@article{KnorrRudolfNuernberger2013, author = {Knorr, Johannes and Rudolf, Philipp and Nuernberger, Patrick}, title = {A comparative study on chirped-pulse upconversion and direct multichannel MCT detection}, doi = {10.1364/OE.21.030693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111334}, year = {2013}, abstract = {A comparative study is carried out on two spectroscopic techniques employed to detect ultrafast absorption changes in the mid-infrared spectral range, namely direct multichannel detection via HgCdTe (MCT) photodiode arrays and the newly established technique of chirped-pulse upconversion (CPU). Whereas both methods are meanwhile individually used in a routine manner, we directly juxtapose their applicability in femtosecond pump-probe experiments based on 1 kHz shot-to-shot data acquisition. Additionally, we examine different phase-matching conditions in the CPU scheme for a given mid-infrared spectrum, thereby simultaneously detecting signals which are separated by more than 200 cm-1.}, language = {en} } @article{KnorrSokkarSchottetal.2016, author = {Knorr, Johannes and Sokkar, Pandian and Schott, Sebastian and Costa, Paolo and Thiel, Walter and Sander, Wolfram and Sanchez-Garcia, Elsa and Nuernberger, Patrick}, title = {Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12968}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165954}, pages = {12968}, year = {2016}, abstract = {Photochemical reactions in solution often proceed via competing reaction pathways comprising intermediates that capture a solvent molecule. A disclosure of the underlying reaction mechanisms is challenging due to the rapid nature of these processes and the intricate identification of how many solvent molecules are involved. Here combining broadband femtosecond transient absorption and quantum mechanics/molecular mechanics simulations, we show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding dynamics determine which reaction channels are accessible in binary solvent mixtures at room temperature. In-depth analysis of the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Our results show that adjacent solvent molecules take the role of key abettors rather than bystanders for the fate of the reactive intermediate.}, language = {en} }