@phdthesis{Wilfert2019, author = {Wilfert, Stefan}, title = {Rastertunnelmikroskopische und -spektroskopische Untersuchung von Supraleitern und topologischen Supraleitern}, doi = {10.25972/OPUS-18059}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180597}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Quantencomputer k{\"o}nnen manche Probleme deutlich effizienter l{\"o}sen als klassische Rechner. Bisherige Umsetzungen leiden jedoch an einer zu geringen Dekoh{\"a}renzzeit, weshalb die Lebenszeit der Quantenzust{\"a}nde einen limitierenden Faktor darstellt. Topologisch gesch{\"u}tzte Anregungen, wie Majorana-Fermionen, k{\"o}nnten hingegen dieses Hindernis {\"u}berwinden. Diese lassen sich beispielsweise in topologischen Supraleitern realisieren. Bis zum jetzigen Zeitpunkt existieren nur wenige Materialien, die dieses Ph{\"a}nomen aufweisen. Daher ist das Verst{\"a}ndnis der elektronischen Eigenschaften f{\"u}r solche Verbindungen von großer Bedeutung. In dieser Dissertation wird die Koexistenz von Supraleitung an der Probenoberfl{\"a}che und topologischem Oberfl{\"a}chenzustand (engl. topological surface state, TSS) auf potentiellen topologischen Supraleitern {\"u}berpr{\"u}ft. Diese beiden Bedingungen sind essentiell zur Ausbildung von topologischer Supraleitung in zeitumkehrgesch{\"u}tzten Systemen. Hierzu wird mittels Landaulevelspektroskopie und Quasiteilcheninterferenz das Vorhandensein des TSS am Ferminiveau auf Tl\$_{x}\$Bi\$_{2}\$Te\$_{3}\$ und Nb\$_{x}\$Bi\$_{2}\$Se\$_{3}\$ verifiziert, die mittels Transportmessungen als supraleitend identifiziert wurden. Anschließend folgen hochaufgel{\"o}ste Spektroskopien an der Fermienergie, um die supraleitenden Eigenschaften zu analysieren. Zur Interpretation der analysierten Eigenschaften wird zu Beginn der Ni-haltige Schwere-Fermion-Supraleiter TlNi\$_{2}\$Se\$_{2}\$ untersucht, der eine vergleichbare {\"U}bergangstemperatur besitzt. Anhand diesem werden die g{\"a}ngigen Messmethoden der Rastertunnelmikroskopie und -spektroskopie f{\"u}r supraleitende Proben vorgestellt und die Leistungsf{\"a}higkeit der Messapparatur demonstriert. Im Einklang mit der Literatur zeigt sich ein \$s\$-Wellencharakter des Paarungsmechanismus sowie die Formation eines f{\"u}r Typ~II-Supraleiter typischen Abrikosov-Gitters in schwachen externen Magnetfeldern. Im folgenden Teil werden die potentiellen topologischen Supraleiter Tl\$_{x}\$Bi\$_{2}\$Te\$_{3}\$ und Nb\$_{x}\$Bi\$_{2}\$Se\$_{3}\$ begutachtet, f{\"u}r die eindeutig ein TSS best{\"a}tigt wird. Allerdings weisen beide Materialien keine Oberfl{\"a}chensupraleitung auf, was vermutlich durch eine Entkopplung der Oberfl{\"a}che vom Volumen durch Bandverbiegung zu erkl{\"a}ren ist. Unbeabsichtigte Kollisionen der Spitze mit der Probe f{\"u}hren jedoch zu supraleitenden Spitzen, die wesentlich erh{\"o}hte Werte f{\"u}r die kritische Temperatur und das kritische Feld zeigen. Der letzte Abschnitt widmet sich dem supraleitenden Substrat Nb(110), f{\"u}r den der Reinigungsprozess erl{\"a}utert wird. Hierbei sind kurze Heizschritte bis nahe des Schmelzpunktes n{\"o}tig, um die bei Umgebungsbedingungen entstehende Sauerstoffrekonstruktion effektiv zu entfernen. Des Weiteren werden die elektronischen Eigenschaften untersucht, die eine Oberfl{\"a}chenresonanz zum Vorschein bringen. Hochaufgel{\"o}ste Messungen lassen eine durch die BCS-Theorie gut repr{\"a}sentierte Struktur der supraleitenden Energiel{\"u}cke erkennen. Magnetfeldabh{\"a}ngige Experimente offenbaren zudem eine mit der Kristallstruktur vereinbare Anisotropie des Paarungspotentials. Mit diesen Erkenntnissen kann Nb(110) zuk{\"u}nftig als Ausgang f{\"u}r das Wachstum von topologischen Supraleitern herangezogen werden.}, subject = {Supraleitung}, language = {de} } @article{SessiBiswasBathonetal.2016, author = {Sessi, Paolo and Biswas, Rudro R. and Bathon, Thomas and Storz, Oliver and Wilfert, Stefan and Barla, Alessandro and Kokh, Konstantin A. and Tereshchenko, Oleg E. and Fauth, Kai and Bode, Matthias and Balatsky, Alexander V.}, title = {Dual nature of magnetic dopants and competing trends in topological insulators}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172704}, year = {2016}, abstract = {Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.}, language = {en} }