@phdthesis{Bregenzer2015, author = {Bregenzer, J{\"u}rgen}, title = {Effizienter Einsatz von Multicore-Architekturen in der Steuerungstechnik}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-010-8 (Print)}, doi = {10.25972/WUP-978-3-95826-011-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106239}, school = {W{\"u}rzburg University Press}, pages = {185}, year = {2015}, abstract = {Der Einsatz von Multicore-Prozessoren in der industriellen Steuerungstechnik birgt sowohl Chancen als auch Risiken. Die vorliegende Dissertation entwickelt und bewertet aus diesem Grund generische Strategien zur Nutzung dieser Prozessorarchitektur unter Ber{\"u}cksichtigung der spezifischen Rahmenbedingungen und Anforderungen dieser Dom{\"a}ne. Multicore-Prozessoren bieten die Chance zur Konsolidierung derzeit auf dedizierter Hardware ausgef{\"u}hrter heterogener Steuerungssubsysteme unter einer bisher nicht erreichbaren temporalen Isolation. In diesem Kontext definiert die vorliegende Dissertation die spezifischen Anforderungen, die eine integrierte Ausf{\"u}hrung in der Dom{\"a}ne der industriellen Automatisierung erf{\"u}llen muss. Eine Vorbedingung f{\"u}r ein derartiges Szenario stellt allerdings der Einsatz einer geeigneten Konsolidierungsl{\"o}sung dar. Mit einem virtualisierten und einem hybriden Konsolidierungsansatz werden deshalb zwei repr{\"a}sentative L{\"o}sungen f{\"u}r die Dom{\"a}ne eingebetteter Systeme vorgestellt, die schließlich hinsichtlich der zuvor definierten Kriterien evaluiert werden. Da die Taktraten von Prozessoren physikalische Grenzen erreicht haben, werden sich in der Steuerungstechnik signifikante Performanzsteigerungen zuk{\"u}nftig nur durch den Einsatz von Multicore-Prozessoren erzielen lassen. Dies hat zur Vorbedingung, dass die Firmware die Parallelit{\"a}t dieser Prozessorarchitektur in geeigneter Weise zu nutzen vermag. Leider entstehen bei der Parallelisierung eines komplexen Systems wie einer Automatisierungs-Firmware im Allgemeinen signifikante Aufw{\"a}nde. Infolgedessen sollten diesbez{\"u}gliche Entscheidungen nur auf Basis einer objektiven Abw{\"a}gung potentieller Alternativen getroffen werden. Allerdings macht die Systemkomplexit{\"a}t eine Absch{\"a}tzung der durch eine spezifische parallele Firmware-Architektur zu erwartenden Performanz zu einer anspruchsvollen Aufgabe. Dies gilt vor allem, da eine Parallelisierung gefordert wird, die f{\"u}r eine Vielzahl von Lastszenarien in Form gesteuerter Maschinen geeignet ist. Aus diesem Grund spezifiziert die vorliegende Dissertation eine anwendungsorientierte Methode zur Unterst{\"u}tzung von Entwurfsentscheidungen, die bei der Migration einer bestehenden Singlecore-Firmware auf eine homogene Multicore-Architektur zu treffen sind. Dies wird erreicht, indem in automatisierter Weise geeignete Firmware-Modelle auf Basis von dynamischem Profiling der Firmware unter mehreren repr{\"a}sentativen Lastszenarien erstellt werden. Im Anschluss daran werden diese Modelle um das Expertenwissen von Firmware-Entwicklern erweitert, bevor mittels multikriterieller genetischer Algorithmen der Entwurfsraum der Parallelisierungsalternativen exploriert wird. Schließlich kann eine spezifische L{\"o}sung der auf diese Weise hergeleiteten Pareto-Front auf Basis ihrer Bewertungsmetriken zur Implementierung durch einen Entwickler ausgew{\"a}hlt werden. Die vorliegende Arbeit schließt mit einer Fallstudie, welche die zuvor beschriebene Methode auf eine numerische Steuerungs-Firmware anwendet und dabei deren Potential f{\"u}r eine umfassende Unterst{\"u}tzung einer Firmware-Parallelisierung aufzeigt.}, subject = {Mehrkernprozessor}, language = {de} } @phdthesis{Walter2006, author = {Walter, Dominik}, title = {Adaptive Control of Ultrashort Laser Pulses for High-Harmonic Generation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21975}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {The generation of high harmonics is an ideal method to convert frequencies of the infrared- or visible range into the soft x-ray range. This process demands high laser intensities that are nowadays supplied by femtosecond laser systems. As the temporal and spatial coherence properties of the laser are transferred during the conversion process, the generated high harmonics will propagate as a beam with high peak-brightness. Under ideal conditions the generation of soft-x-ray pulses shorter than one femtosecond is possible. These properties are exploited in many applications like time-resolved x-ray spectroscopy. The topic of this thesis is the generation and optimization of high harmonics. A variety of conversion setups is investigated (jet of noble gas atoms, gas-filled hollow-fiber, water microdroplets) and theoretical models present ideas to further enhance the conversion efficiency (using excited atoms or aligned molecules). In different setups the peak intensity of the fundamental laser pulses is increased by spectral broadening and subsequent temporal compression. This is achieved with the help of pulse shaping devices that can modify the spectral phase and therefore also the temporal intensity distribution of laser pulses. These pulse shaping devices are controlled by an evolutionary algorithm. With this setup not only adaptive compression of laser pulses is possible, but also the engineering of specific laser pulse shapes to optimize an experimental output. This setup was used to influence the process of high harmonic generation. It is demonstrated that the spectral distribution of the generated soft-x-ray radiation can be controlled by temporal pulse shaping. This method to tailor high harmonics is complemented by spatial shaping techniques. These findings demonstrate the realization of a tunable source of soft-x-ray radiation.}, subject = {Frequenzvervielfachung}, language = {en} }