@phdthesis{Weigand2003, author = {Weigand, Frank}, title = {XANES und MEXAFS an magnetischen {\"U}bergangsmetalloxiden : Entwicklung eines digitalen Lock-In-XMCD-Experiments mit Phasenschieber}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8849}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In dieser Arbeit werden drei Lanthanmanganat-Systeme mittels SQUID-(Superconducting Quantum Interference Device) Magnetometrie und XMCD-(X-ray Magnetic Circular Dich-roism) Messungen an den jeweiligen Absorptionskanten (XANES: X-ray Absorption Near Edge Structure) sowie im kantenfernen Bereich (MEXAFS: Magnetic Extended X-ray Ab-sorption Fine Structure) im Hinblick auf die Kl{\"a}rung ihrer magnetischen (Unter-)Struktur untersucht. Bei Lanthanmanganaten wird sowohl im Verlauf des spingemittelten als auch spinabh{\"a}ngigen Absorptionskoeffizienten an der Mn K Kante immer eine energetisch {\"u}ber 40eV ausgedehnte Doppelstruktur beobachtet. Durch Vergleich mit theoretischen Bandstrukturrechnungen und Messungen an Referenzsystemen lassen sich diese Strukturen auf zwei energetisch getrennte, resonante {\"U}berg{\"a}nge in leere Mn 4p Zust{\"a}nde zur{\"u}ckf{\"u}hren. Die Ursachen liegen in der Kristallstruktur der Lanthanmanganate und damit ihrer Bandstruktur begr{\"u}ndet. XMCD-Messungen an den La L2,3 Kanten zeigen, dass dieses Element zur Gesamtmagnetisierung dieser Verbindungen nur ein unerhebliches Moment beitr{\"a}gt und daher in einer Xenon-{\"a}hnlichen Elektronenkonfiguration vorliegt. Durch die interatomare Coulombwechselwirkung der nahezu unbesetzten La 5d Zust{\"a}nde mit den magnetisch aktiven Ionen im Kristall dienen XMCD-Messungen an den La L2,3 Kanten als Sonde f{\"u}r die magnetische Lanthanumgebung. {\"A}hnliches gilt f{\"u}r die entsprechenden MEXAFS. Der proportionale Zusammenhang der Gr{\"o}ße der MEXAFS mit dem Spinmoment der Nachbarionen besitzt auch bei den Lanthanmanganat-Systemen mit den stark hybridisierten Elektronen der Mn 3d Schale G{\"u}ltigkeit. Der Spinmoment-Korrelationskoeffizient aSpin gilt auch hier, was eine weitere Best{\"a}tigung des MEXAFS-Modells auch f{\"u}r oxidische Systeme ist. Im dotierten System La1.2Nd0.2Sr1.6Mn2O7 koppelt das Neodymmoment innerhalb einer Doppellage antiferromagnetisch zum Mn-Untergitter. Durch die Neodym-Dotierung am La/Sr-Platz im Kristall ist die ferromagnetische Kopplung der Doppellagen untereinander abge-schw{\"a}cht und die R{\"u}ckkehr in die antiferromagnetische Phase nach dem Abschalten des {\"a}ußeren Magnetfeldes damit erleichtert. Das Mn-Bahnmoment ist von nahezu verschwindender Gr{\"o}ße („gequencht"). Das System La1.2Sr1.8Mn2-xRuxO7 zeigt mit zunehmendem Rutheniumgehalt eine Erh{\"o}hung der Curie-Temperatur, was bei Ruddlesden-Popper Phasen zum ersten Mal beobachtet wurde. Das Ru-Untergitter und das Mn-Gitter sind zueinander antiparallel gekoppelt. Durch Bestimmung der Valenzen von Mn und Ru wird ein dem Superaustausch {\"a}hnliches Kopplungsmodell entworfen, womit der Anstieg in der Curie-Temperatur erkl{\"a}rbar ist. Das neu entwickelte XMCD-Experiment auf Basis eines Phasenschiebers und digitaler Sig-nalaufbereitung durch eine Lock-In Software besitzt ein Signal-Rausch Verh{\"a}ltnis in der N{\"a}he der Photonenstatistik und liefert einen großen Zeit- und Qualit{\"a}tsgewinn gegen{\"u}ber Messmethoden mit Magnetfeldwechsel. Auf teure analoge Lock-In Messverst{\"a}rker kann verzichtet werden. Zuk{\"u}nftig erweitert sich mit diesem Aufbau die f{\"u}r XMCD-Experimente zug{\"a}ngliche Anzahl an Synchrotronstrahlpl{\"a}tzen. Diese Experimente sind jetzt auch mit linear polarisierter R{\"o}ntgenstrahlung an Wiggler/Undulator Strahlpl{\"a}tzen und zuk{\"u}nftigen XFELs (X-ray Free Electron Laser) durchf{\"u}hrbar.}, subject = {Lanthanoxid}, language = {de} } @phdthesis{Gold2005, author = {Gold, Stefan}, title = {Winkel- und Temperaturabh{\"a}ngigkeit der magnetokristallinen Anisotropieenergie und der mikroskopischen magnetischen Momente des ferromagnetischen Halbmetalls CrO2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20141}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Im Rahmen dieser Arbeit wurden die magnetischen Eigenschaften des Halbmetalls CrO2 untersucht. CrO2 hat in den letzten Jahren erneut ein sehr starkes Interesse erfahren. Der Grund hierf{\"u}r liegt darin, dass dieses Material, aufgrund seiner theoretisch vorhergesagten und inzwischen nachgewiesenen Spinpolarisation von nahezu 100 \% an der Fermikante und seiner metastabilen Eigenschaften, ein stark diskutierter Kandidat f{\"u}r Spintronic-Anwendungen wie den Quantencomputer ist. Die M{\"o}glichkeit der Spininjektion ist f{\"u}r CrO2 gegeben und in der Zwischenzeit auch erfolgreich umgesetzt worden. Die Untersuchungen zielten auf eine Erkl{\"a}rung f{\"u}r die intrinsischen Eigenschaften wie magnetokristalline Anisotropie, magnetischer Dipolterm und dem eigentlich gequenchten Bahnmoment. Die Untersuchungen fanden an den Cr L2,3 und an der O K Kante statt. Insbesondere f{\"u}r die Auswertung an den Cr L2,3-Kanten war es notwendig, mit einer neuartigen Auswertemethodik s{\"a}mtliche aufgenommenen Daten zu analysieren, da eine herk{\"o}mmliche Summenregelauswertung leider nicht durchgef{\"u}hrt werden konnte. Der Grund hierf{\"u}r lag in der zu geringen L2,3-Aufspaltung des leichten 3d-{\"U}bergangmetalls Cr. Mit Hilfe der so genannten Momentenanalyse war es nun m{\"o}glich, die {\"u}berlappenden Strukturen voneinander zu separieren, und dar{\"u}ber hinaus auch verschiedene Anteile der Bandstruktur verschiedenen spektralen Beitr{\"a}gen zuzuordnen. Die Ergebnisse an CrO2 zeigten eine sehr starke Abh{\"a}ngigkeit des magnetischen Bahnmomentes, der Summe von Spin und magnetischem Dipolterm sowie der magnetokristallinen Anisotropieenergie vom Winkel zwischen den rutilen a- und c-Achsen. Noch mehr als das Gesamtbahnmoment zeigen zwei, mit Hilfe der Momentenanalyse separierbare, spektrale Beitr{\"a}ge starke {\"A}nderungen der einzelnen Bahnmomente. Dieses unerwartete und ausgepr{\"a}gte Verhalten konnte mittels eines Vergleichs mit den Sauerstoff K-Kanten XMCD-Daten best{\"a}tigt werden, was auf eine sehr starke Hybridisierung der beiden Zust{\"a}nde schließen l{\"a}sst. Die Trennung der stark anisotropen Summe von Spin-Moment und TZ-Term {\"u}ber die Summenregel f{\"u}r den magnetischen Dipolterm liefert eine Gr{\"o}ßenordnung des TZ-Terms, wie er bis zu diesem Zeitpunkt nicht vorgefunden wurde. Ein Vergleich der magnetokristallinen Anisotropieenergie, gewonnen durch die Messung von elementspezifischen Hysteresekurven mit Hilfe des XMCD-Effektes, mit dem Brunomodell, das eine magnetisch leichte Richtung f{\"u}r die Achse mit dem gr{\"o}ßten Bahnmoment vorhersagt, kommt zu keinem positiven Ergebnis. Erst die von G. van der Laan aufgezeigte Erweiterung, in der auch der TZ-Term mit aufgenommen ist, liefert f{\"u}r das System CrO2 ein quantitativ {\"u}bereinstimmendes Ergebnis der MAE mit den gemessenen experimentellen Momenten. Erw{\"a}hnenswert in diesem Zusammenhang ist die Tatsache, dass das Bahnmoment und der magnetische Dipolterm unterschiedliche leichte Richtungen bevorzugen und beide Anteile fast gleich groß sind, wobei der magnetische Dipolterm die {\"U}berhand hat. In einem zweiten Teil der Arbeit wurde nun auch eine Temperaturabh{\"a}ngigkeit untersucht. Ziel war es, Aussagen {\"u}ber die Entstehung von Bahnmomenten, Dipolterm und MAE in Abh{\"a}ngigkeit des vorliegenden Spinmomentes zu gewinnen und diese mit vorhandenen theoretischen Modellen zu vergleichen. Das gemessene Spinmoment wurde mit SQUID-Daten verglichen und zeigte eine qualitative {\"U}bereinstimmung. Die extrahierten Bahnmomente zeigten wie der magnetische Dipolterm ein identisches Temperaturverhalten wie das Spinmoment. Dies ist ein Beweis, dass beide Momente in einem solchen System nur durch eine Kopplung mit dem Spinmoment entstehen und durch dieses verursacht sind. Im Weiteren konnte auch eine quadratische Abh{\"a}ngigkeit der MAE vom Spinmoment nachgewiesen werden. Dieses von G. van der Laan und in Vorarbeiten von P. Bruno vorhergesagte Verhalten konnte erstmalig in dieser Arbeit verifiziert werden. Zusammenfassend l{\"a}sst sich sagen, dass in dieser Arbeit das ungew{\"o}hnliche magnetische Verhalten, insbesondere die Winkelabh{\"a}ngigkeit der magnetischen Momente, durch die Kombination von XAS- und XMCD-Spektroskopie, mit der Verwendung der Momentenanalyse sowie der Untersuchung durch elementspezifische Hystereskurven, ein geschlossenes Bild des Probensystems CrO2 aufgezeigt werden konnte. Das Gesamtbild, das sich ergeben hat, zeigt ganz deutlich auf, dass eine Bandstrukturbeschreibung das gefundene Verhalten erkl{\"a}ren kann. Die allgemein vorherrschende, und sicherlich im ersten Moment deutlich intuitivere Vorstellung, dass man im Falle von CrO2 eine Art ionische Bindung h{\"a}tte, mit einer d2-Konfiguration und erwarteten 2 µB magnetischem Moment am Cr-Platz kann insbesondere die Temperaturabh{\"a}ngigkeit der Anisotropieenergie nicht erkl{\"a}ren. Auch in diesem Zusammenhang liefert das Bandmodell eine sehr gute Beschreibung.}, subject = {Chromoxid }, language = {de} } @phdthesis{Tcakaev2023, author = {Tcakaev, Abdul-Vakhab}, title = {Soft X-ray Spectroscopic Study of Electronic and Magnetic Properties of Magnetic Topological Insulators}, doi = {10.25972/OPUS-30378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {After the discovery of three-dimensional topological insulators (TIs), such as tetradymite chalcogenides Bi\$_2\$Se\$_3\$, Bi\$_2\$Te\$_3\$ and Sb\$_2\$Te\$_3\$ - a new class of quantum materials characterized by their unique surface electronic properties - the solid state community got focused on topological states that are driven by strong electronic correlations and magnetism. An important material class is the magnetic TI (MTI) exhibiting the quantum anomalous Hall (QAH) effect, i.e. a dissipationless quantized edge-state transport in the absence of external magnetic field, originating from the interplay between ferromagnetism and a topologically non-trivial band structure. The unprecedented opportunities offered by these new exotic materials open a new avenue for the development of low-dissipation electronics, spintronics, and quantum computation. However, the major concern with QAH effect is its extremely low onset temperature, limiting its practical application. To resolve this problem, a comprehensive understanding of the microscopic origin of the underlying ferromagnetism is necessary. V- and Cr-doped (Bi,Sb)\$_2\$Te\$_3\$ are the two prototypical systems that have been widely studied as realizations of the QAH state. Finding microscopic differences between the strongly correlated V and Cr impurities would help finding a relevant model of ferromagnetic coupling and eventually provide better control of the QAH effect in these systems. Therefore, this thesis first focuses on the V- and Cr-doped (Bi,Sb)\$_2\$Te\$_3\$ systems, to better understand these differences. Exploiting the unique capabilities of x-ray absorption spectroscopy and magnetic circular dichroism (XAS/XMCD), combined with advanced modeling based on multiplet ligand-field theory (MLFT), we provide a detailed microscopic insight into the local electronic and magnetic properties of these systems and determine microscopic parameters crucial for the comparison with theoretical models, which include the \$d\$-shell filling, spin and orbital magnetic moments. We find a strongly covalent ground state, dominated by the superposition of one and two Te-ligand-hole configurations, with a negligible contribution from a purely ionic 3+ configuration. Our findings indicate the importance of the Te \$5p\$ states for the ferromagnetism in (Bi, Sb)\$_2\$Te\$_3\$ and favor magnetic coupling mechanisms involving \$pd\$-exchange. Using state-of-the-art density functional theory (DFT) calculations in combination with XMCD and resonant photoelectron spectroscopy (resPES), we reveal the important role of the \$3d\$ impurity states in mediating magnetic exchange coupling. Our calculations illustrate that the kind and strength of the exchange coupling varies with the impurity \$3d\$-shell occupation. We find a weakening of ferromagnetic properties upon the increase of doping concentration, as well as with the substitution of Bi at the Sb site. Finally, we qualitatively describe the origin of the induced magnetic moments at the Te and Sb sites in the host lattice and discuss their role in mediating a robust ferromagnetism based on a \$pd\$-exchange interaction scenario. Our findings reveal important clues to designing higher \$T_{\text{C}}\$ MTIs. Rare-earth ions typically exhibit larger magnetic moments than transition-metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of TIs, which is favorable for the realization of the high-temperature QAH effect. Therefore, we have further focused on Eu-doped Bi\$_2\$Te\$_3\$ and scrutinized whether the conditions for formation of a substantial gap in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the \$M_{4,5}\$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu\$^{2+}\$ valence, unlike most other rare earth elements, and confirms a large magnetic moment. At temperatures below 10 K, bulk magnetometry indicates the onset of antiferromagnetic ordering. This is in good agreement with DFT results, which predict AFM interactions between the Eu impurities due to the direct overlap of the impurity wave functions. Our results support the notion of antiferromagnetism coexisting with topological surface states in rare-earth doped Bi\$_2\$Te\$_3\$ and corroborate the potential of such doping to result in an antiferromagnetic TI with exotic quantum properties. The doping with impurities introduces disorder detrimental for the QAH effect, which may be avoided in stoichiometric, well-ordered magnetic compounds. In the last part of the thesis we have investigated the recently discovered intrinsic magnetic TI (IMTI) MnBi\$_6\$Te\$_{10}\$, where we have uncovered robust ferromagnetism with \$T_{\text{C}} \approx 12\$ K and connected its origin to the Mn/Bi intermixing. Our measurements reveal a magnetically intact surface with a large moment, and with FM properties similar to the bulk, which makes MnBi\$_6\$Te\$_{10}\$ a promising candidate for the QAH effect at elevated temperatures. Moreover, using an advanced ab initio MLFT approach we have determined the ground-state properties of Mn and revealed a predominant contribution of the \$d^5\$ configuration to the ground state, resulting in a \$d\$-shell electron occupation \$n_d = 5.31\$ and a large magnetic moment, in excellent agreement with our DFT calculations and the bulk magnetometry data. Our results together with first principle calculations based on the DFT-GGA\$+U\$, performed by our collaborators, suggest that carefully engineered intermixing plays a crucial role in achieving a robust long-range FM order and therefore could be the key for achieving enhanced QAH effect properties. We expect our findings to aid better understanding of MTIs, which is essential to help increasing the temperature of the QAH effect, thus facilitating the realization of low-power electronics in the future.}, subject = {Topologischer Isolator}, language = {en} } @article{HanWiedwaldBiskupeketal.2011, author = {Han, Luyang and Wiedwald, Ulf and Biskupek, Johannes and Fauth, Kai and Kaiser, Ute and Ziemann, Paul}, title = {Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films}, series = {Beilstein Journal of Nanotechnology}, volume = {2}, journal = {Beilstein Journal of Nanotechnology}, doi = {10.3762/bjnano.2.51}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142869}, pages = {473-485}, year = {2011}, abstract = {The thermally activated formation of nanoscale CoPt alloys was investigated, after deposition of self-assembled Co nanoparticles on textured Pt(111) and epitaxial Pt(100) films on MgO(100) and SrTiO3(100) substrates, respectively. For this purpose, metallic Co nanoparticles (diameter 7 nm) were prepared with a spacing of 100 nm by deposition of precursor-loaded reverse micelles, subsequent plasma etching and reduction on flat Pt surfaces. The samples were then annealed at successively higher temperatures under a H2 atmosphere, and the resulting variations of their structure, morphology and magnetic properties were characterized. We observed pronounced differences in the diffusion and alloying of Co nanoparticles on Pt films with different orientations and microstructures. On textured Pt(111) films exhibiting grain sizes (20-30 nm) smaller than the particle spacing (100 nm), the formation of local nanoalloys at the surface is strongly suppressed and Co incorporation into the film via grain boundaries is favoured. In contrast, due to the absence of grain boundaries on high quality epitaxial Pt(100) films with micron-sized grains, local alloying at the film surface was established. Signatures of alloy formation were evident from magnetic investigations. Upon annealing to temperatures up to 380 °C, we found an increase both of the coercive field and of the Co orbital magnetic moment, indicating the formation of a CoPt phase with strongly increased magnetic anisotropy compared to pure Co. At higher temperatures, however, the Co atoms diffuse into a nearby surface region where Pt-rich compounds are formed, as shown by element-specific microscopy.}, language = {en} } @phdthesis{Hessler2005, author = {Heßler, Markus}, title = {Elektronenspektroskopie an {\"U}bergangsmetallclustern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zum Magnetismus und der elektronischen Struktur deponierter Cluster der 3d-{\"U}bergangsmetalle Fe, Co und Ni durchgef{\"u}hrt. Dabei zeigte sich, dass die Deposition der Cluster in Argon-D{\"u}nnfilme nicht nur zur fragmentationsfreien Probenpr{\"a}paration genutzt werden kann, sondern auch die Untersuchung der Cluster in einer Umgebung mit geringer Wechselwirkung erlaubt. Die Beobachtung des atomaren Co-Multipletts sowie die {\"U}bereinstimmung der, mittels XMCD bestimmten, magnetischen Gesamtmomente von Fe- und Co-Clustern mit Gasphasenexperimenten zeigen auf, dass unter stabil gew{\"a}hlten Bedingungen die intrinsischen magnetischen Clustereigenschaften tats{\"a}chlich experimentell zug{\"a}nglich sind. Die synchrotroninduzierte Mobilit{\"a}t von Clustern und Argon manifestiert sich in der Ver{\"a}nderung der Form der Absorptions- und Photoemissionslinien sowie in der zunehmenden Verminderung der gemessenen Magnetisierung. Neben den geeigneten Experimentierbedingungen ist zur Bestimmung der magnetischen Momente die Anwendbarkeit der XMCD-Summenregeln auf die Spektroskopie an Clustern notwendig. Besondere Beachtung verdient dabei auf Grund der reduzierten Symmetrie in Clustern der "magnetische Dipolterm" zur Spin-Summenregel. Der Vergleich des spektroskopisch ermittelten Gesamtmoments mit demjenigen, welches aus superparamagnetischen Magnetisierungskurven bestimmt wurde, erlaubt es, f{\"u}r seinen Beitrag bei Co-Clustern eine obere Schranke von 10\% anzugeben. Erwartungsgem{\"a}ß weisen die Spinmomente von Fe- und Co-Clustern gemessen am Festk{\"o}rper deutlich erh{\"o}hte Werte auf, allerdings reichen sie nicht an die mittels Stern-Gerlach-Ablenkung bestimmten magnetischen Gesamtmomente der Cluster heran. Die elektronische Struktur von Nickelclustern erweist sich als sehr empfindlich gegen Wechselwirkungen mit Fremdatomen, so dass die magnetischen Resultate aus der Gasphase nicht nachvollzogen werden k{\"o}nnen. Allen Clustern in der Argonumgebung ist jedoch eine starke Erh{\"o}hung des bahnartigen Anteils am Gesamtmoment, generell auf mehr als 20\% gemein. Damit kann nachgewiesen werden, dass die bestehende Diskrepanz zwischen berechneten Spinmomenten und experimentell bestimmten Gesamtmomenten in der Tat auf große Bahnmomente zur{\"u}ckzuf{\"u}hren ist. Dies gilt um so mehr, als die in dieser Arbeit bestimmten magnetischen Gesamtmomente an Fe- und Co-Clustern in guter {\"U}bereinstimmung mit Stern-Gerlach-Experimenten stehen. Die Wechselwirkung der Cluster mit der Oberfl{\"a}che des Graphits f{\"u}hrt bereits in den XAS-Absorptionsprofilen der L-Kanten zu sichtbaren Ver{\"a}nderungen in Form und energetischer Position der Absorptionsresonanzen. Alle untersuchten Cluster erfahren gleichzeitig eine starke Reduktion ihrer magnetischen Momente, h{\"a}ufig bis unter die Nachweisgrenze. Unter diesen Umst{\"a}nden ist es durchaus angebracht, von einer starken Cluster-Substrat-Wechselwirkung auszugehen. Dieser Befund wird durch die mittels Photoelektronenspektroskopie erzielten Ergebnisse untermauert. Ver{\"a}nderungen durch das "Einschalten" der Substratwechselwirkung sind sowohl in den Rumpfniveau- als auch den Valenzbandspektren zu erkennen. Charakteristisch f{\"u}r die ausf{\"u}hrlicher untersuchten Ni-Cluster ist die Ausbildung einer, mit dem Graphitsubstrat hybridisierten, Elektronenstruktur mit reduzierter Zustandsdichte in der Umgebung des Ferminiveaus. Eine solche Konfiguration beg{\"u}nstigt die Ausbildung von "low-spin" - Zust{\"a}nden, wie sie in den XMCD-Experimenten bei vorhandener Wechselwirkung mit dem Graphit gefunden werden. Die starke Kopplung der elektronischen Zust{\"a}nde von Cluster und Substrat {\"a}ußert sich ebenfalls in dem Verlust des Fano-Resonanzverhaltens in der resonanten Photoemission an der 3p-Absorptionsschwelle. Das Fehlen der analogen Beobachtung an der 2p-Schwelle, muss einer starken Lokalisierung des 2p-rumpflochangeregten Zwischenzustandes zugeschrieben werden. Die genaue Analyse der Ver{\"a}nderung des resonant-Raman-Verhaltens in der 2p-RESPES k{\"o}nnte wertvolle komplement{\"a}re Informationen liefern, wird aber durch die Gegenwart der Argon-Valenzemission zu stark behindert, um konkrete Aussagen zuzulassen. Die Analyse der RESPES-Daten l{\"a}sst den Schluss zu, dass die tats{\"a}chliche Besetzung der 3d-Zust{\"a}nde durch die Substratwechselwirkung nicht nennenswert ver{\"a}ndert wird. Neben der Charakterisierung der großen magnetischen Clustermomente nach Spin- und Bahnanteilen vermitteln die Experimente dieser Arbeit einen guten Einblick in die Ver{\"a}nderungen der elektronischen Eigenschaften durch die Wechselwirkung mit dem Graphit. Der Einfluss des Substrates f{\"u}hrt zu einer starken Verkleinerung der magnetischen Momente. Offensichtlich wird die elektronische Gesamtenergie an der Grenzfl{\"a}che durch die Ausbildung von hybridisierten Zust{\"a}nden minimiert, welche nahe der Fermienergie eine geringe Zustandsdichte besitzen.}, subject = {{\"U}bergangsmetall}, language = {de} }