@article{ThurnerAugustinBleyetal.2022, author = {Thurner, Annette and Augustin, Anne Marie and Bley, Thorsten Alexander and Kickuth, Ralph}, title = {2D-perfusion angiography for intra-procedural endovascular treatment response assessment in chronic mesenteric ischemia: a feasibility study}, series = {BMC Medical Imaging}, volume = {22}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-022-00820-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301131}, year = {2022}, abstract = {Background Endovascular revascularization has become the first-line treatment of chronic mesenteric ischemia (CMI). The qualitative visual analysis of digital subtraction angiography (DSA) is dependent on observer experience and prone to interpretation errors. We evaluate the feasibility of 2D-Perfusion Angiography (2D-PA) for objective, quantitative treatment response assessment in CMI. Methods 49 revascularizations in 39 patients with imaging based evidence of mesenteric vascular occlusive disease and clinical signs of CMI were included in this retrospective study. To assess perfusion changes by 2D-PA, DSA-series were post-processed using a dedicated, commercially available software. Regions of interest (ROI) were placed in the pre- and post-stenotic artery segment. In aorto-ostial disease, the inflow ROI was positioned at the mesenteric artery orifice. The ratios outflow to inflow ROI for peak density (PD), time to peak and area-under-the-curve (AUC) were computed and compared pre- and post-interventionally. We graded motion artifacts by means of a four-point scale. Feasibility of 2D-PA and changes of flow parameters were evaluated. Results Motion artifacts due to a mobile vessel location beneath the diaphragm or within the mesenteric root, branch vessel superimposition and inadequate contrast enhancement at the inflow ROI during manually conducted DSA-series via selective catheters owing to steep vessel angulation, necessitated exclusion of 26 measurements from quantitative flow evaluation. The feasibility rate was 47\%. In 23 technically feasible assessments, PD\(_{outflow}\)/PD\(_{inflow}\) increased by 65\% (p < 0.001) and AUC\(_{outflow}\)/AUC\(_{inflow}\) increased by 85\% (p < 0.001). The time to peak density values in the outflow ROI accelerated only minimally without reaching statistical significance. Age, BMI, target vessel (celiac trunk, SMA or IMA), stenosis location (ostial or truncal), calcification severity, plaque composition or the presence of a complex stenosis did not reach statistical significance in their distribution among the feasible and non-feasible group (p > 0.05). Conclusions Compared to other vascular territories and indications, the feasibility of 2D-PA in mesenteric revascularization for CMI was limited. Unfavorable anatomic conditions contributed to a high rate of inconclusive 2D-PA results.}, language = {en} } @article{GrunzWenigKunzetal.2020, author = {Grunz, Jan-Peter and Wenig, Andreas Max and Kunz, Andreas Steven and Veyhl-Wichmann, Maike and Schmitt, Rainer and Gietzen, Carsten Herbert and Pennig, Lenhard and Herz, Stefan and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Gassenmaier, Tobias}, title = {3D cone-beam CT with a twin robotic x-ray system in elbow imaging: comparison of image quality to high-resolution multidetector CT}, series = {European Radiology Experimental}, volume = {4}, journal = {European Radiology Experimental}, doi = {10.1186/s41747-020-00177-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229877}, year = {2020}, abstract = {Background Elbow imaging is challenging with conventional multidetector computed tomography (MDCT), while cone-beam CT (CBCT) provides superior options. We compared intra-individually CBCT versus MDCT image quality in cadaveric elbows. Methods A twin robotic x-ray system with new CBCT mode and a high-resolution clinical MDCT were compared in 16 cadaveric elbows. Both systems were operated with a dedicated low-dose (LD) protocol (equivalent volume CT dose index [CTDI\(_{vol(16 cm)}\)] = 3.3 mGy) and a regular clinical scan dose (RD) protocol (CTDI\(_{vol(16 cm)}\) = 13.8 mGy). Image quality was evaluated by two radiologists (R1 and R2) on a seven-point Likert scale, and estimation of signal intensity in cancellous bone was conducted. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) statistics were used. Results The CBCT prototype provided superior subjective image quality compared to MDCT scans (for RD, p ≤ 0.004; for LD, p ≤ 0.001). Image quality was rated very good or excellent in 100\% of the cases by both readers for RD CBCT, 100\% (R1) and 93.8\% (R2) for LD CBCT, 62.6\% and 43.8\% for RD MDCT, and 0.0\% and 0.0\% for LD MDCT. Single-measure ICC was 0.95 (95\% confidence interval 0.91-0.97; p < 0.001). Software-based assessment supported subjective findings with less "undecided" pixels in CBCT than dose-equivalent MDCT (p < 0.001). No significant difference was found between LD CBCT and RD MDCT. Conclusions In cadaveric elbow studies, the tested cone-beam CT prototype delivered superior image quality compared to high-end multidetector CT and showed a potential for considerable dose reduction.}, language = {en} } @article{WechAnkenbrandBleyetal.2022, author = {Wech, Tobias and Ankenbrand, Markus Johannes and Bley, Thorsten Alexander and Heidenreich, Julius Frederik}, title = {A data-driven semantic segmentation model for direct cardiac functional analysis based on undersampled radial MR cine series}, series = {Magnetic Resonance in Medicine}, volume = {87}, journal = {Magnetic Resonance in Medicine}, number = {2}, doi = {10.1002/mrm.29017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257616}, pages = {972-983}, year = {2022}, abstract = {Purpose Image acquisition and subsequent manual analysis of cardiac cine MRI is time-consuming. The purpose of this study was to train and evaluate a 3D artificial neural network for semantic segmentation of radially undersampled cardiac MRI to accelerate both scan time and postprocessing. Methods A database of Cartesian short-axis MR images of the heart (148,500 images, 484 examinations) was assembled from an openly accessible database and radial undersampling was simulated. A 3D U-Net architecture was pretrained for segmentation of undersampled spatiotemporal cine MRI. Transfer learning was then performed using samples from a second database, comprising 108 non-Cartesian radial cine series of the midventricular myocardium to optimize the performance for authentic data. The performance was evaluated for different levels of undersampling by the Dice similarity coefficient (DSC) with respect to reference labels, as well as by deriving ventricular volumes and myocardial masses. Results Without transfer learning, the pretrained model performed moderately on true radial data [maximum number of projections tested, P = 196; DSC = 0.87 (left ventricle), DSC = 0.76 (myocardium), and DSC =0.64 (right ventricle)]. After transfer learning with authentic data, the predictions achieved human level even for high undersampling rates (P = 33, DSC = 0.95, 0.87, and 0.93) without significant difference compared with segmentations derived from fully sampled data. Conclusion A 3D U-Net architecture can be used for semantic segmentation of radially undersampled cine acquisitions, achieving a performance comparable with human experts in fully sampled data. This approach can jointly accelerate time-consuming cine image acquisition and cumbersome manual image analysis.}, language = {en} } @article{HennesHuflageGrunzetal.2023, author = {Hennes, Jan-Lucca and Huflage, Henner and Grunz, Jan-Peter and Hartung, Viktor and Augustin, Anne Marie and Patzer, Theresa Sophie and Pannenbecker, Pauline and Petritsch, Bernhard and Bley, Thorsten Alexander and Gruschwitz, Philipp}, title = {An intra-individual comparison of low-keV photon-counting CT versus energy-integrating-detector CT angiography of the aorta}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {24}, issn = {2075-4418}, doi = {10.3390/diagnostics13243645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-355568}, year = {2023}, abstract = {This retrospective study aims to provide an intra-individual comparison of aortic CT angiographies (CTAs) using first-generation photon-counting-detector CT (PCD-CT) and third-generation energy-integrating-detector CT (EID-CT). High-pitch CTAs were performed with both scanners and equal contrast-agent protocols. EID-CT employed automatic tube voltage selection (90/100 kVp) with reference tube current of 434/350 mAs, whereas multi-energy PCD-CT scans were generated with fixed tube voltage (120 kVp), image quality level of 64, and reconstructed as 55 keV monoenergetic images. For image quality assessment, contrast-to-noise ratios (CNRs) were calculated, and subjective evaluation (overall quality, luminal contrast, vessel sharpness, blooming, and beam hardening) was performed independently by three radiologists. Fifty-seven patients (12 women, 45 men) were included with a median interval between examinations of 12.7 months (interquartile range 11.1 months). Using manufacturer-recommended scan protocols resulted in a substantially lower radiation dose in PCD-CT (size-specific dose estimate: 4.88 ± 0.48 versus 6.28 ± 0.50 mGy, p < 0.001), while CNR was approximately 50\% higher (41.11 ± 8.68 versus 27.05 ± 6.73, p < 0.001). Overall image quality and luminal contrast were deemed superior in PCD-CT (p < 0.001). Notably, EID-CT allowed for comparable vessel sharpness (p = 0.439) and less pronounced blooming and beam hardening (p < 0.001). Inter-rater agreement was good to excellent (0.58-0.87). Concluding, aortic PCD-CTAs facilitate increased image quality with significantly lower radiation dose compared to EID-CTAs}, language = {en} } @article{AugustinWolfschmidtElsaesseretal.2022, author = {Augustin, Anne Marie and Wolfschmidt, Franziska and Els{\"a}sser, Thilo and Sauer, Alexander and Dierks, Alexander and Bley, Thorsten Alexander and Kickuth, Ralph}, title = {Color-coded summation images for the evaluation of blood flow in endovascular aortic dissection fenestration}, series = {BMC Medical Imaging}, volume = {22}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-022-00744-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301107}, year = {2022}, abstract = {Background To analyze the benefit of color-coded summation images in the assessment of target lumen perfusion in patients with aortic dissection and malperfusion syndrome before and after fluoroscopy-guided aortic fenestration. Methods Between December 2011 and April 2020 25 patients with Stanford type A (n = 13) or type B dissection (n = 12) and malperfusion syndromes were treated with fluoroscopy-guided fenestration of the dissection flap using a re-entry catheter. The procedure was technically successful in 100\% of the cases and included additional iliofemoral stent implantation in four patients. Intraprocedural systolic blood pressure measurements for gradient evaluation were performed in 19 cases. Post-processed color-coded DSA images were obtained from all DSA series before and following fenestration. Differences in time to peak (dTTP) values in the compromised aortic lumen and transluminal systolic blood pressure gradients were analyzed retrospectively. Correlation analysis between dTTP and changes in blood pressure gradients was performed. Results Mean TTP prior to dissection flap fenestration was 6.85 ± 1.35 s. After fenestration, mean TTP decreased significantly to 4.96 ± 0.94 s (p < 0.001). Available systolic blood pressure gradients between the true and the false lumen were reduced by a median of 4.0 mmHg following fenestration (p = 0.031), with significant reductions in Stanford type B dissections (p = 0.013) and minor reductions in type A dissections (p = 0.530). A moderate correlation with no statistical significance was found between dTTP and the difference in systolic blood pressure (r = 0.226; p = 0.351). Conclusions Hemodynamic parameters obtained from color-coded DSA confirmed a significant reduction of TTP values in the aortic target lumen in terms of an improved perfusion in the compromised aortic region. Color-coded DSA might thus be a suitable complementary tool in the assessment of complex vascular patterns prevailing in aortic dissections, especially when blood pressure measurements are not conclusive or feasible.}, language = {en} } @article{AugustinWelschBleyetal.2021, author = {Augustin, Anne Marie and Welsch, Stefan and Bley, Thorsten Alexander and Lopau, Kai and Kickuth, Ralph}, title = {Color-coded summation images in the evaluation of renal artery stenosis before and after percutaneous transluminal angioplasty}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-020-00540-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259086}, pages = {21}, year = {2021}, abstract = {Background: Endovascular therapy is the gold standard in patients with hemodynamic relevant renal artery stenosis (RAS) resistant to medical therapy. The severity grading of the stenosis as well as the result assessment after endovascular approach is predominantly based on visible estimations of the anatomic appearance. We aim to investigate the application of color-coded DSA parameters to gain hemodynamic information during endovascular renal artery interventions and for the assessment of the procedures technical success. Methods: We retrospectively evaluated 32 patients who underwent endovascular renal artery revascularization and applied color-coded summation imaging on selected monochromatic DSA images. The differences in time to peak (dTTP) of contrast enhancement in predefined anatomical measuring points were analyzed. Furthermore, differences in systolic blood pressure values (SBP) and serum creatinine were obtained. The value of underlying diabetes mellitus as a predictor for clinical outcome was assessed. Correlation analysis between the patients gender as well as the presence of diabetes mellitus and dTTP was performed. Results: Endovascular revascularization resulted in statistically significant improvement in 4/7 regions of interest. Highly significant improvement of perfusion in terms of shortened TTP values could be found at the segmental artery level and in the intrastenotical segment (p<0.001), significant improvement prestenotical and in the apical renal parenchyma (p<0.05). In the other anatomic regions, differences revealed not to be significant. Differences between SBP and serum creatinine levels before and after the procedure were significant (p=0.004 and 0.0004). Patients ' gender as well as the presence of diabetes mellitus did not reveal to be predictors for the clinical success of the procedure. Furthermore, diabetes and gender did not show relevant correlation with dTTP in the parenchymal measuring points. Conclusions: The supplementary use of color-coding DSA and the data gained from parametric images may provide helpful information in the evaluation of the procedures ' technical success. The segmental artery might be a particularly suitable vascular territory for analyzing differences in blood flow characteristics. Further studies with larger cohorts are needed to further confirm the diagnostic value of this technique.}, language = {en} } @article{GruschwitzHartungErguenetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Erg{\"u}n, S{\"u}leyman and Peter, Dominik and Lichthardt, Sven and Huflage, Henner and Hendel, Robin and Pannenbecker, Pauline and Augustin, Anne Marie and Kunz, Andreas Steven and Feldle, Philipp and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model}, series = {European Radiology Experimental}, volume = {7}, journal = {European Radiology Experimental}, doi = {10.1186/s41747-023-00398-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357905}, year = {2023}, abstract = {Background With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. Methods After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall's concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). Results UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). Conclusions Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. Relevance statement The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. Key points • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging.}, language = {en} } @article{GruschwitzHartungKleefeldtetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Kleefeldt, Florian and Peter, Dominik and Lichthardt, Sven and Huflage, Henner and Grunz, Jan-Peter and Augustin, Anne Marie and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Petritsch, Bernhard}, title = {Continuous extracorporeal femoral perfusion model for intravascular ultrasound, computed tomography and digital subtraction angiography}, series = {PLoS One}, volume = {18}, journal = {PLoS One}, number = {5}, issn = {1932-6203}, doi = {10.1371/journal.pone.0285810}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350136}, year = {2023}, abstract = {Objectives We developed a novel human cadaveric perfusion model with continuous extracorporeal femoral perfusion suitable for performing intra-individual comparison studies, training of interventional procedures and preclinical testing of endovascular devices. Objective of this study was to introduce the techniques and evaluate the feasibility for realistic computed tomography angiography (CTA), digital subtraction angiography (DSA) including vascular interventions, and intravascular ultrasound (IVUS). Methods The establishment of the extracorporeal perfusion was attempted using one formalin-fixed and five fresh-frozen human cadavers. In all specimens, the common femoral and popliteal arteries were prepared, introducer sheaths inserted, and perfusion established by a peristaltic pump. Subsequently, we performed CTA and bilateral DSA in five cadavers and IVUS on both legs of four donors. Examination time without unintentional interruption was measured both with and without non-contrast planning CT. Percutaneous transluminal angioplasty and stenting was performed by two interventional radiologists on nine extremities (five donors) using a broad spectrum of different intravascular devices. Results The perfusion of the upper leg arteries was successfully established in all fresh-frozen but not in the formalin-fixed cadaver. The experimental setup generated a stable circulation in each procedure (ten upper legs) for a period of more than six hours. Images acquired with CT, DSA and IVUS offered a realistic impression and enabled the sufficient visualization of all examined vessel segments. Arterial cannulating, percutaneous transluminal angioplasty as well as stent deployment were feasible in a way that is comparable to a vascular intervention in vivo. The perfusion model allowed for introduction and testing of previously not used devices. Conclusions The continuous femoral perfusion model can be established with moderate effort, works stable, and is utilizable for medical imaging of the peripheral arterial system using CTA, DSA and IVUS. Therefore, it appears suitable for research studies, developing skills in interventional procedures and testing of new or unfamiliar vascular devices.}, language = {en} } @article{KraemerBeckerBleyetal.2022, author = {Kraemer, Markus and Becker, Jana and Bley, Thorsten Alexander and Steinbrecher, Andreas and Minnerup, Jens and Hellmich, Bernhard}, title = {Diagnostik und Therapie der Riesenzellarteriitis}, series = {Der Nervenarzt}, volume = {93}, journal = {Der Nervenarzt}, number = {8}, issn = {0028-2804}, doi = {10.1007/s00115-021-01216-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307771}, pages = {819-827}, year = {2022}, abstract = {Die Riesenzellarteriitis (RZA) ist in der Altersgruppe der {\"u}ber 50-J{\"a}hrigen die h{\"a}ufigste idiopathische systemische Vaskulitis. Die Erkrankung bedarf einer zeitnahen Diagnostik und Therapie, um schwere Komplikationen wie eine Erblindung oder einen Schlaganfall zu vermeiden. Die Rezidivneigung erfordert eine mehrj{\"a}hrige, zum Teil lebenslange Glukokortikoid(GC)-Therapie, was das Risiko GC-induzierter Langzeitnebenwirkungen erh{\"o}ht. Daher wird bei der Mehrzahl der Patienten eine additive GC-einsparende Therapie empfohlen. Hierzu steht der Anti-IL-6-Rezeptor-Antik{\"o}rper Tocilizumab in subkutaner Applikation als zugelassene Substanz zur Verf{\"u}gung, alternativ kann Methotrexat (MTX) eingesetzt werden (off-label).}, language = {de} } @article{LuetkensErguenHuflageetal.2021, author = {Luetkens, Karsten Sebastian and Erg{\"u}n, S{\"u}leyman and Huflage, Henner and Kunz, Andreas Steven and Gietzen, Carsten Herbert and Conrads, Nora and Pennig, Lenhard and Goertz, Lukas and Bley, Thorsten Alexander and Gassenmaier, Tobias and Grunz, Jan-Peter}, title = {Dose reduction potential in cone-beam CT imaging of upper extremity joints with a twin robotic x-ray system}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-99748-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270429}, year = {2021}, abstract = {Cone-beam computed tomography is a powerful tool for 3D imaging of the appendicular skeleton, facilitating detailed visualization of bone microarchitecture. This study evaluated various combinations of acquisition and reconstruction parameters for the cone-beam CT mode of a twin robotic x-ray system in cadaveric wrist and elbow scans, aiming to define the best possible trade-off between image quality and radiation dose. Images were acquired with different combinations of tube voltage and tube current-time product, resulting in five scan protocols with varying volume CT dose indices: full-dose (FD; 17.4 mGy), low-dose (LD; 4.5 mGy), ultra-low-dose (ULD; 1.15 mGy), modulated low-dose (mLD; 0.6 mGy) and modulated ultra-low-dose (mULD; 0.29 mGy). Each set of projection data was reconstructed with three convolution kernels (very sharp [Ur77], sharp [Br69], intermediate [Br62]). Five radiologists subjectively assessed the image quality of cortical bone, cancellous bone and soft tissue using seven-point scales. Irrespective of the reconstruction kernel, overall image quality of every FD, LD and ULD scan was deemed suitable for diagnostic use in contrast to mLD (very sharp/sharp/intermediate: 60/55/70\%) and mULD (0/3/5\%). Superior depiction of cortical and cancellous bone was achieved in FD\(_{Ur77}\) and LD\(_{Ur77}\) examinations (p < 0.001) with LD\(_{Ur77}\) scans also providing favorable bone visualization compared to FD\(_{Br69}\) and FD\(_{Br62}\) (p < 0.001). Fleiss' kappa was 0.618 (0.594-0.641; p < 0.001), indicating substantial interrater reliability. In this study, we demonstrate that considerable dose reduction can be realized while maintaining diagnostic image quality in upper extremity joint scans with the cone-beam CT mode of a twin robotic x-ray system. Application of sharper convolution kernels for image reconstruction facilitates superior display of bone microarchitecture.}, language = {en} } @article{GietzenKunzLuetkensetal.2022, author = {Gietzen, Carsten Herbert and Kunz, Andreas Steven and Luetkens, Karsten Sebastian and Huflage, Henner and Christopoulos, Georgios and van Schoonhoven, J{\"o}rg and Bley, Thorsten Alexander and Schmitt, Rainer and Grunz, Jan-Peter}, title = {Evaluation of prestyloid recess morphology and ulnar-sided contrast leakage in CT arthrography of the wrist}, series = {BMC Musculoskeletal Disorders}, volume = {23}, journal = {BMC Musculoskeletal Disorders}, number = {1}, doi = {10.1186/s12891-022-05241-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301113}, year = {2022}, abstract = {Background In wrist arthrograms, aberrant contrast material is frequently seen extending into the soft tissue adjacent to the ulnar styloid process. Since the prestyloid recess can mimic contrast leakage in CT arthrography, this study aims to provide a detailed analysis of its morphologic variability, while investigating whether actual ulnar-sided leakage is associated with injuries of the triangular fibrocartilage complex (TFCC). Methods Eighty-six patients with positive wrist trauma history underwent multi-compartment CT arthrography (40 women, median age 44.5 years). Studies were reviewed by two board-certified radiologists, who documented the morphology of the prestyloid recess regarding size, opening type, shape and position, as well as the presence or absence of ulnar-sided contrast leakage. Correlations between leakage and the presence of TFCC injuries were assessed using the mean square contingency coefficient (r\(_{ɸ}\)). Results The most common configuration of the prestyloid recess included a narrow opening (73.26\%; width 2.26 ± 1.43 mm), saccular shape (66.28\%), and palmar position compared to the styloid process (55.81\%). Its mean length and anterior-posterior diameter were 6.89 ± 2.36 and 5.05 ± 1.97 mm, respectively. Ulnar-sided contrast leakage was reported in 29 patients (33.72\%) with a mean extent of 12.30 ± 5.31 mm. Leakage occurred more often in patients with ulnar-sided TFCC injuries (r\(_{ɸ}\) = 0.480; p < 0.001), whereas no association was found for lesions of the central articular disc (r\(_{ɸ}\) = 0.172; p = 0.111). Conclusions Since ulnar-sided contrast leakage is more common in patients with peripheral TFCC injuries, distinction between an atypical configuration of the prestyloid recess and actual leakage is important in CT arthrography of the wrist.}, language = {en} } @article{GuggenbergerBley2020, author = {Guggenberger, Konstanze Viktoria and Bley, Thorsten Alexander}, title = {Imaging in Vasculitis}, series = {Current Rheumatology Reports}, volume = {22}, journal = {Current Rheumatology Reports}, number = {34}, issn = {1523-3774}, doi = {10.1007/s11926-020-00915-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232762}, year = {2020}, abstract = {Purpose of Review: Vasculitides are characterized by mostly autoimmunologically induced inflammatory processes of vascularstructures. They have various clinical and radiologic appearances. Early diagnosis and reliable monitoring are indispensable foradequate therapy to prevent potentially serious complications. Imaging, in addition to laboratory tests and physical examination,constitutes a key component in assessing disease extent and activity. This review presents current standards and some typicalfindings in the context of imaging in vasculitis with particular attention to large vessel vasculitides. Recent Findings: Recently, imaging has gained importance in the management of vasculitis, especially regarding large vesselvasculitides (LVV). Recently, EULAR (European League Against Rheumatism) has launched its recommendations concerningthe diagnosis of LVVs. Imaging is recommended as the preferred complement to clinical examination. Color-coded duplexsonography is considered the first choice imaging test in suspected giant cell arteritis, and magnetic resonance imaging isconsidered the first choice in suspected Takayasu'sarteritis. Summary: Due to diversity of clinical and radiologic presentations, diagnosis and therapy monitoring of vasculitides mayconstitute a challenge. As a result of ongoing technological progress, a variety of non-invasive imaging modalities now playan elemental role in the interdisciplinary management of vasculitic diseases.}, language = {en} } @article{HuflageKarstenKunzetal.2021, author = {Huflage, Henner and Karsten, Sebastian and Kunz, Andreas Steven and Conrads, Nora and Jakubietz, Rafael Gregor and Jakubietz, Michael Georg and Pennig, Lenhard and Goertz, Lukas and Bley, Thorsten Alexander and Schmitt, Rainer and Grunz, Jan-Peter}, title = {Improved diagnostic accuracy for ulnar-sided TFCC lesions with radial reformation of 3D sequences in wrist MR arthrography}, series = {European Radiology}, volume = {31}, journal = {European Radiology}, number = {12}, issn = {1432-1084}, doi = {10.1007/s00330-021-08024-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266512}, pages = {9399-9407}, year = {2021}, abstract = {Objectives Triangular fibrocartilage complex (TFCC) injuries frequently cause ulnar-sided wrist pain and can induce distal radioulnar joint instability. With its complex three-dimensional structure, diagnosis of TFCC lesions remains a challenging task even in MR arthrograms. The aim of this study was to assess the added diagnostic value of radial reformatting of isotropic 3D MRI datasets compared to standard planes after direct arthrography of the wrist. Methods Ninety-three patients underwent wrist MRI after fluoroscopy-guided multi-compartment arthrography. Two radiologists collectively analyzed two datasets of each MR arthrogram for TFCC injuries, with one set containing standard reconstructions of a 3D thin-slice sequence in axial, coronal and sagittal orientation, while the other set comprised an additional radial plane view with the rotating center positioned at the ulnar styloid. Surgical reports (whenever available) or radiological reports combined with clinical follow-up served as a standard of reference. In addition, diagnostic confidence and assessability of the central disc and ulnar-sided insertions were subjectively evaluated. Results Injuries of the articular disc, styloid and foveal ulnar attachment were present in 20 (23.7\%), 10 (10.8\%) and 9 (9.7\%) patients. Additional radial planes increased diagnostic accuracy for lesions of the styloid (0.83 vs. 0.90; p = 0.016) and foveal (0.86 vs. 0.94; p = 0.039) insertion, whereas no improvement was identified for alterations of the central cartilage disc. Readers' confidence (p < 0.001) and assessability of the ulnar-sided insertions (p < 0.001) were superior with ancillary radial reformatting. Conclusions Access to the radial plane view of isotropic 3D sequences in MR arthrography improves diagnostic accuracy and confidence for ulnar-sided TFCC lesions.}, language = {en} } @article{HuflageFieberFaerberetal.2022, author = {Huflage, Henner and Fieber, Tabea and F{\"a}rber, Christian and Knarr, Jonas and Veldhoen, Simon and Jordan, Martin C. and Gilbert, Fabian and Bley, Thorsten Alexander and Meffert, Rainer H. and Grunz, Jan-Peter and Schmalzl, Jonas}, title = {Interobserver reliability of scapula fracture classifications in intra- and extra-articular injury patterns}, series = {BMC Musculoskeletal Disorders}, volume = {23}, journal = {BMC Musculoskeletal Disorders}, number = {1}, doi = {10.1186/s12891-022-05146-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299795}, year = {2022}, abstract = {Background Morphology and glenoid involvement determine the necessity of surgical management in scapula fractures. While being present in only a small share of patients with shoulder trauma, numerous classification systems have been in use over the years for categorization of scapula fractures. The purpose of this study was to evaluate the established AO/OTA classification in comparison to the classification system of Euler and R{\"u}edi (ER) with regard to interobserver reliability and confidence in clinical practice. Methods Based on CT imaging, 149 patients with scapula fractures were retrospectively categorized by two trauma surgeons and two radiologists using the classification systems of ER and AO/OTA. To measure the interrater reliability, Fleiss kappa (κ) was calculated independently for both fracture classifications. Rater confidence was stated subjectively on a five-point scale and compared with Wilcoxon signed rank tests. Additionally, we computed the intraclass correlation coefficient (ICC) based on absolute agreement in a two-way random effects model to assess the diagnostic confidence agreement between observers. Results In scapula fractures involving the glenoid fossa, interrater reliability was substantial (κ = 0.722; 95\% confidence interval [CI] 0.676-0.769) for the AO/OTA classification in contrast to moderate agreement (κ = 0.579; 95\% CI 0.525-0.634) for the ER classification system. Diagnostic confidence for intra-articular fracture patterns was superior using the AO/OTA classification compared to ER (p < 0.001) with higher confidence agreement (ICC: 0.882 versus 0.831). For extra-articular fractures, ER (κ = 0.817; 95\% CI 0.771-0.863) provided better interrater reliability compared to AO/OTA (κ = 0.734; 95\% CI 0.692-0.776) with higher diagnostic confidence (p < 0.001) and superior agreement between confidence ratings (ICC: 0.881 versus 0.912). Conclusions The AO/OTA classification is most suitable to categorize intra-articular scapula fractures with glenoid involvement, whereas the classification system of Euler and R{\"u}edi appears to be superior in extra-articular injury patterns with fractures involving only the scapula body, spine, acromion and coracoid process.}, language = {en} } @article{ReichelHerzelTabbakhetal.2021, author = {Reichel, Thomas and Herz, Stefan and el Tabbakh, Mohammed and Bley, Thorsten Alexander and Plumhoff, Piet and Rueckl, Kilian}, title = {Less than 9.5-mm coracohumeral distance on axial magnetic resonance imaging scans predicts for subscapularis tear}, series = {JSES International}, volume = {5}, journal = {JSES International}, number = {3}, doi = {10.1016/j.jseint.2021.01.014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259118}, pages = {424-429}, year = {2021}, abstract = {Background Diagnosis of subscapularis (SSC) tendon lesions on magnetic resonance imaging (MRI) can be challenging. A small coracohumeral distance (CHD) has been associated with SSC tears. This study was designed to define a specific threshold value for CHD to predict SSC tears on axial MRI scans. Methods This retrospective study included 172 shoulders of 168 patients who underwent arthroscopic surgery for rotator cuff tear or glenohumeral instability. Diagnostic arthroscopy confirmed an SSC tear in 62 cases (36.0\%, test group a), rotator cuff tear tears other than SSC in 71 cases (41.3\%, control group b) and glenohumeral instability without any rotator cuff tear in 39 cases (22.7\%, zero-sample group c). All patients had a preoperative MRI of the shoulder (1.5T or 3T). Minimum CHD was measured on axial fat-suppressed proton density-, T2-, or T1-weigthed sequences. Receiver operating characteristics analysis was used to determine the threshold value for CHD, and sensitivity and specificity were calculated. Results CHD measurement had a good interobserver reliability (Intraclass correlation coefficient 0.799). Mean CHD was highly significantly (P < .001) less for test group a (mean 7.3 mm, standard deviation ± 2.2) compared with control group b (mean 11.1 mm, standard deviation ± 2.3) or zero-sample group c (mean 13.6 mm, standard deviation ± 2.9). A threshold value of CHD <9.5 mm had a sensitivity of 83.6\% and a specificity of 83.9\% to predict SSC tears. Conclusion A CHD <9.5 mm on MRI is predictive of SSC lesions and a valuable tool to diagnose SSC tears.}, language = {en} } @article{VeldhoenBehzadiLenzetal.2017, author = {Veldhoen, Simon and Behzadi, Cyrus and Lenz, Alexander and Henes, Frank Oliver and Rybczynski, Meike and von Kodolitsch, Yskert and Bley, Thorsten Alexander and Adam, Gerhard and Bannas, Peter}, title = {Non-contrast MR angiography at 1.5 Tesla for aortic monitoring in Marfan patients after aortic root surgery}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {19}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {82}, doi = {10.1186/s12968-017-0394-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158693}, year = {2017}, abstract = {Background: Contrast-enhanced cardiovascular magnetic resonance angiography (CE-CMRA) is the established imaging modality for patients with Marfan syndrome requiring life-long annual aortic imaging before and after aortic root replacement. Contrast-free CMRA techniques avoiding side-effects of contrast media are highly desirable for serial imaging but have not been evaluated in the postoperative setup of Marfan patients. The purpose of this study was to assess the feasibility of non-contrast balanced steady-state free precession (bSSFP) magnetic resonance imaging for aortic monitoring of postoperative patients with Marfan syndrome. Methods: Sixty-four adult Marfan patients after aortic root replacement were prospectively included. Fourteen patients (22\%) had a residual aortic dissection after surgical treatment of type A dissection. bSSFP imaging and CE-CMRA were performed at 1.5 Tesla. Two radiologists evaluated the images regarding image quality (1 = poor, 4 = excellent), artifacts (1 = severe, 4 = none) and aortic pathologies. Readers measured the aortic diameters at defined levels in both techniques. Statistics included observer agreement for image scoring and diameter measurements and ROC analyses for comparison of the diagnostic performance of bSSFP and CE-CMRA. Results: Both readers observed no significant differences in image quality between bSSFP and CE-CMRA and found a median image quality score of 4 for both techniques (all p > .05). No significant differences were found regarding the frequency of image artifacts in both sequences (all p > .05). Sensitivity and specificity for detection of aortic dissections was 100\% for both readers and techniques. Compared to bSSFP imaging, CE-CMRA resulted in higher diameters (mean bias, 0.9 mm; p < .05). The inter-observer biases of diameter measurements were not significantly different (all p > .05), except for the distal graft anastomosis (p = .001). Using both techniques, the readers correctly identified a graft suture dehiscence with aneurysm formation requiring surgery. Conclusion: Unenhanced bSSFP CMR imaging allows for riskless aortic monitoring with high diagnostic accuracy in Marfan patients after aortic root surgery.}, language = {en} } @article{HuflageKunzHendeletal.2023, author = {Huflage, Henner and Kunz, Andreas Steven and Hendel, Robin and Kraft, Johannes and Weick, Stefan and Razinskas, Gary and Sauer, Stephanie Tina and Pennig, Lenhard and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {9}, issn = {2075-4418}, doi = {10.3390/diagnostics13091558}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313519}, year = {2023}, abstract = {Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25-29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1\%) compared with non-obese (0\%) and pre-obese patients (4.1\%). Conclusion: DECT facilitates a 30.8\% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.}, language = {en} } @article{HuflageGrunzPatzeretal.2023, author = {Huflage, Henner and Grunz, Jan-Peter and Patzer, Theresa Sophie and Pannenbecker, Pauline and Feldle, Philipp and Sauer, Stephanie Tina and Petritsch, Bernhard and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Kunz, Andreas Steven}, title = {Potential of unenhanced ultra-low-dose abdominal photon-counting CT with tin filtration: a cadaveric study}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics13040603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304122}, year = {2023}, abstract = {Objectives: This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. Materials and Methods: Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. Results: Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5-5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95\% confidence interval 0.763-0.906; p < 0.001) indicated good interrater reliability. Conclusions: Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy.}, language = {en} } @article{PatzerKunzHuflageetal.2023, author = {Patzer, Theresa Sophie and Kunz, Andreas Steven and Huflage, Henner and Luetkens, Karsten Sebastian and Conrads, Nora and Gruschwitz, Philipp and Pannenbecker, Pauline and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Quantitative and qualitative image quality assessment in shoulder examinations with a first-generation photon-counting detector CT}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-35367-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357925}, year = {2023}, abstract = {Photon-counting detector (PCD) CT allows for ultra-high-resolution (UHR) examinations of the shoulder without requiring an additional post-patient comb filter to narrow the detector aperture. This study was designed to compare the PCD performance with a high-end energy-integrating detector (EID) CT. Sixteen cadaveric shoulders were examined with both scanners using dose-matched 120 kVp acquisition protocols (low-dose/full-dose: CTDI\(_{vol}\) = 5.0/10.0 mGy). Specimens were scanned in UHR mode with the PCD-CT, whereas EID-CT examinations were conducted in accordance with the clinical standard as "non-UHR". Reconstruction of EID data employed the sharpest kernel available for standard-resolution scans (ρ\(_{50}\) = 12.3 lp/cm), while PCD data were reconstructed with both a comparable kernel (11.8 lp/cm) and a sharper dedicated bone kernel (16.5 lp/cm). Six radiologists with 2-9 years of experience in musculoskeletal imaging rated image quality subjectively. Interrater agreement was analyzed by calculation of the intraclass correlation coefficient in a two-way random effects model. Quantitative analyses comprised noise recording and calculating signal-to-noise ratios based on attenuation measurements in bone and soft tissue. Subjective image quality was higher in UHR-PCD-CT than in EID-CT and non-UHR-PCD-CT datasets (all p < 0.001). While low-dose UHR-PCD-CT was considered superior to full-dose non-UHR studies on either scanner (all p < 0.001), ratings of low-dose non-UHR-PCD-CT and full-dose EID-CT examinations did not differ (p > 0.99). Interrater reliability was moderate, indicated by a single measures intraclass correlation coefficient of 0.66 (95\% confidence interval: 0.58-0.73; p < 0.001). Image noise was lowest and signal-to-noise ratios were highest in non-UHR-PCD-CT reconstructions at either dose level (p < 0.001). This investigation demonstrates that superior depiction of trabecular microstructure and considerable denoising can be realized without additional radiation dose by employing a PCD for shoulder CT imaging. Allowing for UHR scans without dose penalty, PCD-CT appears as a promising alternative to EID-CT for shoulder trauma assessment in clinical routine.}, language = {en} } @article{GruschwitzHartungKleefeldtetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Kleefeldt, Florian and Erg{\"u}n, S{\"u}leyman and Lichthardt, Sven and Huflage, Henner and Hendel, Robin and Kunz, Andreas Steven and Pannenbecker, Pauline and Kuhl, Philipp Josef and Augustin, Anne Marie and Bley, Thorsten Alexander and Petritsch, Bernhard and Grunz, Jan-Peter}, title = {Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-39063-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357912}, year = {2023}, abstract = {This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall's concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability.}, language = {en} }