@phdthesis{Lentze2009, author = {Lentze, Michael}, title = {Spin-flip Raman Untersuchungen an semimagnetischen II-VI Halbleiter-Quantentr{\"o}gen und Volumenproben}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34834}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Im Zentrum dieser Arbeit standen ramanspektroskopische Untersuchungen der elektronischen spin-flip-{\"U}berg{\"a}nge an semimagnetischen (Zn,Mn)Se Proben. Hierbei wurden sowohl Quantentrogstrukturen untersucht als auch volumenartige Proben. Ziel der Forschung war dabei, ein tieferes Verst{\"a}ndnis der Wechselwirkungen der magnetischen Ionen mit den Leitungsbandelektronen der Materialien zu gewinnen. Im Hinblick auf m{\"o}gliche zuk{\"u}nftige spin-basierte Bauelemente lag das Hauptaugenmerk auf dem Einfluss von n-Dotierung bis zu sehr hohen Konzentration. Hierf{\"u}r standen verschiedene Probenreihen mit unterschiedlichen Dotierungskonzentrationen zur Verf{\"u}gung.}, subject = {Dotierter Halbleiter}, language = {de} } @phdthesis{Lehmann2005, author = {Lehmann, Frank}, title = {Prozessierung und elektrische Charakterisierung von ZnSe Heterostrukturen in verschiedenen Messgeometrien zum eindeutigen Nachweis der elektrischen Spininjektion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15003}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {2-Punkt Transportmessungen, die in der Vergangenheit an ZnSe-basierenden DMS/NMS/DMS Multischichtsystemem durchgef{\"u}hrt wurden, zeigten eine 25-prozentige Erh{\"o}hung des Widerstandes beim {\"U}bergang vom unpolarisierten in den polarisierten Zustand des DMS. Dieser Magnetowiderstandseffekt wurde durch elektrische Spininjektion in den NMS erkl{\"a}rt. In dieser Arbeit wird zun{\"a}chst anhand von 4-Punkt Transportmessungen an miniaturisierten, elektronenstrahllithographisch gefertigten DMS/NMS/DMS Strukturen dieser Widerstandseffekt n{\"a}her untersucht, um eine Bestimmung der Spinrelaxationsl{\"a}nge im nichtmagnetischen II-VI Halbleiter zu erlauben. Aufgrund der im Rahmen dieser Experimente erhaltenen Ergebnisse muss jedoch die Verkn{\"u}pfung des positiven Magnetowiderstandseffekts mit der elektrischen Spininjektion in den NMS des Multischichtsystems revidiert werden. Im weiteren Verlauf der Arbeit werden Strukturen mit Abmessungen in der Gr{\"o}ßenordnung von 1 µm hergestellt und gemessen, mit deren Hilfe ein eindeutiger Nachweis der elektrischen Spininjektion in einen nichtmagnetischen Halbleiter mittels Transportmessungen erm{\"o}glicht wird. Mit diesen Resultaten kann eine oberer Grenzwert f{\"u}r die Spinflipl{\"a}nge in ZnBeSe von 100 nm abgesch{\"a}tzt werden.}, subject = {Zinkselenid}, language = {de} } @phdthesis{Keller2004, author = {Keller, Dirk}, title = {Optische Eigenschaften ZnSe-basierter zweidimensionaler Elektronengase und ihre Wechselwirkung mit magnetischen Ionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In dieser Arbeit wurden nichtmagnetische und semimagnetische ZnSe-basierte Quantentr{\"o}ge untersucht. Im Mittelpunkt des Interesses standen hierbei vor allem die Modifikation der optischen Spektren mit einer zunehmenden Modulationsdotierung der Strukturen und der Einfluss von Spinflip-Streuungen der freien Band-Elektronen an den Mn-Ionen auf die Magnetisierung und somit die Zeeman-Aufspaltung der Strukturen. Als experimentelle Methoden wurden Photolumineszenz (PL), Photolumineszenzanregung (PLE) und Reflexionsmessungen verwendet, die in Magnetfeldern von bis zu B=48 T und bei Temperaturen im Bereich von 1.6 K bis 70 K durchgef{\"u}hrt wurden. Dar{\"u}ber hinaus wurde die Abh{\"a}ngigkeit der Spin-Gitter-Relaxationszeit der Mn-Ionen von der Mn-Konzentration und der Elektronengasdichte in den Quantentr{\"o}gen durch zeitaufgel{\"o}ste Lumineszenzmessungen untersucht. Der Einfluss eines Gradienten in der s/p-d-Austauschwechselwirkung auf die Diffusion der Ladungstr{\"a}ger bildet einen weiteren Schwerpunkt dieser Arbeit. Als experimentelle Methode wurde hierbei ortsaufgel{\"o}ste Lumineszenz verwendet.}, subject = {Zinkselenid}, language = {de} } @phdthesis{Schoemig2004, author = {Sch{\"o}mig, Herbert Richard}, title = {Nanooptik an breitbandl{\"u}ckigen Halbleiter-Nanostrukturen f{\"u}r die Spintronik und Optoelektronik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126558}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungstr{\"a}gerspins und den Mn-Spins aus. F{\"u}r ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verh{\"a}lt. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde f{\"u}r die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierf{\"u}r ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Pr{\"a}paration einer lichtundurchl{\"a}ssigen Metallmaske auf der Probenoberfl{\"a}che, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzukl{\"a}ren. Sowohl die Temperatur- als auch die Magnetfeldabh{\"a}ngigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird m{\"o}glich durch die Pr{\"a}paration von ferromagnetischen Strukturen auf der Halbleiteroberfl{\"a}che. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, k{\"o}nnen auf mesoskopischer L{\"a}ngenskala eine Verbiegung der Spinb{\"a}nder in einem Quantenfilm bewirken. Dies gilt insbesondere f{\"u}r einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verst{\"a}rkerfunktion der Mn-Spins liegen hier n{\"a}mlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen f{\"u}r Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Gr{\"o}ßenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsaufl{\"o}sung demonstrieren tats{\"a}chlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzust{\"a}nde im Quantenfilm und erlauben zudem einen R{\"u}ckschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungstr{\"a}ger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufkl{\"a}rung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfl{\"a}che erf{\"u}llt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tats{\"a}chlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien g{\"a}nzlich andere Abh{\"a}ngigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies erm{\"o}glichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche f{\"u}r die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandf{\"u}lleffekt und die Bildung von Multiexzitonen.}, subject = {Cadmiumselenid}, language = {de} } @phdthesis{Schoemig2004, author = {Sch{\"o}mig, Herbert Richard}, title = {Nanooptik an breitbandl{\"u}ckigen Halbleiter-Nanostrukturen f{\"u}r die Spintronik und Optoelektronik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungstr{\"a}gerspins und den Mn-Spins aus. F{\"u}r ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verh{\"a}lt. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde f{\"u}r die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierf{\"u}r ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Pr{\"a}paration einer lichtundurchl{\"a}ssigen Metallmaske auf der Probenoberfl{\"a}che, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzukl{\"a}ren. Sowohl die Temperatur- als auch die Magnetfeldabh{\"a}ngigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird m{\"o}glich durch die Pr{\"a}paration von ferromagnetischen Strukturen auf der Halbleiteroberfl{\"a}che. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, k{\"o}nnen auf mesoskopischer L{\"a}ngenskala eine Verbiegung der Spinb{\"a}nder in einem Quantenfilm bewirken. Dies gilt insbesondere f{\"u}r einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verst{\"a}rkerfunktion der Mn-Spins liegen hier n{\"a}mlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen f{\"u}r Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Gr{\"o}ßenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsaufl{\"o}sung demonstrieren tats{\"a}chlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzust{\"a}nde im Quantenfilm und erlauben zudem einen R{\"u}ckschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungstr{\"a}ger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufkl{\"a}rung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfl{\"a}che erf{\"u}llt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tats{\"a}chlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien g{\"a}nzlich andere Abh{\"a}ngigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies erm{\"o}glichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche f{\"u}r die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandf{\"u}lleffekt und die Bildung von Multiexzitonen.}, subject = {Cadmiumselenid}, language = {de} } @phdthesis{Weigand2005, author = {Weigand, Wolfgang}, title = {Geometrische Struktur und Morphologie epitaktisch gewachsener ZnSe-Schichtsysteme}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Halbleiterbauelemente sind im t{\"a}glichen Leben allgegenw{\"a}rtig und haben in den letzten Jahrzehnten unseren Lebensstil vollkommen ver{\"a}ndert.W{\"a}hrend diemikro-elektronischen Bauelemente haupts{\"a}chlich auf Silizium-Technologie basieren, gewannen Anfang der 90-ziger Jahre Verbindungshalbleiter wie GaAs, GaN, CdHgTe oder ZnSe f{\"u}r opto-elektronische Bauelemente immer st{\"a}rkere Bedeutung. Besonders der II-VI Halbleiter ZnSe war wegen seiner großen Bandl{\"u}cke und seiner geringen Versetzungsdichte einer der gr{\"o}ßten Hoffnungstr{\"a}ger, blau emittierende Laserdioden zu realisieren. Wie sich sp{\"a}ter zeigte, weisen ZnSe-basierte blaue Laserdioden aber binnen kurzer Zeit eine ausgepr{\"a}gte Degradation ihrer opto-elektronisch aktiven Schicht auf [Guha97]. Dies f{\"u}hrte schließlich dazu, dass sich zur Produktion blau-gr{\"u}n emittierender Laserdioden das konkurrierende Halbleitermaterial GaN durchsetzte [Pearton99] und ZnSe in den Hintergrund gedr{\"a}ngt wurde. In j{\"u}ngster Zeit aber erlebt das ZnSe Halbleitermaterial in spintronischen Bauelementen eine Renaissance [Fiederling99], und auch in Kombination mit Mg und Fe konnten interessante magnetische Eigenschaften nachgewiesen werden [Marangolo01,Marangolo02]. ZurHerstellung der oben erw{\"a}hnten opto-elektronischen und spintronischen Schichtstrukturen wird haupts{\"a}chlich die Molekular-Strahl-Epitaxie (MBE) eingesetzt. Sie gew{\"a}hrleistet erstens eine geringe Defektdichte und einen hohen Reinheitsgrad der erzeugten Schichtstrukturen. Zweitens k{\"o}nnen die elektronischen Eigenschaften der so erzeugten Schichtstrukturen durchDotierung gezielt beeinflusstwerden. F{\"u}r das Wachstum der ZnSe-basierten Schichtsysteme ist zum einen die genutzte Substratfl{\"a}che entscheidend. Als m{\"o}gliche Substratkristalle bieten sich Halbleitermaterialien wie GaAs und Germanium an, die gegen{\"u}ber dem ZnSe-Kristall eine sehr kleine Gitterfehlanpassung aufweisen (< 0.3 \%). Zum anderen nimmt die ZnSe Oberfl{\"a}che eine wichtige Rolle ein, weil an ihr das Wachstum abl{\"a}uft und ihre mikroskopischen Eigenschaften direkt das Wachstum beeinflussen. Die genauen Mechanismen dieses Wachstumsprozesses sind bis jetzt nur in Ans{\"a}tzen verstanden (siehe z.B. [Pimpinelli99,Herman97]), weshalb die Wachstumsoptimierung meist auf empirischem Weg erfolgt. Aus diesem Grund besteht ein gesteigertes akademisches Interesse an der Aufkl{\"a}rung der mikroskopischen Eigenschaften der Halbleiteroberfl{\"a}chen. F{\"u}r die Oberfl{\"a}chen von CdTe- und GaAs-Kristallen wurden diesbez{\"u}glich bereits zahlreicheUntersuchungen durchgef{\"u}hrt, die die geometrische und elektronische Struktur und dieMorphologie dieser Oberfl{\"a}chen analysieren.MitHilfe von experimentellen Methoden wie Rastertunnel-Mikroskopie (STM), Photoelektronen-Spektroskopie (PES, ARUPS) und verschiedenen Beugungsmethoden (SXRD,HRXRD und LEED) bzw. theoretischen Berechnungen (DFT) wurde das Verhalten dieser Oberfl{\"a}chen untersucht. Ihren Eigenschaften wird Modell-Charakter zugewiesen, der oft auf andere II-VI und III-V Halbleiteroberfl{\"a}chen angewendet wird. {\"U}berraschenderweise ist das Verhalten der ZnSe Oberfl{\"a}che, obwohl sie so lange im Mittelpunkt der Forschung um den blauen Laser stand, weit weniger gut verstanden. Unter anderemexistieren f{\"u}r die geometrische Struktur der c(2×2)-rekonstruierten ZnSe(001)Wachstumsoberfl{\"a}che zwei konkurrierende Strukturmodelle, die sich widersprechen. Ziel der nachfolgenden Abhandlung ist es, zuerst die geometrische Struktur und die Morphologie der verschieden rekonstruierten ZnSe(001) Oberfl{\"a}chen zu untersuchen und mit dem Verhalten anderer II-VI Oberfl{\"a}chen zu vergleichen. Dadurch soll festgestellt werden, welche Eigenschaften der II-VI Halbleiteroberfl{\"a}chen Modell-Charakter besitzen, also {\"u}bertragbar auf andere II-VI Halbleiteroberfl{\"a}chen sind, und welche der Oberfl{\"a}chen-Eigenschaften materialspezifisch sind (siehe Tab. 5.1). Zweitens wird die geometrische Struktur und dieMorphologie der Te-passivierten Ge(001) Oberfl{\"a}che untersucht. Diese Oberfl{\"a}che ist wegen ihrer geringen Gitterfehlanpassung bzgl. des ZnSe Kristalls eine erfolgversprechende Substratoberfl{\"a}che, um das ZnSe-Wachstum auch auf nicht-polaren Halbleiteroberfl{\"a}chen zu etablieren. Zur Untersuchung der geometrischen Struktur bzw. Morphologie der Halbleiteroberfl{\"a}chen wurden die zwei komplement{\"a}ren Methoden SXRD und SPA-LEED eingesetzt. Die oberfl{\"a}chenempfindliche R{\"o}ntgenbeugung (SXRD) erm{\"o}glicht es, die geometrische Struktur, also den genauen atomaren Aufbau der Oberfl{\"a}che, aufzukl{\"a}ren. Die hochaufl{\"o}sende niederenergetische Elektronenbeugung (SPA-LEED) hingegen liefert Informationen {\"u}ber die Morphologie, also die Gestalt der Oberfl{\"a}che auf mesoskopischer Gr{\"o}ßenskala. Diese Untersuchungen werden durch hochaufl{\"o}sende klassische R{\"o}ntgenbeugung (HRXRD), Rasterkraft-Mikroskopie (AFM), hochaufl{\"o}sender Photoelektronen-Spektroskopie (PES, ARUPS) und Massen-Spektroskopie (QMS) erg{\"a}nzt. Die vorliegende Arbeit gliedert sich in folgende drei Teile: Zuerst wird in die SXRD und SPA-LEED Methoden eingef{\"u}hrt, mit denen haupts{\"a}chlich gearbeitet wurde (Kapitel 2). Anschließend werden die experimentellen Untersuchungen an der Te/Ge(001) Oberfl{\"a}che und an den verschieden rekonstruierten ZnSe(001) Oberfl{\"a}chen vorgestellt (Kapitel 5 bis 8). Im dritten und letzten Teil werden schließlich die wichtigsten Ergebnisse und Schlussfolgerungen zusammengefasst (Kapitel 9).}, subject = {Zinkselenid}, language = {de} }