvement of the quality analysis of monographed drugs. In addition to the presented general tool for the identification of potential impurities, one of the methods developed, had already been implemented to the Ph. Eur. In an effort to improve the CAD's universal detection capabilities, additional methods have also been developed. Further, new improved methods for the impurity profiling are ready to use.}, subject = {Instrumentelle Analytik}, language = {en} } @article{JedeHenzeMeinersetal.2023, author = {Jede, Christian and Henze, Laura J. and Meiners, Kirstin and Bogdahn, Malte and Wedel, Marcel and van Axel, Valeria}, title = {Development and application of a dissolution-transfer-partitioning system (DTPS) for biopharmaceutical drug characterization}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {4}, issn = {1999-4923}, doi = {10.3390/pharmaceutics15041069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311149}, year = {2023}, abstract = {A variety of in vitro dissolution and gastrointestinal transfer models have been developed aiming to predict drug supersaturation and precipitation. Further, biphasic, one-vessel in vitro systems are increasingly applied to simulate drug absorption in vitro. However, to date, there is a lack of combining the two approaches. Therefore, the first aim of this study was to develop a dissolution-transfer-partitioning system (DTPS) and, secondly, to assess its biopredictive power. In the DTPS, simulated gastric and intestinal dissolution vessels are connected via a peristaltic pump. An organic layer is added on top of the intestinal phase, serving as an absorptive compartment. The predictive power of the novel DTPS was assessed to a classical USP II transfer model using a BCS class II weak base with poor aqueous solubility, MSC-A. The classical USP II transfer model overestimated simulated intestinal drug precipitation, especially at higher doses. By applying the DTPS, a clearly improved estimation of drug supersaturation and precipitation and an accurate prediction of the in vivo dose linearity of MSC-A were observed. The DTPS provides a useful tool taking both dissolution and absorption into account. This advanced in vitro tool offers the advantage of streamlining the development process of challenging compounds.}, language = {en} } @phdthesis{Jaud2023, author = {Jaud, Tobias Armin}, title = {Application based personalized food choices and health sustainment: scientific background and investigation of biomarkers in human tissue specimens}, doi = {10.25972/OPUS-29864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298646}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Dietary fatty acids serve as objective biomarkers for the estimation of habitual diet mainly because biomarkers are free of memory bias or inaccuracies of food databases. The aim of the present work encompassed the implementation of a gas chromatographical method coupled with a mass spectrometrical and flame-ionization detector for analysis of fatty acid biomarkers in human biospecimens, their analytical determination and statistical evaluation in two different study populations and different biospecimens as well as the elaboration of adverse reactions to food ingredients with special focus on food allergies and food intolerances in the context of a possible implementation into an application for consumer health. The first aim was the identification of potential influence of fatty acid biomarkers on desaturase and elongase indexes (Δ9DI, Δ6DI, Δ5DI and ELOVLI5), which are factors in type 2 diabetes risk, in breast adipose tissue from healthy women. Influence of further variables on respective indexes was also investigated. 40 samples were investigated and potential variables were either collected by questionnaire or determined. Principle component analysis was applied for fatty acid biomarkers (PCdiet1, PCdiet2 and PCdiet3 representative for the dietary intake of vegetable oils/nuts, fish and partially hydrogenated vegetable oils), endogenous estrogens (PCE1) and oxysterols (PCOxy1). Multiple linear regression models were applied. Δ9DI and Δ6DI were influenced non-significantly and significantly negatively by PCdiet2 supporting a putative beneficial effect of vegetable oils and nuts on type 2 diabetes risk factors. ELOVLI5 and Δ5DI were influenced significantly and non-significantly positively by PCdiet1 supporting a putative beneficial effect of fish consumption on type 2 diabetes risk factors. On the other hand, PCdiet1 also significantly and non-significantly positively influenced Δ9DI and Δ6DI supporting a putative adverse effect of fish biomarkers on type 2 diabetes risk factors. The opposing influences of PCdiet1 suggesting an ambivalent role of dietary intake of fish on investigated indexes. Δ6DI was significantly positively influenced by PCdiet3 and number of pregnancies supporting a putative adverse effect of partially hydrogenated vegetable oils and pregnancies on type 2 diabetes risk factors. Lifestyle factors like smoking significantly and non-significantly influenced Δ9DI and Δ6DI putatively adversely. Δ5DI was influenced significantly positively by estrogen active drugs suggesting a putative beneficial effect on type 2 diabetes risk factors. It must be considered that a variation coefficient of up to 0.44 only explained 44\% of variance of the respective indexes, suggesting other influencing factors might play a role. The second aim was the implementation of a gas chromatographical method coupled with a mass spectrometrical and flame-ionization detector for analysis of fatty acid biomarkers in human biospecimens. The method was optimized for separation and detection of 40 fatty acids. Mean recovery for tridecanoic acid was x(tridecanoic acid) = 90.51\% and for nonadecanoic acid x(nonadecanoic acid) = 96.21\%. Thus, there was no significant loss of fatty acids with shorter and longer carbon chains over the extraction process to be expected. Limit of detections were calculated in adipose tissue samples and ranged from 0.007 to 0.077\% of the proportion of the respective fatty acid to total fatty acids. The third aim was the investigation if differentiation between breast glandular and adipose tissue had a relevant impact on the analysis of dietary fatty acid biomarkers or if contamination of breast glandular with breast adipose tissue and vice versa was neglectable for the analysis of dietary fatty acid biomarkers. No statistical significant differences were observed for all investigated fatty acid biomarkers (pentadecanoic-, heptadecanoic-, trans palmitoleic-, eicosapentaenoic-, docosahexaenoic-, linoleic and α-linolenic acid) between breast glandular and adipose tissue. Thus, differentiation between breast glandular and adipose tissue seems not to be necessary for the analysis of fatty acids serving as biomarkers for the intake of specific food groups. Potential influence of mixed breast tissue on fatty acid biomarkers analysis seems to be neglectable. The fourth aim was the determination of fatty acid biomarkers in adipose tissue in another study population from healthy participants. 27 adipose tissue samples were analyzed. Milk and ruminant fat biomarkers exhibited proportions of 0.47\% for pentadecanoic acid, 0.34\% for heptadecanoic acid and 0.25\% for trans palmitoleic acid. Fish fatty acid biomarkers revealed proportions of 0.034\% for eicosapentaenoic acid and 0.061\% for docosahexaenoic acid. The mean proportion of vegetable oils and nuts biomarkers were 9.58\% for linoleic acid and 0.48\% for α-linolenic acid in all adipose tissues. Principle component analysis was applied for the fatty acid biomarkers to provide objective markers of habitual diet for this study population. PCdiet1 was mainly characterized by pentadecanoic acid, heptadecanoic acid and trans palmitoleic acid and therefore served as a principle component for the dietary intake of milk and ruminant fat. PCdiet2 and PCdiet3 only exhibited pattern for ω3 and ω6 fatty acids but not for dietary intake of specific food groups and could therefore not used as objective marker. PCdiet1, 2 and 3 explained 82.76\% of variance. The last aim of this thesis was the elaboration of adverse reactions to food ingredients with special focus on food allergies and food intolerances in the context of a possible implementation into an application for consumer health. Scientific information on adverse reactions to food ingredients and trigger substances was provided in this thesis and possible implementation strategies were evaluated. For food allergens, which have regulatory requirements in the context of labelling, a strategy was elaborated, where it is necessary to provide information on the list of ingredients, the nexus 'contain' and the respective food allergen as well as information on the name of the product. For food intolerances, which do not have regulatory requirements, limits were shown in the context of the application. If the elaborated food intolerances shall be implemented into the application, a professional dietary concept has to be developed for every food intolerance because of the complexity of the implementation.}, subject = {Lebensmittelchemie}, language = {en} } @phdthesis{Hofmann2023, author = {Hofmann, Julian}, title = {Synthesis of Sterubin, Flavonoid Hybrids, and Curcumin Bioisosteres and Characterization of their Neuroprotective Effects}, doi = {10.25972/OPUS-26664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266641}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Alzheimer´s disease (AD) is a neurodegenerative disease and the most common form of dementia with still no preventive or curative treatment. Besides several risk factors, age is one of the major risks for AD and with an aging society, there is an urgent need for disease modifying agents. The strategy to address only one target within the intertwined network of AD failed so far. Natural products especially the phytochemical flavonoids, which are poly-phenolic natural products, have shown great potential as disease modifying agents against neurodegenerative disorders like Alzheimer´s disease (AD) with activities even in vivo. Flavonoids are produced by many plants and the native Californian plant Eriodictyon californicum is particularly rich in flavonoids. One of the major flavonoids of E. californicum is sterubin, a very potent agent against oxidative stress and inflammation, two hallmarks and drivers of AD and neurodegeneration. Herein, racemic sterubin was synthesized and separated into its pure (R)- and (S)-enantiomer by chiral HPLC. The pure enantiomers showed comparable neuroprotection in vitro with no significant differences. The stereoisomers were configurationally stable in methanol, but fast racemization was observed in culture medium. Moreover, the activity of sterubin was investigated in vivo, in an AD mouse model. Sterubin showed a significant positive impact on short- and long-term memory at low dosages. A promising concept for the increase of activity of single flavonoids is hybridization with aromatic acids like cinnamic or ferulic acids. Hybridization of the natural products taxifolin and silibinin with cinnamic acid led to an overadditive effect of these compounds in phenotypic screening assays related to neurodegeneration and AD. Because there are more potent agents as taxifolin or silibinin, the hybrids were further developed, and different flavonoid cinnamic acid hybrids were synthesized. The connection between flavonoids and cinnamic acid was achieved by an amide instead of a labile ester to improve the stability towards hydrolysis to gain better "druggability" of the compounds. To investigate the oxidation state of the C-ring of the flavonoid part, the dehydro analogues of the respective hybrids were also synthesized. The compounds show neuroprotection against oxytosis, ferroptosis and ATP-depletion in the murine hippocampal cell line HT22. While no overall trend within the flavanones compared to the flavones could be assigned, the taxifolin and the quercetin derivative were the most active compounds in course of all assays. The quercetin derivate even shows greater activity than the taxifolin derivate in every assay. As desired no hydrolysis product was found in cellular uptake experiments after 4h, whereas different metabolites were found. The last part of this work focused on synthetic bioisoteres of the natural product curcumin. Due to the drawbacks of curcumin and flavonoids arising from poor pharmacokinetics, rapid metabolism and sometimes instability in aqueous medium, we have examined the biological activity of azobenzene compounds designed as bioisoteres of curcumin, carrying the pharmacophoric catechol group of flavonoids. These bioisosteres exceeded their parent compounds in counteracting intracellular oxidative stress, neuroinflammation and amyloid-beta aggregation. By incorporating an azobenzene moiety and the isosteric behaviour to the natural parent compounds, these compounds may act as molecular tools for further investigation towards the molecular mode of action of natural products.}, subject = {Organische Synthese}, language = {en} } @phdthesis{Heinz2023, author = {Heinz, Christine Silvia}, title = {Synthesis of Analogues and Hybrid Ligands of Pilocarpine for the Study of Muscarinic Receptor Dynamics}, doi = {10.25972/OPUS-28148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281486}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Muscarinic acetylcholine receptors (mAChRs) are involved in signal transmission at the synapses of the parasympathetic nervous system. The five subtypes of mAChRs regulate various body functions such as heart function, gland secretion, memory, and learning. For the development of drugs with the least side-effects possible, the molecular causes of subtype selectivity and signalling bias are under investigation. In this context, the study of dualsteric ligands binding simultaneously to the orthosteric and the allosteric binding sites of the receptor is of high interest. To date, dualsteric ligands were synthesised as hybrids of full agonists or superagonists being the orthosteric element, linked to known subtype selective allosteric fragments. In this work, the existing library was expanded to hybrid ligands based on the partial agonist pilocarpine. A suitable linker attachment point to pilocarpine was investigated. For this aim, pilocarpine (2), isopilocarpine (15), pilosinine (16) and desmethyl pilosinine (35) were synthesised as orthosteric ligands and orthosteric fragments for the construction of the hybrid molecules (Figure 42). Pilocarpine was liberated from the commercial hydrochloride or nitrate salt and isopilocarpine was generated by epimerisation of pilocarpine. Pilosinine was synthesised in a Michael addition reaction of a dithiane carrying the imidazole moiety 82 onto the lactone precursor furan-2(5H)-one (83) followed by complete deprotection (Figure 43a).[133] The desmethyl pilosinine (35) was obtained in a newly developed synthetic route based on a Horner-Wadsworth-Emmons (HWE) reaction to build the methylene bridge between the imidazole aldehyde and the precursor of the lactone moiety 57 (Figure 43b). All four orthosters were converted to the respective dualsteric compounds with a naphmethonium fragment as allosteric moiety. The four orthosteric fragments and the four hybrid molecules with a linker length of six methylene units were tested for their dose dependent G protein recruitment at the receptor subtypes M1-5 using a mini-G nanoBRET assay. The study of the orthosteric ligands revealed that pilocarpine has the highest ability of all four orthosters to induce activity at all receptor subtypes. A change of the cis- to a trans-configuration of the lactone substituents or a complete removal of the ethyl substituent provoked a significant reduction of activity. Removal of the methyl substituent of the imidazole moiety led to improved receptor activation. The efficacies of the hybrid ligands show that the linker attachment at the imidazole moiety of pilocarpine and its analogues does not abolish activity and hybrid formation of isopilocarpine even improved receptor activation. Thus, the linker attachment point seems a valid choice, but linker length might not be optimum. In contrast to the orthosters, the trans-substitution of the lactone was advantageous for receptor activation of the hybrid ligands. The hybrid without a methyl substituent at the imidazole (69) had an increased efficacy. Additionally, the naphmethonium fragment lowered the maximum effect of pilocarpine, whereas the activity of isopilocarpine was increased. The intensity of both effects was influenced by the subtype selectivity produced by naphmethonium leading, in the case of the pilocarpine hybrid, to less decreased responses or, in the case of the isopilocarpine hybrid, to more increased responses at the M2 and M4 receptors. The results generally lead to the assumption that the allosteric moiety strongly influences the binding poses of the hybrid ligands so that the orthosteric fragments do not interact with the binding site in the same way as the orthosters alone. A second project was based on molecular dynamics simulations of the binding pose of pilocarpine,[73] leading to the hypothesis that the partial agonism of pilocarpine results from an equilibrium between an agonistic and an antagonistic binding pose at the orthosteric binding site of the receptor. The ratio of occupancy of both binding poses determines the observed efficacy of pilocarpine. The orthosteric binding site provides more space for the ethyl substituent in the supposed antagonistic pose than in the agonistic binding pose. This hypothesis was tested by the synthesis and pharmacological evaluation of pilocarpine analogues with alkyl substituents of different sizes at the lactone (16, 31a, c, d) (Figure 44). The analogues with larger alkyl residues are expected to shift the equilibrium towards the antagonistic binding pose, the analogues with smaller residues should have the inverse effect. The synthesis of the pilocarpine analogues was first attempted as a mixture of stereoisomers which were supposed to be separated at the end of the synthetic route. The racemic mixture of the thermodynamically more stable trans-isomers of the target compounds was prepared in a one-pot Michael-addition-alkylation reaction of a dithiane imidazole onto furan-2(5H)-one similarly to the synthesis of pilosinine (Figure 45). The resulting enolate was quenched by an iodoalkane to achieve alkylation of the lactone and subsequent complete deprotection yielded the racemic trans-analogues of pilocarpine.[133] After unsuccessful attempts of chiral resolution, the mixture of trans-isomers was converted to a mixture of all four possible diastereomers in a kinetic epimerisation reaction.[95] A separation of the stereoisomers was not possible in this project so only the racemic molecule 16 (pilosinine, R = H) was obtained from this synthetic route. For the selective synthesis of the cis-isomers following a patent from Reimann,[146] both stereocenters of the target molecules were produced in the last synthetic step by a syn-hydrogenation of the α,β-unsaturated precursor (Figure 46). The racemic pilocarpine analogues, except the butyl derivative (31d), were purified by crystallisation as their nitrate salts. This provided the racemic mixtures with less than 8\% of the trans-isomers as impurity. The racemic pilocarpine (2), itself, was obtained with 15\% trans-impurity and was used as reference compound. Additionally, the possibility of chiral resolution by chromatographic methods was demonstrated in the case of the methyl derivative (31a). The pharmacological testing of the desired enantiomer of 31a is in progress.}, subject = {Muskarinrezeptor}, language = {en} }