@misc{GottschlichDunkelDrenckhahnetal.2020, author = {Gottschlich, G{\"u}nter and Dunkel, Franz G. and Drenckhahn, Detlev and Weber, Heinrich E. and Gallo, Lorenzo}, title = {Forum Geobotanicum Vol. 9 (2020)}, volume = {9(2020)}, editor = {Meierott, Lenz and Drenckhahn, Detlev and Dunkel, Franz G. and Ewald, J{\"o}rg and Fleischmann, Andreas}, issn = {1867-9315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298919}, year = {2020}, abstract = {Forum Geobotanicum is an electronic journal devoted to disseminate information concerning geographical distribution, ecology, morphology, taxonomy and conservation of vascular plants in the European Union with a main focus on middle Europe. It covers from molecular biology to environmental aspects. The focus is to publish original papers, reviews and announcements for the educated generalist as well as the specialist in this broad field. Forum Geobotanicum does not aim to supplant existing paper journals, but will be much more flexible in format, publication time and world-wide distribution than paper journals. Many important studies are being currently published in local journals and booklets and some of them are published privately. Hence, these studies will become aware to only a limited readership. Forum Geobotanicum will encourage authors of such papers to submit them as special issues of the journal. Moreover, the journal is planning to build up an E-mail-address section to support communication between geobotanists in Europe. The editors are optimistic that this electronic journal will develop to a widely used communication forum that will help to stimulate activities in the entire field of geobotany in middle Europe. To overcome problems of long term archivation and effective taxonomic publication of articles published electronically in Forum Geobotanicum, print versions of each volume of the journal and appropriate digital storage devices will be delivered freely to selected university libraries and state libraries in middle Europe.}, subject = {Geobotanik}, language = {de} } @article{MambrettiKistnerMayeretal.2016, author = {Mambretti, Egle M. and Kistner, Katrin and Mayer, Stefanie and Massotte, Dominique and Kieffer, Brigitte L. and Hoffmann, Carsten and Reeh, Peter W. and Brack, Alexander and Asan, Esther and Rittner, Heike L.}, title = {Functional and structural characterization of axonal opioid receptors as targets for analgesia}, series = {Molecular Pain}, journal = {Molecular Pain}, number = {12}, doi = {10.1177/1744806916628734}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145917}, pages = {1-17}, year = {2016}, abstract = {Background Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in na{\"i}ve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. Results Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala\(^2\), N-MePhe\(^4\), Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in na{\"i}ve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl lead to a recruitment of β-arrestin-2 to the membrane followed by a β-arrestin-2 reappearance in the cytosol and MOP internalization. Pretreatment with hypertonic saline prevented MOP internalization. Conclusion MOPs are present and functional in the axonal membrane from na{\"i}ve animals. Hypertonic saline acutely decreases ligand-induced internalization of MOP and thereby might improve MOP function. Further studies should explore potential clinical applications of opioids together with enhancers for regional analgesia.}, language = {en} } @phdthesis{Ulzheimer2003, author = {Ulzheimer, Jochen C.}, title = {Funktionelle Charakterisierung der Transportproteine f{\"u}r Organische Kationen rOCT1 und hOCT2 unter besonderer Ber{\"u}cksichtigung der cis-/trans-Asymmetrie von rOCT1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6444}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {rOCT1 und hOCT2 sind zwei homologe Transportproteine f{\"u}r organische Kationen, die in Niere und Leber den ersten Schritt der transepithelialen Sekretion von Metaboliten und Xenobiotika vermitteln. Eines ihrer wesentlichen Charakteristika ist neben der Potentialabh{\"a}ngigkeit die Polyspezifit{\"a}t hinsichtlich Transportsubstraten und Hemmstoffen. Beide Transporter k{\"o}nnen als Uniporter klassifiziert werden, d.h. sie besitzen keine obligate Kopplung an ein Austausch- oder Cosubstrat wie z.B. Natrium, Protonen oder andere organische Kationen. Dar{\"u}berhinaus zeigen sie das f{\"u}r Transportproteine typische und von Kan{\"a}len distinkte Charakteristikum der trans-Stimulierbarkeit. Mit rOCT1 konnten erstmals f{\"u}r einen Prototypen der Transportersuperfamilie SLC22 n{\"a}here Aufschl{\"u}sse {\"u}ber den Transportmechanismus erhalten werden. Zum einen wurde nachgewiesen, daß rOCT1 eine direktionale Asymmetrie besitzt, d.h. unter S{\"a}ttigungsbedingungen besteht eine kinetische Bevorzugung der Transportrichtung von extra- nach intrazellul{\"a}r um den Faktor zwei bis f{\"u}nf. Zum anderen wurden anhand von rOCT1 neue Erkenntnisse zum Bindungs- und Interaktionsverhalten von Hemmstoffen und Transportsubstraten in Abh{\"a}ngigkeit von der Transportrichtung gewonnen. Hierbei erscheint das bisherige Modell von topologisch festgelegter kompetitiver und allosterischer Hemmung zu stark vereinfacht und nicht zutreffend. Die Bindung von Transportsubstraten und die dadurch induzierten Konformations{\"a}nderungen scheinen selbst die Bindungseigenschaften von Hemmstoffen in mehreren Zust{\"a}nden zu beeinflussen. Auch scheinen Transport- und Ionenleitf{\"a}higkeit von OCT zu differenzieren zu sein. Zur Kl{\"a}rung der Fragestellungen wurde das Expressionsmodell Xenopus-Oozyte durch die Etablierung der sogenannten Effluxmethodik funktionell und methodisch wesentlich erweitert.}, language = {de} } @phdthesis{Koppatz2005, author = {Koppatz, Stefan}, title = {Funktionelle Charakterisierung von Chim{\"a}ren der organischen Kationentransporter zur Aufkl{\"a}rung der Bedeutung der großen extrazellul{\"a}ren Schleife}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16247}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Die OCT-Transporterfamilie spielt bei der Ausscheidung von Arzneimitteln und Neurotransmittern in Leber und Niere eine wichtige Rolle. Die Transporter der OCT-Familie weisen neben 12 membranspannenden a-Helices eine große extrazellul{\"a}re Schleife zwischen der ersten und der zweiten Transmembrandom{\"a}ne auf. In der vorliegenden Arbeit wurde der Versuch unternommen, die Funktion der großen extrazellul{\"a}ren Schleife aufzukl{\"a}ren. Es wurden Chim{\"a}ren charakterisiert, bei denen die großen extrazellul{\"a}ren Schleifen von zwei Subtypen der organischen Kationentransporter der Ratte (rOCT1 und rOCT2) ausgetauscht wurden. Außerdem wurde untersucht, ob die Transportfunktion erhalten bleibt, wenn die entsprechende extrazellul{\"a}re Schleife eines organischen Anionentransporters (rOAT1) oder eines Glucosetransporters der gleichen Superfamilie (hGLUT1) an die Position der großen extrazellul{\"a}ren Schleife von rOCT1 eingef{\"u}gt wird. Bei den Transportmessungen an den Chim{\"a}ren wurde die essentielle Bedeutung der großen extrazellul{\"a}ren Schleife f{\"u}r die Expression bzw. die Funktion der OCT gezeigt. Die Daten deuten darauf hin, dass die große extrazellul{\"a}re Schleife der organischen Kationentransporter eine strukturelle Funktion besitzt. Sie sprechen nicht f{\"u}r eine direkte Beteiligung an der Substratbindungstasche dieser Transporter, legen aber nahe, dass die Schleife die Konformation der Substratbindungstasche beeinflusst.}, language = {de} } @article{JanschGuentherWaideretal.2018, author = {Jansch, Charline and G{\"u}nther, Katharina and Waider, Jonas and Ziegler, Georg C. and Forero, Andrea and Kollert, Sina and Svirin, Evgeniy and P{\"u}hringer, Dirk and Kwok, Chee Keong and Ullmann, Reinhard and Maierhofer, Anna and Flunkert, Julia and Haaf, Thomas and Edenhofer, Frank and Lesch, Klaus-Peter}, title = {Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3}, series = {Stem Cell Research}, volume = {28}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2018.02.005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176654}, pages = {136-140}, year = {2018}, abstract = {Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.}, language = {en} } @phdthesis{Mekala2019, author = {Mekala, SubbaRao}, title = {Generation of cardiomyocytes from vessel wall-resident stem cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Myocardial infarction (MI) is a major cause of health problems and is among the leading deadly ending diseases. Accordingly, regenerating functional myocardial tissue and/or cardiac repair by stem cells is one of the most desired aims worldwide. Indeed, the human heart serves as an ideal target for regenerative intervention, because the capacity of the adult myocardium to restore itself after injury or infarct is limited. Thus, identifying new sources of tissue resident adult stem or progenitor cells with cardiovascular potential would help to establish more sophisticated therapies in order to either prevent cardiac failure or to achieve a functional repair. Ongoing research worldwide in this field is focusing on a) induced pluripotent stem (iPS) cells, b) embryonic stem (ES) cells and c) adult stem cells (e. g. mesenchymal stem cells) as well as cardiac fibroblasts or myofibroblasts. However, thus far, these efforts did not result in therapeutic strategies that were transferable into the clinical management of MI and heart failure. Hence, identifying endogenous and more cardiac-related sources of stem cells capable of differentiating into mature cardiomyocytes would open promising new therapeutic opportunities. The working hypothesis of this thesis is that the vascular wall serves as a niche for cardiogenic stem cells. In recent years, various groups have identified different types of progenitors or mesenchymal stem cell-like cells in the adventitia and sub-endothelial zone of the adult vessel wall, the so called vessel wall-resident stem cells (VW-SCs). Considering the fact that heart muscle tissue contains blood vessels in very high density, the physiological relevance of VW-SCs for the myocardium can as yet only be assumed. The aim of the present work is to study whether a subset of VW-SCs might have the capacity to differentiate into cardiomyocyte-like cells. This assumption was challenged using adult mouse aorta-derived cells cultivated in different media and treated with selected factors. The presented results reveal the generation of spontaneously beating cardiomyocyte-like cells using specific media conditions without any genetic manipulation. The cells reproducibly started beating at culture days 8-10. Further analyses revealed that in contrast to several publications reporting the Sca-1+ cells as cardiac progenitors the Sca-1- fraction of aortic wall-derived VW-SCs reproducibly delivered beating cells in culture. Similar to mature cardiomyocytes the beating cells developed sarcomeric structures indicated by the typical cross striated staining pattern upon immunofluorescence analysis detecting α-sarcomeric actinin (α-SRA) and electron microscopic analysis. These analyses also showed the formation of sarcoplasmic reticulum which serves as calcium store. Correspondingly, the aortic wall-derived beating cardiomyocyte-like cells (Ao-bCMs) exhibited calcium oscillations. This differentiation seems to be dependent on an inflammatory microenvironment since depletion of VW-SC-derived macrophages by treatment with clodronate liposomes in vitro stopped the generation of Ao bCMs. These locally generated F4/80+ macrophages exhibit high levels of VEGF (vascular endothelial growth factor). To a great majority, VW-SCs were found to be positive for VEGFR-2 and blocking this receptor also stopped the generation VW-SC-derived beating cells in vitro. Furthermore, the treatment of aortic wall-derived cells with the ß-receptor agonist isoproterenol or the antagonist propranolol resulted in a significant increase or decrease of beating frequency. Finally, fluorescently labeled aortic wall-derived cells were implanted into the developing chick embryo heart field where they became positive for α-SRA two days after implantation. The current data strongly suggest that VW-SCs resident in the vascular adventitia deliver both progenitors for an inflammatory microenvironment and beating cells. The present study identifies that the Sca-1- rather than Sca-1+ fraction of mouse aortic wall-derived cells harbors VW-SCs differentiating into cardiomyocyte-like cells and reveals an essential role of VW-SCs-derived inflammatory macrophages and VEGF-signaling in this process. Furthermore, this study demonstrates the cardiogenic capacity of aortic VW-SCs in vivo using a chimeric chick embryonic model.}, subject = {Herzmuskelzelle}, language = {en} } @article{WoersdoerferDaldaKernetal.2019, author = {W{\"o}rsd{\"o}rfer, Philipp and Dalda, Nahide and Kern, Anna and Kr{\"u}ger, Sarah and Wagner, Nicole and Kwok, Chee Keong and Henke, Erik and Erg{\"u}n, S{\"u}leyman}, title = {Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-52204-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202681}, pages = {15663}, year = {2019}, abstract = {Organoids derived from human pluripotent stem cells are interesting models to study mechanisms of morphogenesis and promising platforms for disease modeling and drug screening. However, they mostly remain incomplete as they lack stroma, tissue resident immune cells and in particular vasculature, which create important niches during development and disease. We propose, that the directed incorporation of mesodermal progenitor cells (MPCs) into organoids will overcome the aforementioned limitations. In order to demonstrate the feasibility of the method, we generated complex human tumor as well as neural organoids. We show that the formed blood vessels display a hierarchic organization and mural cells are assembled into the vessel wall. Moreover, we demonstrate a typical blood vessel ultrastructure including endothelial cell-cell junctions, a basement membrane as well as luminal caveolae and microvesicles. We observe a high plasticity in the endothelial network, which expands, while the organoids grow and is responsive to anti-angiogenic compounds and pro-angiogenic conditions such as hypoxia. We show that vessels within tumor organoids connect to host vessels following transplantation. Remarkably, MPCs also deliver Iba1\(^+\) cells that infiltrate the neural tissue in a microglia-like manner.}, language = {en} } @phdthesis{Guenther2018, author = {G{\"u}nther, Katharina}, title = {Generation of early human neuroepithelial progenitors from primary cells for biomedical applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150348}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Patient-specific induced pluripotent stem cells (iPSCs) emerged as a promising cell source for disease modeling and drug screening as well as a virtually unlimited source for restorative therapy. The thesis deals with three major topics to help realizing biomedical applications with neural stem cells. To enable the generation of transgene-free iPSCs, alternatives to retroviral reprogramming were developed. Hence, the adaptation and evaluation of reprogramming using excisable lentiviral constructs, Sendai virus (SeV) and synthetic mRNA-based methods was assessed in the first part of this thesis. hiPSCs exhibit the pluripotency markers OCT4, SSEA-4, TRA1-60 which were confirmed by immunofluorescence and flow cytometry. Besides, the potential to differentiate in cell types of all three germ layers was detected, confirming pluripotent identity of proliferating colonies resulting from various reprogramming strategies. However, major differences such as high efficiency with SeV in contrast to a relatively low efficiency with mRNA in regard to passage number and the phenotype of starting fibroblasts were observed. Furthermore, a prolonged clone- and passage-dependent residual presence of viral RNA genes was identified in SeV-iPSCs for up to 23 passages using RT-PCR underlining the importance of careful monitoring of clone selection. In contrast, viral-free reprogramming by synthetic mRNA represents a fully non-integrative approach but requires further refinement to be efficiently applicable to all fibroblasts. The second part of this thesis deals with the establishment of a rapid monolayer approach to differentiate neural progenitor cells from iPSCs. To achieve this, a two-step protocol was developed allowing first the formation of a stable, primitive NPC line within 7 days which was expanded for 2-3 passages. In a second step, a subsequent adaptation to conditions yielding neural rosette-like NPCs followed. Both neural lines were demonstrated to be expandable, cryopreservable and negative for the pluripotency marker OCT4. Furthermore, a neural precursor identity including SOX1, SOX2, PAX6, Nestin was confirmed by immunofluorescence and quantitative RT-PCR. Moreover, the differentiation resulted in TUJ1-positive neurons and GFAP-positive astrocytes. Nonetheless, the outcome of glial differentiation from primitive NSCs remained low, whereas FGF/EGF-NPCs were efficiently differentiated into GFAP-positive astrocytes which were implicated in a cellular model of the blood brain barrier. The third and major objective of this study was to generate human early neural progenitor cells from fetal brain tissue with a wide neural differentiation capacity. Therefore, a defined medium composition including small molecules and growth factors capable of modulation of crucial signaling pathways orchestrating early human development such as SHH and FGF was assessed. Indeed, specific culture conditions containing TGFβ inhibitor SB431542, SHH agonist Purmorphamine, GSK3β inhibitor CHIR99021 and basic FGF, but no EGF enabled robust formation of early neuroepithelial progenitor (eNEP) colonies displaying a homogeneous morphology and a high proliferation rate. Moreover, primary eNEPs exhibit a relatively high clonogenicity of more than 23 \% and can be monoclonally expanded for more than 45 passages carrying a normal karyotype. Characterization by immunofluorescence, flow cytometry and quantitative RT-PCR revealed a distinct NPC profile including SOX1, PAX6, Nestin and SOX2 and Prominin. Furthermore, primary eNEPs show NOTCH and HES5 activation in combination with non-polarized morphology, indicative of an early neuroepithelial identity. Microarray analysis unraveled SOX11, BRN2 and other HES-genes as characteristic upregulated genes. Interestingly, eNEPs were detected to display ventral midbrain/hindbrain regional identity. The validation of yielded cell types upon differentiation indicates a strong neurogenic potential with more than 90 \% of TUJ1-positive neurons. Moreover, astrocytes marked by GFAP and putative myelin structures indicating oligodendrocytes were identified. Electrophysiological recordings revealed functionally active neurons and immunofluorescence indicate GABAergic, glutamatergic, dopaminergic and serotonergic subtypes. Additionally, putative physiological synapse formation was observed by the presence of Synapsin and PSD-95 as well as by ultrastructural examination. Notably, rare neurons stained positive for the peripheral neuronal marker Peripherin suggesting the potential of eNEPS to give rise to cells of neural tube and neural crest origin. By the application of specific differentiation protocols an increase of TH-positive neurons or neural crest-derivatives such as putative A- and C-sensory neurons and mesenchymal cells was identified. Taken together, primary eNEPs might help to elucidate mechanisms of early human neurodevelopment and will serve as a novel source for cell replacement and further biomedical applications.}, subject = {progenitors}, language = {en} } @article{RubtsovChernovGorboulevetal.1985, author = {Rubtsov, P. M. and Chernov, V. G. and Gorboulev, Valentin G. and Parsadanyan, A. S. and Sverdlova, P. S. and Chupeeva, V. V. and Golova, Yu. B. and Batchikova, N. V. and Zvirblis, G. S. and Skryabin, K. G. and Bayev, A. A.}, title = {Genetic engineering of peptide hormones}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46964}, year = {1985}, abstract = {Peptide and polypeptide hormones represent an extensive group of biologically active compounds of important significance for medicine and agriculture. In recent years genetic engineering methods have been used to create strains of microorganisms synthesizing eukaryotic proteins, including hormones and their precursors. The first stage of such developments is the isolation of DNA coding the des~red product. We have accomplished the cloning of the cDNA of a number of polypeptide and peptide hormones of the pituitary of man and domestic animals. The model gene of human calcitonin has also been synthesized and cloned. The obtained genes are being used to develop methods for the microbiological synthesis of human and animal-hormones.}, language = {en} } @article{RubtsovOganessyanGorboulevetal.1988, author = {Rubtsov, P. M. and Oganessyan, R. G. and Gorboulev, Valentin G. and Skryabin, K. G. and Bayev, A. A.}, title = {Genetic engineering of peptide hormones : II. Possible polymorphism of preprolactin in cattle. Data of molecular cloning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46975}, year = {1988}, abstract = {Primary structure is determined of an insertion of a clone isolated from the library of hypophyseal cDNA of cattle by hybridization with a probe specific for prolactin. Analysis of nucleotide sequences showed that in the process of cloning, reorganization occurred in structure of preprolactin cDNA, including an inversion of the 5'-terminal and deletion of the central section of cDNA. Nevertheless, from structure of cDNA, nucleotide sequences can be deduced of extended 5'- and 3'-terminal sections of preprolactin mRNA in cattle with lengths of 257 and 551 nucleotide residues, respectively. When these sequences are compared to those established previously, some differences were found in primary structure. The most important of them is the presence of an additional codon which codes alanine at the position (-22) of the signal peptide. It is suggested that heterogeneity of preprolactin mRNA of cattle in the section coding the signal peptide is the result of alternative splicing, as was shown for preprolactin mRNA in rats.}, language = {en} } @article{ZvirblisGorboulevRubtsovetal.1988, author = {Zvirblis, G. S. and Gorboulev, Valentin G. and Rubtsov, P. M. and Chernov, B. K. and Golova, Yu. B. and Pozmogova, G. E. and Skryabin, K. G. and Bayev, A. A.}, title = {Genetic engineering of peptide hormones : III. Cloning of cDNA of porcine growth hormone and construction of gene for expression of hormone in bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46958}, year = {1988}, abstract = {Results are presented of cloning cDNA of procine growth hormone, analysis of its primary structure, and creation of a construction capable of expression of this cDNA in Esqheriahia coti cells. It is shown that in the population of mRNA coding porcine growth hormone, heterogeneity is noted which is manifested not only at the level of the nucleotide sequence, but also is reflected in the amino acid sequence of the mature hormone.}, language = {en} } @article{Koepsell2020, author = {Koepsell, Hermann}, title = {Glucose transporters in brain in health and disease}, series = {Pfl{\"u}gers Archiv - European Journal of Physiology}, volume = {472}, journal = {Pfl{\"u}gers Archiv - European Journal of Physiology}, issn = {0031-6768}, doi = {10.1007/s00424-020-02441-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232746}, pages = {1299-1343}, year = {2020}, abstract = {Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters incapillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-D-glucosecotransporters SGLT1 are expressed. The glucose transporters mediate uptake of D-glucose across the blood-brain barrier anddelivery of D-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demandsin response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified andproposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based onexperiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and theircerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, andSGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functionalchanges of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer's disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy defi-ciency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome}, language = {en} } @article{Koepsell2020, author = {Koepsell, Hermann}, title = {Glucose transporters in the small intestine in health and disease}, series = {Pfl{\"u}gers Archiv - European Journal of Physiology}, volume = {472}, journal = {Pfl{\"u}gers Archiv - European Journal of Physiology}, issn = {0031-6768}, doi = {10.1007/s00424-020-02439-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232552}, pages = {1207-1248}, year = {2020}, abstract = {Absorption of monosaccharides is mainly mediated by Na\(^+\)-d-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of d-glucose and d-galactose while GLUT5 is relevant for d-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal d-glucose concentrations, respectively. At high luminal d-glucose, the abundance SGLT1 in the BBM is increased. Hence, d-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity d-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease d-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between d-fructose transport and metabolism, are discussed.}, language = {en} } @phdthesis{Loeser2002, author = {L{\"o}ser, Andreas}, title = {Herstellung und Charakterisierung von Antik{\"o}rpern gegen die Geschmacksrezeptoren T1R1 und T1R2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Gustducin ist ein G-Protein, das bei der Geschmackswahrnehmung von "s{\"u}ss" und "bitter" eine Rolle spielt. Es wurde auch im Magen-Darm-Trakt entdeckt. Die Geschmacksrezeptoren T1R1 und T1R2 sind zu 10-20\% mit Gustducin auf der Zunge coexprimiert. Kommen auch sie im Magen-Darm-Trakt vor ?}, language = {de} } @article{DunkelHildelResseguier2007, author = {Dunkel, Franz G. and Hildel, Werner and Ress{\´e}guier, Peter}, title = {Hieracium fallax Willd. und weitere Hieracium echioides-Zwischenarten im nordwestlichen Bayern}, doi = {10.3264/FG.2007.0427}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35337}, year = {2007}, abstract = {Die Grenze des riesigen eurasiatisch-kontinentalen Areals von Hieracium echioides Lumn. verl{\"a}uft durch Mitteldeutschland, Zwischenarten aus der Hieracium echioides-Verwandtschaft (sect. Echinina) dringen westlich bis in die Oberrheinebene vor, sind aber im {\"u}brigen S{\"u}den und S{\"u}dosten Deutschlands sehr selten oder fehlen. In den letzten Jahren wurden im Nordwesten Bayerns neue Wuchsorte von Hieracium auriculoides L{\´a}ng (MTB 5526.31, 5924.44, 6125.13, 6223.22), H. calodon Tausch ex Peter (6123.21, 6125.13) und H. fallax Willd. (6223.21) nachgewiesen. Dies stellt den zweiten aktuellen Nachweis von H. fallax in Bayern dar, bemerkenswert ist ein Nachweis von H. auriculoides in der Rh{\"o}n in ca. 700 m Meeresh{\"o}he.}, subject = {Habichtskraut}, language = {de} } @article{GottschlichDrenckhahnMeierottetal.2023, author = {Gottschlich, G{\"u}nter and Drenckhahn, Detlev and Meierott, Lenz and Zonneveld, Ben}, title = {Hieracium maculatum subsp. pseudogougetianum, eine neue Unterart aus dem Mainfr{\"a}nkischen Muschelkalkgebiet}, series = {Forum Geobotanicum}, volume = {11}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2023.0923}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327601}, pages = {15-20}, year = {2023}, abstract = {In Lower Franconia/Northern Bavaria, a well-defined subspecies of the Hieracium maculatum group was detected. This subspecies is restricted to the slopes of the Main valley between W{\"u}rzburg and Hasloch with a hot spot (>90\% of total population) between the villages Th{\"u}ngersheim and Retzbach. Due to some similarities with H. glaucinum subsp. prasiophaeum (synonym: subsp. gougetianum) the subspecies is named H. maculatum subsp. pseudogougetianum. This subspecies grows preferentially on shell-bearing limestone gravels and begins flowering as early as mid-April. Head involucra are whitish hairy mixed with dark stalked glands. The basal leaf rosette consists of ovate to elliptic, toothed to serrate, dark spotted leaves, glabrous, glaucous above. Stems bear 1-3(4) stalked stem leaves and usually form long lateral flowering branches from the leaf axils. Like some other H. maculatum subspecies, H. maculatum subsp. pseudogougetianum is tetraploid with a mean genome weight (2C value) of 14.5 pg, distinguishing it from the H. glaucinum group, whose studied taxa are invariably triploid (mean 10.1 pg).}, subject = {Korbbl{\"u}tler}, language = {de} } @article{Gottschlich2023, author = {Gottschlich, G{\"u}nter}, title = {Hieracium rotundatum subsp. silvae-bavaricae, eine neue Hieracium-Sippe aus dem Bayerischen Wald (Deutschland)}, series = {Forum Geobotanicum}, volume = {11}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2023.0912}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327145}, pages = {8-14}, year = {2023}, abstract = {Hieracium rotundatum subsp. silvae-bavaricae is described as new for science and illustrated. The new subspecies belongs to a group of species (H. rotundatum, H. transylvanicum) whose main distribution is in the Balkans. The changeful nomenclatural history of the species name is described. Diagnostic features to distinguish the growth habit-similar species H. murorum, H. rotundatum and H. transylvanicum are discussed. Particular attention is drawn to the importance of the development of the basic leaf cycle. Contrary to previous knowledge, the northwestern distribution limit of H.rotundatum extends now to southeastern Bavaria. During the search for H. rotundatum a morphologically conspicuous subspecies of H. rotundatum could be detected, which is described here as new.}, subject = {Habichtskraut}, language = {de} } @article{KleinBenchellalKleffetal.2013, author = {Klein, Diana and Benchellal, Mohamed and Kleff, Veronika and Jakob, Heinz G{\"u}nther and Erg{\"u}n, S{\"u}leyman}, title = {Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells}, series = {Scientific Reports}, volume = {3}, journal = {Scientific Reports}, number = {2178}, doi = {10.1038/srep02178}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131496}, year = {2013}, abstract = {Human vascular wall-resident CD44+ multipotent stem cells (VW-MPSCs) within the vascular adventitia are capable to differentiate into pericytes and smooth muscle cells (SMC). This study demonstrates HOX-dependent differentiation of CD44(+) VW-MPSCs into SMC that involves epigenetic modification of transgelin as a down-stream regulated gene. First, HOXB7, HOXC6 and HOXC8 were identified to be differentially expressed in VW-MPSCs as compared to terminal differentiated human aortic SMC, endothelial cells and undifferentiated pluripotent embryonic stem cells. Silencing these HOX genes in VW-MPSCs significantly reduced their sprouting capacity and increased expression of the SMC markers transgelin and calponin and the histone gene histone H1. Furthermore, the methylation pattern of the TAGLN promoter was altered. In summary, our findings suggest a role for certain HOX genes in regulating differentiation of human VW-MPSC into SMCs that involves epigenetic mechanisms. This is critical for understanding VW-MPSC-dependent vascular disease processes such as neointima formation and tumor vascularization.}, language = {en} } @article{DoganScheuringWagneretal.2021, author = {Dogan, Leyla and Scheuring, Ruben and Wagner, Nicole and Ueda, Yuichiro and Schmidt, Sven and W{\"o}rsd{\"o}rfer, Philipp and Groll, J{\"u}rgen and Erg{\"u}n, S{\"u}leyman}, title = {Human iPSC-derived mesodermal progenitor cells preserve their vasculogenesis potential after extrusion and form hierarchically organized blood vessels}, series = {Biofabrication}, volume = {13}, journal = {Biofabrication}, number = {4}, doi = {10.1088/1758-5090/ac26ac}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254046}, year = {2021}, abstract = {Post-fabrication formation of a proper vasculature remains an unresolved challenge in bioprinting. Established strategies focus on the supply of the fabricated structure with nutrients and oxygen and either rely on the mere formation of a channel system using fugitive inks or additionally use mature endothelial cells and/or peri-endothelial cells such as smooth muscle cells for the formation of blood vessels in vitro. Functional vessels, however, exhibit a hierarchical organization and multilayered wall structure that is important for their function. Human induced pluripotent stem cell-derived mesodermal progenitor cells (hiMPCs) have been shown to possess the capacity to form blood vessels in vitro, but have so far not been assessed for their applicability in bioprinting processes. Here, we demonstrate that hiMPCs, after formulation into an alginate/collagen type I bioink and subsequent extrusion, retain their ability to give rise to the formation of complex vessels that display a hierarchical network in a process that mimics the embryonic steps of vessel formation during vasculogenesis. Histological evaluations at different time points of extrusion revealed the initial formation of spheres, followed by lumen formation and further structural maturation as evidenced by building a multilayered vessel wall and a vascular network. These findings are supported by immunostainings for endothelial and peri-endothelial cell markers as well as electron microscopic analyses at the ultrastructural level. Moreover, endothelial cells in capillary-like vessel structures deposited a basement membrane-like matrix at the basal side between the vessel wall and the alginate-collagen matrix. After transplantation of the printed constructs into the chicken chorioallantoic membrane (CAM) the printed vessels connected to the CAM blood vessels and get perfused in vivo. These results evidence the applicability and great potential of hiMPCs for the bioprinting of vascular structures mimicking the basic morphogenetic steps of de novo vessel formation during embryogenesis.}, language = {en} } @article{GottschlichDrenckhahn2005, author = {Gottschlich, G{\"u}nter and Drenckhahn, Detlev}, title = {Iconography of the Genus Hieracium in central Europe - Part 1: General Description and Morphotypes}, doi = {10.3264/FG.2005.0502}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35363}, year = {2005}, abstract = {The genus Hieracium comprises more than one thousand sexual and apomictic species in Europe, with numerous intermediates and microspecies. Only a small fraction of the members of the genus Hieracium has been illustrated or photo-documented in the literature. Since many of these publications are difficult to obtain, only a few specialists are familiar with most of the species and subspecies described in the literature. In order to overcome this problem and encourage geobotanical research on the genus Hieracium, we decided to edit an iconography of central and southern European Hieracia in an electronical journal (Forum geobotanicum) with free international access through the internet. Part I of this endeavour contains descriptions and photographs of the morphological spectrum of the genus Hieracium. Here, we categorize the genus into 15 basic morphotypes. These types conform partly to the sections and subsections of the genus Hieracium, but are in some cases informal and may even include members of different sections. Classification of morphotypes is considered helpful to obtain a first rough picture of an unknown species that then can be traced to the species and subspecies level by using keys or, after completion of this iconography, simply by screening the relevant images. One particularly novel aspect of the present endeavour will be the regular inclusion of magnified images and scanning electron micrographs.}, subject = {Habichtskraut}, language = {en} }