@phdthesis{Pedrotti2018, author = {Pedrotti, Lorenzo}, title = {The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages.}, subject = {Ackerschmalwand}, language = {en} } @article{TomeNaegeleAdamoetal.2014, author = {Tome, Filipa and N{\"a}gele, Thomas and Adamo, Mattia and Garg, Abhroop and Marco-Ilorca, Carles and Nukarinen, Ella and Pedrotti, Lorenzo and Peviani, Alessia and Simeunovic, Andrea and Tatkiewicz, Anna and Tomar, Monika and Gamm, Magdalena}, title = {The low energy signaling network}, series = {Frontiers in Plant Science}, volume = {5}, journal = {Frontiers in Plant Science}, number = {353}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00353}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115813}, year = {2014}, abstract = {Stress impacts negatively on plant growth and crop productivity, causing extensive losses to agricultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments.}, language = {en} } @article{NukarinenNaegelePedrottietal.2016, author = {Nukarinen, Ella and N{\"a}gele, Thomas and Pedrotti, Lorenzo and Wurzinger, Bernhard and Mair, Andrea and Landgraf, Ramona and B{\"o}rnke, Frederik and Hanson, Johannes and Teige, Markus and Baena-Gonzalez, Elena and Dr{\"o}ge-Laser, Wolfgang and Weckwerth, Wolfram}, title = {Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {31697}, doi = {10.1038/srep31697}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167638}, year = {2016}, abstract = {Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants.}, language = {en} } @phdthesis{Henninger2022, author = {Henninger, Markus}, title = {Funktion der zentralen metabolischen Kinase SnRK1 und von ihr abh{\"a}ngiger Transkriptionsfaktoren bei der Mobilisierung von Speicherstoffen w{\"a}hrend der \(Arabidopsis\) Keimlingsentwicklung}, doi = {10.25972/OPUS-21430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214305}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Pflanzen m{\"u}ssen sich w{\"a}hrend der Samenkeimung und Keimlingsentwicklung {\"u}ber eingelagerte Speicherstoffe heterotroph versorgen, bis sie, nach Etablierung ihres Photosyntheseapparats, einen autotrophen Lebensstil f{\"u}hren k{\"o}nnen. Diese Arbeit geht von der Hypothese aus, dass der evolution{\"a}r konservierten zentral-metabolischen Kinase Snf1-RELATED PROTEIN KINASE 1 (SnRK1) eine besondere Rolle bei der Mobilisierung von Speicherstoffen w{\"a}hrend der Keimlingsentwicklung zukommt. W{\"a}hrend die Bedeutung von SnRK1 als zentraler Regulator katabolischer Prozesse unter Energiemangel- und Stresssituationen bereits gezeigt wurde, war die Funktion von SnRK1 im Zusammenhang mit der Samenkeimung weitgehend ungekl{\"a}rt. In dieser Arbeit konnte erstmals gezeigt werden, dass SnRK1 in Arabidopsis die Mobilisierung und Degradation von Speicherstoffen, insbesondere von Triacylglyceride (TAGs), Samenspeicherproteinen und Aminos{\"a}uren, steuert. Sowohl Studien zur Lokalisation von SnRK1:GFP-Fusionsproteinen als auch Kinaseaktivit{\"a}tsassays unterst{\"u}tzen eine m{\"o}gliche Funktion von SnRK1 w{\"a}hrend der Keimlingsentwicklung. Eine induzierbare snrk1-knockdown Mutante zeigt neben einem eingeschr{\"a}nkten Wurzel- und Hypokotylwachstum auch keine Ausbildung eines Photosyntheseapparats, was die zentrale Rolle der SnRK1 in diesem fr{\"u}hen Entwicklungsstadium untermauert. Durch F{\"u}tterungsexperimente mit Glukose konnte der Ph{\"a}notyp einer snrk1 -Mutante in Keimlingen gerettet werden. Dies zeigt, dass der metabolische Block durch externe Gabe von Kohlenhydraten umgangen werden kann. Die zentrale Funktion von SnRK1 ist folgich der Abbau von Speicherstoffen und keine allgemeine Deregulation des pflanzlichen Stoffwechsels. Durch massenspektrometrische Untersuchungen von Keimlingen des Wildtyps und der snrk1-Mutante konnte gezeigt werden, dass TAGs in der Mutante in der sp{\"a}- ten Keimlingsentwicklung ab Tag 4 langsamer abgebaut werden als im Wildtyp. Ebenso werden Samenspeicherproteine in der Mutante langsamer degradiert, wodurch die Verf{\"u}gbarkeit von freien Aminos{\"a}uren in geringer ist. Entgegen der allgemeinen Annahme konnte gezeigt werden, dass w{\"a}hrend der Keimlingsentwicklung zumindest in Arabidopsis, einer {\"o}lhaltigen Pflanze, zun{\"a}chst Kohlenhydrate in Form von Saccharose abgebaut werden, bevor die Degradation von TAGs und Aminos{\"a}uren beginnt. Diese Abbauprodukte k{\"o}nnen dann der Glukoneogenese zugef{\"u}hrt werden um daraus Glukose herzustellen. Mittels Transkriptom-Analysen konnten zentrale SnRK1-abh{\"a}ngige Gene in der Speicherstoffmobilisierung von TAG, beispielsweise PEROXISOMAL NAD-MALATE DEHYDROGENASE 2 (PMDH2) und ACYL-CoA-OXIDASE 4 (ACX4), und Aminos{\"a}uren identifiziert werden. Somit wurde ein Mechanismus der SnRK1-abh{\"a}ngigen Genregulation w{\"a}hrend der Samenkeimung in Arabidopsis gefunden. Bei der Degradation von Aminos{\"a}uren wird die cytosolische PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK), ein Schl{\"u}sselenzym beim Abbau bestimmter Aminos{\"a}uren und bei der Glukoneogenese, SnRK1-abh{\"a}ngig transkriptionell reguliert. Durch Koregulation konnte der Transkriptionsfaktor bZIP63 (BASIC LEUCINE ZIPPER 63) gefunden werden, dessen Transkription ebenfalls SnRK1-abh{\"a}ngig reguliert wird. Außerdem konnte die Transkription von cyPPDK in bzip63-Mutanten nur noch sehr schwach induziert werden. In Protoplasten konnte der cyPPDK-Promotor durch Aktivierungsexperimente mit bZIP63 und SnRK1α1 induziert werden. Durch Mutationskartierung und Chromatin-Immunopr{\"a}zipitation (ChIP)PCR konnte mehrfach eine direkte Bindung von bZIP63 an den cyPPDK-Promotor nachgewiesen werden. Zusammenfassend ergibt sich ein mechanistisches Arbeitsmodell, in dem bZIP63 durch SnRK1 phosphoryliert wird und durch Bindung an regulatorische G-Box cis-Elemente im cyPPDK- Promotor dessen Transkription anschaltet. Infolgedessen werden Aminos{\"a}uren abgebaut und wird {\"u}ber die Glukoneogenese Glukose aufgebaut. Dieser Mechanismus ist essentiell f{\"u}r die {\"U}bergangsphase zwischen heterotropher und autotropher Lebensweise, und tr{\"a}gt dazu bei, die im Samen vorhandenen Ressourcen dem Keimling zum idealen Zeitpunkt zug{\"a}nglich zu machen. Dar{\"u}ber hinaus werden Gene im Abbau von verzweigtkettigen Aminos{\"a}uren ebenfalls durch bZIP63 reguliert. Dabei wird dem Keimling Energie in Form von Adenosin-Triphosphat (ATP) zur Verf{\"u}gung gestellt. Zusammengefasst zeigen die Ergebnisse dieser Arbeit, dass die Mobilisierung von Speicherstoffen auch w{\"a}hrend der Keimlingsentwicklung direkt von SnRK1 abh{\"a}ngig ist. Die umfangreichen Datens{\"a}tze der RNA-Seq-Analysen bieten zudem die M{\"o}glichkeit, weitere SnRK1-abh{\"a}ngige Gene der Speichermobilisierung zu identifizieren und somit einem besseren Verst{\"a}ndnis der Keimlingsentwicklung beizutragen. Aufgrund der zentralen Bedeutung der SnRK1-Kinase in diesem entscheidenden Entwicklungsschritt ist davon auszugehen, dass diese Erkenntnisse mittelfristig auch f{\"u}r bessere Keimungsraten und somit bessere Ertr{\"a}ge in der Landwirtschaft genutzt werden k{\"o}nnen.}, subject = {SnRK1}, language = {de} }