@article{NonoPletinckxLutzetal.2012, author = {Nono, Justin Komguep and Pletinckx, Katrien and Lutz, Manfred B. and Brehm, Klaus}, title = {Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {2}, doi = {10.1371/journal.pntd.0001516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134280}, pages = {e1516}, year = {2012}, abstract = {Background: Alveolar echinococcosis, caused by Echinococcus multilocularis larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that E. multilocularis, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action. Methodology/Principal Findings: We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with Echinococcus primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naive T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3+ T cells in vitro. Conclusions: This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of E. multilocularis is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4+CD25+Foxp3+ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.}, language = {en} } @article{GoetzPanzerTrinksetal.2020, author = {G{\"o}tz, Ralph and Panzer, Sabine and Trinks, Nora and Eilts, Janna and Wagener, Johannes and Turr{\`a}, David and Di Pietro, Antonio and Sauer, Markus and Terpitz, Ulrich}, title = {Expansion Microscopy for Cell Biology Analysis in Fungi}, series = {Frontiers in Microbiology}, volume = {11}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2020.00574}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202569}, year = {2020}, abstract = {Super-resolution microscopy has evolved as a powerful method for subdiffraction-resolution fluorescence imaging of cells and cellular organelles, but requires sophisticated and expensive installations. Expansion microscopy (ExM), which is based on the physical expansion of the cellular structure of interest, provides a cheap alternative to bypass the diffraction limit and enable super-resolution imaging on a conventional fluorescence microscope. While ExM has shown impressive results for the magnified visualization of proteins and RNAs in cells and tissues, it has not yet been applied in fungi, mainly due to their complex cell wall. Here we developed a method that enables reliable isotropic expansion of ascomycetes and basidiomycetes upon treatment with cell wall degrading enzymes. Confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM) images of 4.5-fold expanded sporidia of Ustilago maydis expressing fluorescent fungal rhodopsins and hyphae of Fusarium oxysporum or Aspergillus fumigatus expressing either histone H1-mCherry together with Lifeact-sGFP or mRFP targeted to mitochondria, revealed details of subcellular structures with an estimated spatial resolution of around 30 nm. ExM is thus well suited for cell biology studies in fungi on conventional fluorescence microscopes.}, language = {en} } @article{AldejohannWiesePosseltGastmeieretal.2022, author = {Aldejohann, Alexander Maximilian and Wiese-Posselt, Miriam and Gastmeier, Petra and Kurzai, Oliver}, title = {Expert recommendations for prevention and management of Candida auris transmission}, series = {Mycoses}, volume = {65}, journal = {Mycoses}, number = {6}, doi = {10.1111/myc.13445}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318570}, pages = {590 -- 598}, year = {2022}, abstract = {Candida auris was first described as a yeast pathogen in 2009. Since then, the species has emerged worldwide. In contrast to most other Candida spp., C. auris frequently exhibits multi-drug resistance and is readily transmitted in hospital settings. While most detections so far are from colonised patients, C. auris does cause superficial and life-threatening invasive infections. During management of the first documented C. auris transmission in a German hospital, experts from the National Reference Centers for Invasive Fungal Infections (NRZMyk) and the National Reference Center for Surveillance of Nosocomial Infections screened available literature and integrated available knowledge on infection prevention and C. auris epidemiology and biology to enable optimal containment. Relevant recommendations developed during this process are summarised in this guidance document, intended to assist in management of C. auris transmission and potential outbreak situations. Rapid and effective measures to contain C. auris spread require a multi-disciplinary approach that includes clinical specialists of the affected unit, nursing staff, hospital hygiene, diagnostic microbiology, cleaning staff, hospital management and experts in diagnostic mycology / fungal infections. Action should be initiated in a step-wise process and relevant interventions differ between management of singular C. auris colonised / infected patients and detection of potential C. auris transmission or nosocomial outbreaks.}, language = {en} } @article{WaltherZimmermannTheuersbacheretal.2021, author = {Walther, Grit and Zimmermann, Anna and Theuersbacher, Johanna and Kaerger, Kerstin and Lilienfeld-Toal, Marie von and Roth, Mathias and Kampik, Daniel and Geerling, Gerd and Kurzai, Oliver}, title = {Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in Germany}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {7}, issn = {2309-608X}, doi = {10.3390/jof7070511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241810}, year = {2021}, abstract = {Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.}, language = {en} } @article{MoremiClausVogeletal.2017, author = {Moremi, Nyambura and Claus, Heike and Vogel, Ulrich and Mshana, Stephen E.}, title = {Faecal carriage of CTX-M extended-spectrum beta-lactamase-producing Enterobacteriaceae among street children dwelling in Mwanza city, Tanzania}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {9}, doi = {10.1371/journal.pone.0184592}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170331}, pages = {e0184592}, year = {2017}, abstract = {Background Data on ESBL carriage of healthy people including children are scarce especially in developing countries. We analyzed the prevalence and genotypes of ESBL-producing Enterobacteriaceae (EPE) in Tanzanian street children with rare contact to healthcare facilities but significant interactions with the environment, animals and other people. Methodology/ Principle findings Between April and July 2015, stool samples of 107 street children, who live in urban Mwanza were analyzed for EPE. Intestinal carriage of EPE was found in 34 (31.8\%, 95\% CI; 22.7-40.3) children. Of the 36 isolates from 34 children, 30 (83.3\%) were Escherichia coli (E. coli) and six Klebsiella pneumoniae (K. pneumoniae). Out of 36 isolates, 36 (100\%), 35 (97\%), 25 (69\%) and 16 (44\%) were resistant to tetracycline, trimethoprim-sulfamethoxazole, ciprofloxacin and gentamicin, respectively. Beta-lactamase genes and the multilocus sequence types of E. coli and K. pneumoniae were characterized. ESBL gene bla\(_{CTX-M-15}\) was detected in 75\% (27/36) of ESBL isolates. Sequence types (STs) 131, 10, 448 and 617 were the most prevalent in E. coli. Use of local herbs (OR: 3.5, 95\% CI: 1.51-8.08, P = 0.003) and spending day and night on streets (OR: 3.6, 95\% CI: 1.44-8.97, P = 0.005) were independent predictors of ESBL carriage. Conclusions/ Significance We observed a high prevalence of bla\(_{CTX-M-15}\) in EPE collected from street children in Tanzania. Detection of E. coli STs 131, 10, 38 and 648, which have been observed worldwide in animals and people, highlights the need for multidisciplinary approaches to understand the epidemiology and drivers of antimicrobial resistance in low-income countries.}, language = {en} } @article{SoundararajanMarincolaLiongetal.2023, author = {Soundararajan, Manonmani and Marincola, Gabriella and Liong, Olivia and Marciniak, Tessa and Wencker, Freya D. R. and Hofmann, Franka and Schollenbruch, Hannah and Kobusch, Iris and Linnemann, Sabrina and Wolf, Silver A. and Helal, Mustafa and Semmler, Torsten and Walther, Birgit and Schoen, Christoph and Nyasinga, Justin and Revathi, Gunturu and Boelhauve, Marc and Ziebuhr, Wilma}, title = {Farming practice influences antimicrobial resistance burden of non-aureus staphylococci in pig husbandries}, series = {Microorganisms}, volume = {11}, journal = {Microorganisms}, number = {1}, issn = {2076-2607}, doi = {10.3390/microorganisms11010031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312750}, year = {2023}, abstract = {Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms.}, language = {en} } @article{WeissZieglerFliesseretal.2018, author = {Weiss, Esther and Ziegler, Sabrina and Fliesser, Mirjam and Schmitt, Anna-Lena and H{\"u}nniger, Kerstin and Kurzai, Oliver and Morton, Charles-Oliver and Einsele, Hermann and Loeffler, Juergen}, title = {First Insights in NK—DC Cross-Talk and the Importance of Soluble Factors During Infection With Aspergillus fumigatus}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {8}, journal = {Frontiers in Cellular and Infection Microbiology}, doi = {10.3389/fcimb.2018.00288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233565}, year = {2018}, abstract = {Invasive aspergillosis (IA) is an infectious disease caused by the fungal pathogen Aspergillus fumigatus that mainly affects immunocompromised hosts. To investigate immune cell cross-talk during infection with A. fumigatus, we co-cultured natural killer (NK) cells and dendritic cells (DC) after stimulation with whole fungal structures, components of the fungal cell wall, fungal lysate or ligands for distinct fungal receptors. Both cell types showed activation after stimulation with fungal components and were able to transfer activation signals to the counterpart not stimulated cell type. Interestingly, DCs recognized a broader spectrum of fungal components and thereby initiated NK cell activation when those did not recognize fungal structures. These experiments highlighted the supportive function of DCs in NK cell activation. Furthermore, we focused on soluble DC mediated NK cell activation and showed that DCs stimulated with the TLR2/Dectin-1 ligand zymosan could maximally stimulate the expression of CD69 on NK cells. Thus, we investigated the influence of both receptors for zymosan, Dectin-1 and TLR2, which are highly expressed on DCs but show only minimal expression on NK cells. Specific focus was laid on the question whether Dectin-1 or TLR2 signaling in DCs is important for the secretion of soluble factors leading to NK cell activation. Our results show that Dectin-1 and TLR2 are negligible for NK cell activation. We conclude that besides Dectin-1 and TLR2 other receptors on DCs are able to compensate for the missing signal.}, language = {en} } @phdthesis{Schielke2010, author = {Schielke, Stephanie}, title = {Functional and molecular characterization of FarR - a transcriptional regulator of the MarR family in Neisseria meningitidis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Neisseria meningitidis is a facultatively pathogenic human commensal and strictly adapted to its niche within the human host, the nasopharynx. Not much is known about the regulatory processes required for adaptation to this environment. Therefore the role of the transcriptional regulator NMB1843, one of the two predicted regulators of the MarR family in the meningococcal genome, was investigated. As this gene displayed a high sequence homology to FarR, the Fatty acid resistance Regulator in N. gonorrhoeae, we designated the meningococcal protein FarR (NmFarR). Homology modeling of this protein revealed a dimeric structure with the characteristic winged helix-turn-helix DNA binding motif of the MarR family. NmFarR is highly conserved among meningococcal strains and expression of farR during exponential growth is controlled post-transcriptionally, being highest in the late exponential phase. By means of electrophoretic mobility shift assays (EMSAs) the direct and specific binding of FarR to the farAB promoter region was shown, comparable to its homologue in gonococci. As FarR is involved in fatty acid resistance in N. gonorrhoeae, susceptibility assays with the medium chain lauric acid (C12:0), the long chain saturated palmitic acid (C16:0) and the long chain unsaturated linoleic acid (C18:2) were performed, testing a wide variety of strains of both species. In contrast to the unusually susceptible gonococci, a high intrinsic fatty acid resistance was detected in almost all meningococcal isolates. The molecular basis for this intrinsic resistance in N. meningitidis was elucidated, showing that both a functional FarAB efflux pump system as well as an intact lipopolysaccharide (LPS) are responsible for palmitic acid resistance. However, even despite circumvention of the intrinsic resistance, FarR could not be connected with fatty acid resistance in meningococci. Instead, FarR was shown to directly and specifically repress expression of the Neisseria adhesin A (nadA), a promising vaccine candidate absent in N. gonorrhoeae. Microarray analyses verified these results and disclosed no further similarly regulated genes, rendering the FarR regulon the smallest regulon in meningococci reported until now. The exact FarR binding site within the nadA promoter region was identified as a 16 bp palindromic repeat and its influence on nadA transcription was proved by reporter gene fusion assays. This repression was also shown to be relevant for infection as farR deficient mutant strains displayed an increased attachment to epithelial cells. Furthermore, farR transcription was attested to be repressed upon contact with active complement components within human serum. Concluding, it is shown that FarR adopted a role in meningococcal host niche adaptation, holding the balance between immune evasion by repressing the highly antigenic nadA and host cell attachment via this same adhesin.}, subject = {Transkription }, language = {en} } @phdthesis{Pawlik2013, author = {Pawlik, Marie-Christin}, title = {Gene expression in the human pathogen Neisseria meningitidis: Adaptation to serum exposure and zinc limitation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Neisseria meningitidis is a facultative human pathogen that occasionally shows strong resistance against serum complement exposure. Previously described factors that mediate meningococcal serum resistance are for example the capsule, LPS sialylation, and expression of the factor H binding protein. I aimed for identification of novel serum resistance factors, thereby following two approaches, i) the analysis of the impact of global regulators of gene expression on serum resistance; and ii) a comparative analysis of closely related strains differing in serum resistance. (i) Of six meningococcal global regulators of gene expression studied, only mutation of the zinc uptake regulator Zur reduced complement deposition on meningococci. Little was known about meningococcal Zur and regulatory processes in response to zinc. I therefore elucidated the yet unidentified meningococcal Zur regulon comparing the transcriptional response of the N. meningitidis strain MC58 under zinc-rich and zinc-deficient conditions using a common reference design of microarray analysis. The meningococcal Zur regulon comprises 17 genes, of which 15 genes were repressed and two genes were activated at high zinc condition. Amongst the Zur-repressed genes were genes involved in zinc uptake, tRNA modification, and ribosomal assembly. A 23 bp meningococcal consensus Zur binding motif (Zur box) with a conserved central palindrome was established (TGTTATDNHATAACA) and detected in the promoter region of all regulated transcriptional units (genes/operons). In vitro binding of meningococcal Zur to the Zur box of three selected genes was shown for the first time using EMSAs. Binding of meningococcal Zur to DNA depended specifically on zinc, and mutations in the palindromic sequence constrained Zur binding to the DNA motif. ii) Three closely related strains of ST-41/44 cc from invasive disease and carriage which differed in their resistance to serum complement exposure were analysed to identify novel mediators of serum resistance. I compared the strains' gene content by microarray analysis which revealed six genes being present in both carrier isolates, but absent in the invasive isolate. Four of them are part of two Islands of horizontally transferred DNA, i.e. IHT-B and -C. The working group furthermore applied a comprehensive screening assay, a transcriptome and a proteome analysis leading to identification of three target proteins. I contributed to establish the role of these three proteins in serum resistance: The adhesin Opc mediates serum resistance by binding of vitronectin, a negative regulator of the complement system; the hypothetical protein NMB0865 slightly contributes to serum resistance by a yet unknown mechanism; and NspA, recently identified to bind the negative complement regulator factor H, led to considerable reduced complement-mediated killing.}, subject = {Komplement }, language = {en} } @phdthesis{Herz2021, author = {Herz, Michaela}, title = {Genome wide expression profiling of Echinococcus multilocularis}, doi = {10.25972/OPUS-20380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Alveolar echinococcosis, which is caused by the metacestode stage of the small fox tapeworm Echinococcus multilocularis, is a severe zoonotic disease with limited treatment options. For a better understanding of cestode biology the genome of E. multilocularis, together with other cestode genomes, was sequenced previously. While a few studies were undertaken to explore the E. multilocularis transcriptome, a comprehensive exploration of global transcription profiles throughout life cycle stages is lacking. This work represents the so far most comprehensive analysis of the E. multilocularis transcriptome. Using RNA-Seq information from different life cycle stages and experimental conditions in three biological replicates, transcriptional differences were qualitatively and quantitatively explored. The analyzed datasets are based on samples of metacestodes cultivated under aerobic and anaerobic conditions as well as metacestodes obtained directly from infected jirds. Other samples are stem cell cultures at three different time points of development as well as non-activated and activated protoscoleces, the larval stage that can develop into adult worms. In addition, two datasets of metacestodes under experimental conditions suitable for the detection of genes that are expressed in stem cells, the so-called germinative cells, and one dataset from a siRNA experiment were analyzed. Analysis of these datasets led to expression profiles for all annotated genes, including genes that are expressed in the tegument of metacestodes and play a role in host-parasite interactions and modulation of the host's immune response. Gene expression profiles provide also further information about genes that might be responsible for the infiltrative growth of the parasite in the liver. Furthermore, germinative cell-specific genes were identified. Germinative cells are the only proliferating cells in E. multilocularis and therefore of utmost importance for the development and growth of the parasite. Using a combination of germinative cell depletion and enrichment methods, genes with specific expression in germinative cells were identified. As expected, many of these genes are involved in translation, cell cycle regulation or DNA replication and repair. Also identified were transcription factors, many of which are involved in cell fate commitment. As an example, the gene encoding the telomerase reverse transcriptase (TERT) was studied further. Expression of E. multilocularis tert in germinative cells was confirmed experimentally. Cell culture experiments indicate that TERT is required for proliferation and development of the parasite, which makes TERT a potentially interesting drug target for chemotherapy of alveolar echinococcosis. Germinative cell specific genes in E. multilocularis also include genes of densoviral origin. More than 20 individual densovirus loci with information for non-structural and structural densovirus proteins were identified in the E. multilocularis genome. Densoviral elements were also detected in many other cestode genomes. Genomic integration of these elements suggests that densovirus-based vectors might be suitable tools for genetic manipulation of tapeworms. Interestingly, only three of more than 20 densovirus loci in the E. multilocularis genome are expressed. Since the canonical piRNA pathway is lacking in cestodes, this raises the question about potential silencing mechanisms. Exploration of RNA-Seq information indicated natural antisense transcripts as a potential gene regulation mechanism in E. multilocularis. Preliminary experiments further suggest DNA-methylation, which was previously shown to occur in platyhelminthes, as an interesting avenue to explore in future. The transcriptome datasets also contain information about genes that are expressed in differentiated cells, for example the serotonin transporter gene that is expressed in nerve cells. Cell culture experiments indicate that serotonin and serotonin transport play an important role in E. multilocularis proliferation, development and survival. Overall, this work provides a comprehensive transcription data atlas throughout the E. multilocularis life cycle. Identification of germinative cell-specific genes and genes important for host-parasite interactions will greatly facilitate future research. A global overview of gene expression profiles will also aide in the detection of suitable drug targets and the development of new chemotherapeutics against alveolar echinococcosis.}, subject = {Fuchsbandwurm}, language = {en} } @article{NyawaleMoremiMohamedetal.2022, author = {Nyawale, Helmut A. and Moremi, Nyambura and Mohamed, Mohamed and Njwalila, Johnson and Silago, Vitus and Krone, Manuel and Konje, Eveline T. and Mirambo, Mariam M. and Mshana, Stephen E.}, title = {High seroprevalence of SARS-CoV-2 in Mwanza, northwestern Tanzania: a population-based survey}, series = {International Journal of Environmental Research and Public Health}, volume = {19}, journal = {International Journal of Environmental Research and Public Health}, number = {18}, issn = {1660-4601}, doi = {10.3390/ijerph191811664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288134}, year = {2022}, abstract = {The transmission of the SARS-CoV-2 virus, which causes COVID-19, has been documented worldwide. However, the evidence of the extent to which transmission has occurred in different countries is still to be established. Understanding the magnitude and distribution of SARS-CoV-2 through seroprevalence studies is important in designing control and preventive strategies in communities. This study investigated the seropositivity of the SARS-CoV-2 virus antibodies in the communities of three different districts in the Mwanza region, Tanzania. A household cross-sectional survey was conducted in September 2021 using the modified African Centre for Disease and Prevention (ACDC) survey protocol. A blood sample was obtained from one member of each of the selected households who consented to take part in the survey. Immunochromatographic rapid test kits were used to detect IgM and IgG SARS-CoV-2 antibodies, followed by descriptive data analysis. Overall, 805 participants were enrolled in the study with a median age of 35 (interquartile range (IQR):27-47) years. The overall SARS-CoV-2 seropositivity was 50.4\% (95\%CI: 46.9-53.8\%). The IgG and IgM seropositivity of the SARS-CoV-2 antibodies was 49.3\% and 7.2\%, respectively, with 6.1\% being both IgG and IgM seropositive. A history of runny nose (aOR: 1.84, 95\%CI: 1.03-3.5, p = 0.036), loss of taste (aOR: 1.84, 95\%CI: 1.12-4.48, p = 0.023), and living in Ukerewe (aOR: 3.55, 95\%CI: 1.68-7.47, p = 0.001) and Magu (aOR: 2.89, 95\%CI: 1.34-6.25, p= 0.007) were all independently associated with SARS-CoV-2 IgM seropositivity. Out of the studied factors, living in the Ukerewe district was independently associated with IgG seropositivity (aOR 1.29, CI 1.08-1.54, p = 0.004). Twenty months after the first case of COVID-19 in Tanzania, about half of the studied population in Mwanza was seropositive for SARS-CoV-2.}, language = {en} } @article{WurmbScholtesKolibayetal.2020, author = {Wurmb, Thomas and Scholtes, Katja and Kolibay, Felix and Schorscher, Nora and Ertl, Georg and Ernestus, Ralf-Ingo and Vogel, Ulrich and Franke, Axel and Kowalzik, Barbara}, title = {Hospital preparedness for mass critical care during SARS-CoV-2 pandemic}, series = {Critical Care}, volume = {24}, journal = {Critical Care}, doi = {10.1186/s13054-020-03104-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230201}, year = {2020}, abstract = {Mass critical care caused by the severe acute respiratory syndrome corona virus 2 pandemic poses an extreme challenge to hospitals. The primary goal of hospital disaster preparedness and response is to maintain conventional or contingency care for as long as possible. Crisis care must be delayed as long as possible by appropriate measures. Increasing the intensive care unit (ICU) capacities is essential. In order to adjust surge capacity, the reduction of planned, elective patient care is an adequate response. However, this involves numerous problems that must be solved with a sense of proportion. This paper summarises preparedness and response measures recommended to acute care hospitals.}, language = {en} } @article{BrehmHemerKonradetal.2014, author = {Brehm, Klaus and Hemer, Sarah and Konrad, Christian and Spiliotis, Markus and Koziol, Uriel and Schaack, Dominik and F{\"o}rster, Sabine and Gelmedin, Verena and Stadelmann, Britta and Dandekar, Thomas and Hemphill, Andrew}, title = {Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development}, doi = {10.1186/1741-7007-12-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110357}, year = {2014}, abstract = {Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.}, language = {en} } @article{DoranFuldeGratzetal.2016, author = {Doran, Kelly S. and Fulde, Marcus and Gratz, Nina and Kim, Brandon J. and Nau, Roland and Prasadarao, Nemani and Schubert-Unkmeir, Alexandra and Tuomanen, Elaine I. and Valentin-Weigand, Peter}, title = {Host-pathogen interactions in bacterial meningitis}, series = {Acta Neuropathologica}, volume = {131}, journal = {Acta Neuropathologica}, number = {2}, doi = {10.1007/s00401-015-1531-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191034}, pages = {185-209}, year = {2016}, abstract = {Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host-pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host-pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood-brain and blood-cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces.}, language = {en} } @phdthesis{Nono2012, author = {Nono, Justin}, title = {Immunomodulation through Excretory/Secretory Products of the parasitic Helminth Echinococcus multilocularis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85449}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Alveol{\"a}re Echinokokkose (AE) ist eine lebensbedrohliche Zoonose, die durch das Metazestoden-Larvenstadium des Fuchsbandwurms Echinococcus multilocularis ausgel{\"o}st wird. Nach Eintritt des Parasiten in den Zwischenwirt wird zun{\"a}chst eine potentiell anti-parasitische, Th1-dominierte Immunantwort ausgel{\"o}st, welche anschließend in der chronischen Phase graduell durch eine permissive, Th2-dominierte Antwort ersetzt wird. Als Ergebnis einer zugrunde liegenden Immunmodulation durch den Parasiten k{\"o}nnen Echinococcus-Larven f{\"u}r Jahre bis Jahrzehnte im Wirt persistieren und verhalten sich {\"a}hnlich einem perfekt transplantierten Organ. {\"U}ber die molekulare Basis der Immunmodulation durch den Parasiten ist derzeit wenig bekannt. In dieser Arbeit wurden geeignete Kultursysteme f{\"u}r verschiedene E. multilocularis Larvenstadien verwendet, um den Einfluss exkretorisch/sekretorischer Metaboliten (E/S-Produkte) auf Wirts-Immuneffektor-Zellen zu studieren. E/S-Produkte kultivierter Larven, die die fr{\"u}he (Prim{\"a}rzellen) und chronische (Metazestode) Phase der Infektion repr{\"a}sentieren induzierten Apoptose und tolerogene Eigenschaften in Dendritischen Zellen (DC) des Wirts, w{\"a}hrend solche von Kontroll-Larven (Protoskolizes) keine derartigen Effekte zeigten. Dies zeigt, dass die fr{\"u}hen infekti{\"o}sen Stadien von E. multilocularis in DC ein tolerierendes Milieu erzeugen, welches sehr wahrscheinlich die initiale Etablierung des Parasiten in einer Phase beg{\"u}nstigt, in der er h{\"o}chst sensitiv gegen{\"u}ber Wirtsangriffen ist. Interessanterweise f{\"o}rderten E/S-Produkte des Metazestoden in vitro die Konversion von CD4+ T-Zellen in Foxp3+, regulatorische T-Zellen (Treg) w{\"a}hrend E/S-Produkte von Prim{\"a}rzellen oder Protoskolizes dies nicht vermochten. Da Foxp3+ Tregs generell als immunosuppressorisch bekannt sind, deuten diese Daten an, dass der Metazestode aktiv eine Induktion von Tregs herbeif{\"u}hrt, um eine permissive Immunsuppression w{\"a}hrend einer Infektion zu erreichen. Eine substantielle Zunahme von Anzahl und Frequenz Foxp3+ Tregs konnte zudem in Peritoneal-Exsudaten von M{\"a}uuen nach intraperitonealer Injektion von Parasitengewebe gemessen werden, was anzeigt, dass eine Expansion von Foxp3+ Tregs auch w{\"a}hrend der in vivo Infektion von Bedeutung ist. Interessanterweise konnte in dieser Arbeit ein Activin-Orthologes des Parasiten, EmACT, identifiziert werden, weleches vom Metazestoden sekretiert wird und {\"a}hnlich wie humanes Activin in der Lage ist, eine TGF-β-abh{\"a}ngige Expansion von Tregs in vitro zu induzieren. Dies zeigt an, dass E. multilocularis evolutionsgeschichtlich konservierte Zytokine nutzt, um aktiv die Wirts-Immunantwort zu beeinflussen. Zusammenfassend deuten die gewonnenen Daten auf eine wichtige Rolle Foxp3+ Tregs, welche u.a. durch EmACT induziert werden, im immunologischen geschehen der AE hin. Ein weiterer Parasiten-Faktor, EmTIP, mit signifikanten Homologien zum T-cell Immunomodulatory Protein (TIP) des Menschen wurde in dieser Arbeit n{\"a}her charakterisiert. EmTIP konnte in der E/S-Fraktion von Prim{\"a}rzellen nachgewiesen werden und induzierte die Freisetzung von IFN-γ in CD4+ T-Helferzellen. Durch Zugabe von anti-EmTIP-Antik{\"o}rpern konnte zudem die Entwicklung des Parasiten zum Metazestoden in vitro gehemmt werden. EmTIP d{\"u}rfte daher einerseits bei der fr{\"u}hen Parasiten-Entwicklung im Zwischenwirt eine Rolle spielen und k{\"o}nnte im Zuge dessen auch die Auspr{\"a}gung der fr{\"u}hen, Th-1-dominierten Immunantwort w{\"a}hrend der AE beg{\"u}nstigen. Zusammenfassend wurden in dieser Arbeit zwei E. multilocularis E/S-Faktoren identifiziert, EmACT und EmTIP, die ein hohes immunmodulatorisches Potential besitzen. Die hier vorgestellten Daten liefern neue, fundamentale Einsichten in die molekularen Mechanismen der Parasiten-induzierten Immunmodulation bei der AE und sind hoch relevant f{\"u}r die Entwicklung anti-parasitischer Immuntherapien.}, subject = {Immunmodulation}, language = {en} } @article{BrehonyTrotterRamsayetal.2014, author = {Brehony, Carina and Trotter, Caronline L. and Ramsay, Mary E. and Chandra, Manosree and Jolley, Keith A. and van der Ende, Arie and Carion, Fran{\c{c}}oise and Berthelsen, Lene and Hoffmann, Steen and Harðard{\´o}ttir, Hj{\"o}rd{\´i}s and Vazques, Julio A. and Murphy, Karen and Toropainen, Maija and Cani{\c{c}}a, Manuela and Ferreira, Eugenia and Diggle, Mathew and Edwards, Giles F. and Taha, Muhamed-Kheir and Stefanelli, Paola and Kriz, Paula and Gray, Steve J. and Fox, Andrew J. and Jacobsson, Susanne and Claus, Heike and Vogel, Ulrich and Tzanakaki, Georgina and Heuberger, Sigrid and Caugant, Dominique A. and Frosch, Matthias and Maiden, Martin C. J.}, title = {Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development}, series = {Clinical and Vaccine Immunology : CVI}, volume = {21}, journal = {Clinical and Vaccine Immunology : CVI}, number = {6}, doi = {10.1128/cvi.00133-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120808}, pages = {847-53}, year = {2014}, abstract = {New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being licensed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from 18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs) by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32 cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and ≥25-year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required for different age groups.}, language = {en} } @article{StockPetrašMelteretal.2016, author = {Stock, Nina Katharina and Petr{\´a}š, Petr and Melter, Oto and Kapounov{\´a}, Gabriela and Vopalkov{\´a}, Petra and Kubele, Jan and Vaniš, V{\´a}clav and Tkadlec, Jan and Buk{\´a}čkov{\´a}, Eva and Machov{\´a}, Ivana and Jindr{\´a}k, Vlastimil}, title = {Importance of Multifaceted Approaches in Infection Control: A Practical Experience from an Outbreak Investigation}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157981}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166891}, pages = {e0157981}, year = {2016}, abstract = {Background This study presents the results of a multidisciplinary, nosocomial MRSA outbreak investigation in an 8-bed medical intensive care unit (ICU). The identification of seven MRSA positive patients in the beginning of 2014 led to the closure of the ward for several weeks. A multidisciplinary, retrospective investigation was initiated in order to identify the reason and the source for the outbreak, describe MRSA transmission in the department and identify limitations in infection control. Methods The investigation comprised an epidemiological description of MRSA cases from 2012 to 2014 and a characterization of MRSA isolates, including phage-, spa- and PFGE-typing. Additionally, MRSA screening was performed from the hospital staff and the environment. To identify the reason for the outbreak, work-related, psychological and behavioral factors were investigated by impartial audits and staff interviews. Results Thirty-one MRSA cases were registered during the study period, and 36 isolates were investigated. Molecular typing determined the outbreak strain (phage type 54/812, PFGE type A4, spa type t003) and identified the probable index case. Nasal carriage in one employee and a high environmental contamination with the outbreak strain was documented. Important gaps in nursing procedures and general management were identified. Elevated stress levels and communication problems preceded the outbreak. Compliance with hand hygiene and isolation procedures was evaluated as appropriate. Conclusion This study demonstrates the complexity of controlling hospital-associated infections. The combined use of different typing methods is beneficial for outbreak investigations. Psychological, behavioral and other work-related factors have an important impact on the spread of nosocomial pathogens. These factors should be addressed and integrated in routine infection control practice.}, language = {en} } @article{KohlmorgenEliasSchoen2017, author = {Kohlmorgen, Britta and Elias, Johannes and Schoen, Christoph}, title = {Improved performance of the artus Mycobacterium tuberculosis RG PCR kit in a low incidence setting: a retrospective monocentric study}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {14127}, doi = {10.1038/s41598-017-14367-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159248}, year = {2017}, abstract = {Tuberculosis (TB) and the spread of Mycobacterium tuberculosis complex (MTBC) strains resistant against rifampin (RIF) and isoniazid (INH) pose a serious threat to global health. However, rapid and reliable MTBC detection along with RIF/INH susceptibility testing are challenging in low prevalence countries due to the higher rate of false positives. Here, we provide the first performance data for the artus MTBC PCR assay in a low prevalence setting. We analyze 1323 respiratory and 311 non-respiratory samples with the artus MTBC PCR assay as well as by mycobacterial culture and microscopy. We propose retesting of specimens in duplicate and consideration of a determined cycle-threshold value cut-off greater than 34, as this significantly increases accuracy, specificity, and negative predictive value without affecting sensitivity. Furthermore, we tested fourteen MTBC positive samples with the GenoType MTBDRplus test and demonstrate that using an identical DNA extraction protocol for both assays does not impair downstream genotypic testing for RIF and INH susceptibility. In conclusion, our procedure optimizes the use of the artus MTB assay with workload efficient methods in a low incidence setting. Combining the modified artus MTB with the GenoType MTBDRplus assays allows rapid and accurate detection of MTBC and RIF/INH resistance.}, language = {en} } @article{WalterCollenburgJaptoketal.2016, author = {Walter, T. and Collenburg, L. and Japtok, L. and Kleuser, B. and Schneider-Schaulies, S. and M{\"u}ller, N. and Becam, J. and Schubert-Unkmeir, A. and Kong, J. N. and Bieberich, E. and Seibel, J.}, title = {Incorporation and visualization of azido-functionalized N-oleoyl serinol in Jurkat cells, mouse brain astrocytes, 3T3 fibroblasts and human brain microvascular endothelial cells}, series = {Chemical Communications}, volume = {52}, journal = {Chemical Communications}, number = {55}, doi = {10.1039/c6cc02879a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191263}, pages = {8612-8614}, year = {2016}, abstract = {The synthesis and biological evaluation of azido-N-oleoyl serinol is reported. It mimicks biofunctional lipid ceramides and has shown to be capable of click reactions for cell membrane imaging in Jurkat and human brain microvascular endothelial cells.}, language = {en} } @article{GomesWestermannSauerweinetal.2019, author = {Gomes, Sara F. Martins and Westermann, Alexander J. and Sauerwein, Till and Hertlein, Tobias and F{\"o}rstner, Konrad U. and Ohlsen, Knut and Metzger, Marco and Shusta, Eric V. and Kim, Brandon J. and Appelt-Menzel, Antje and Schubert-Unkmeir, Alexandra}, title = {Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study Neisseria meningitidis infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1181}, doi = {10.3389/fmicb.2019.01181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201562}, year = {2019}, abstract = {Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.}, language = {en} }