@article{RodriguesMarzbanHewig2021, author = {Rodrigues, Johannes and Marzban, Dorna and Hewig, Johannes}, title = {The influence of mental imagery expertise of pen and paper players versus computer gamers upon performance and electrocortical correlates in a difficult mental rotation task}, series = {Symmetry}, volume = {13}, journal = {Symmetry}, number = {12}, issn = {2073-8994}, doi = {10.3390/sym13122337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252253}, year = {2021}, abstract = {We investigated the influence of mental imagery expertise in 15 pen and paper role-players as an expert group compared to the gender-matched control group of computer role-players in the difficult Vandenberg and Kuse mental rotation task. In this task, the participants have to decide which two of four rotated figures match the target figure. The dependent measures were performance speed and accuracy. In our exploratory investigation, we further examined midline frontal theta band activation, parietal alpha band activation, and parietal alpha band asymmetry in EEG as indicator for the chosen rotation strategy. Additionally, we explored the gender influence on performance and EEG activation, although a very small female sample section was given. The expected gender difference concerning performance accuracy was negated by expertise in pen and paper role-playing women, while the gender-specific difference in performance speed was preserved. Moreover, gender differences concerning electro-cortical measures revealed differences in rotation strategy, with women using top-down strategies compared to men, who were using top-down strategies and active inhibition of associative cortical areas. These strategy uses were further moderated by expertise, with higher expertise leading to more pronounced activation patters, especially during successful performance. However, due to the very limited sample size, the findings of this explorative study have to be interpreted cautiously.}, language = {en} } @article{RodriguesWeissMusseletal.2022, author = {Rodrigues, Johannes and Weiß, Martin and Mussel, Patrick and Hewig, Johannes}, title = {On second thought … the influence of a second stage in the ultimatum game on decision behavior, electro-cortical correlates and their trait interrelation}, series = {Psychophysiology}, volume = {59}, journal = {Psychophysiology}, number = {7}, doi = {10.1111/psyp.14023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318983}, year = {2022}, abstract = {Previous EEG research only investigated one stage ultimatum games (UGs). We investigated the influence of a second bargaining stage in an UG concerning behavioral responses, electro-cortical correlates and their moderations by the traits altruism, anger, anxiety, and greed in 92 participants. We found that an additional stage led to more rejection in the 2-stage UG (2SUG) and that increasing offers in the second stage compared to the first stage led to more acceptance. The FRN during a trial was linked to expectance evaluation concerning the fairness of the offers, while midfrontal theta was a marker for the needed cognitive control to overcome the respective default behavioral pattern. The FRN responses to unfair offers were more negative for either low or high altruism in the UG, while high trait anxiety led to more negative FRN responses in the first stage of 2SUG, indicating higher sensitivity to unfairness. Accordingly, the mean FRN response, representing the trait-like general electrocortical reactivity to unfairness, predicted rejection in the first stage of 2SUG. Additionally, we found that high trait anger led to more rejections for unfair offer in 2SUG in general, while trait altruism led to more rejection of unimproving unfair offers in the second stage of 2SUG. In contrast, trait anxiety led to more acceptance in the second stage of 2SUG, while trait greed even led to more acceptance if the offer was worse than in the stage before. These findings suggest, that 2SUG creates a trait activation situation compared to the UG.}, language = {en} } @article{RodriguesWeissHewigetal.2021, author = {Rodrigues, Johannes and Weiß, Martin and Hewig, Johannes and Allen, John J. B.}, title = {EPOS: EEG Processing Open-Source Scripts}, series = {Frontiers in Neuroscience}, volume = {15}, journal = {Frontiers in Neuroscience}, issn = {1662-453X}, doi = {10.3389/fnins.2021.660449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240221}, year = {2021}, abstract = {Background: Since the replication crisis, standardization has become even more important in psychological science and neuroscience. As a result, many methods are being reconsidered, and researchers' degrees of freedom in these methods are being discussed as a potential source of inconsistencies across studies. New Method: With the aim of addressing these subjectivity issues, we have been working on a tutorial-like EEG (pre-)processing pipeline to achieve an automated method based on the semi-automated analysis proposed by Delorme and Makeig. Results: Two scripts are presented and explained step-by-step to perform basic, informed ERP and frequency-domain analyses, including data export to statistical programs and visual representations of the data. The open-source software EEGlab in MATLAB is used as the data handling platform, but scripts based on code provided by Mike Cohen (2014) are also included. Comparison with existing methods: This accompanying tutorial-like article explains and shows how the processing of our automated pipeline affects the data and addresses, especially beginners in EEG-analysis, as other (pre)-processing chains are mostly targeting rather informed users in specialized areas or only parts of a complete procedure. In this context, we compared our pipeline with a selection of existing approaches. Conclusion: The need for standardization and replication is evident, yet it is equally important to control the plausibility of the suggested solution by data exploration. Here, we provide the community with a tool to enhance the understanding and capability of EEG-analysis. We aim to contribute to comprehensive and reliable analyses for neuro-scientific research.}, language = {en} }