@phdthesis{Rauh2013, author = {Rauh, Daniel}, title = {Impact of Charge Carrier Density and Trap States on the Open Circuit Voltage and the Polaron Recombination in Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90083}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The focus of this work is studying recombination mechanisms occurring in organic solar cells, as well as their impact on one of their most important parameters — the open circuit voltage Voc. Firstly, the relationship between Voc and the respective charge carrier density n in the active layer under open circuit conditions is analyzed. Therefor, a model after Shockley for the open circuit voltage is used, whose validity is proven with the aid of fits to the measured data. Thereby, it is emphasized that the equation is only valid under special conditions. In the used reference system P3HT:PC61BM the fits are in agreement with the measurement data only in the range of high temperatures (150 - 300 K), where Voc increases linearly with decreasing temperature. At lower temperatures (50 - 150 K), the experiment shows a saturation of Voc. This saturation cannot be explained with the model by the measured falling charge carrier density with decreasing temperatures. In this temperature range Voc is not directly related to the intrinsic properties of the active layer. Voc saturation is due to injection energy barriers at the contacts, which is ascertained by macroscopic simulations. Furthermore, it is observed that Voc in the case of saturation is equivalent to the so-called built-in potential. The difference between the built-in potential and the energy gap corresponds thereby to the sum of the energy barriers at both contacts. With the knowledge of the Voc(n) dependency for not contact limited solar cells, it is possible to investigate the recombination mechanisms of charge carriers in the active layer. For Langevin recombination the recombination rate is Rn2 (recombination order RO = 2), for Shockley-Read-Hall (SRH) Rn1 (RO=1); in various publications RO higher than two is reported with two main explanations. 1: Trap states for charge carriers exist in the respective separated phases, i.e. electrons in the acceptor phase and holes in the donor phase, which leads to a delayed recombination of the charge carriers at the interface of both phases and finally to an apparent recombination order higher than 2. 2: The enhanced R(n) dependency is attributed to the so called recombination prefactor, which again is dependent from n dependent mobility µ. It is shown that for the system P3HT:PC61BM at room temperature the µ(n) dependency does nearly completely explain the higher RO but not at lower temperatures which in this case supports the first explanation. In the material system PTB7:PC71BM the increased RO cannot be explained by the µ(n) dependency even at room temperature. To support the importance of trap states in combination with a phase separation for the explanation of the enhanced RO, additional trap states were incorporated in the solar cells to investigate their influence on the recombination mechanisms. To achieve this, P3HT:PC61BM solar cells were exposed to synthetic air (in the dark and under illumination) or TCNQ was added in small concentrations to the active layer which act as electron traps. For the oxygen degraded solar cell the recombination order is determined by a combination of open Voc-transients and Voc(n) measurements. Thereby, a continuous increase of the recombination order from 2.4 to more than 5 is observed with higher degradation times. By the evaluation of the ideality factor it can be shown that the impact of SRH recombination is increasing with higher trap concentration in relation to Langevin recombination. A similar picture is revealed for solar cells with TCNQ as extrinsic trap states. Finally, a phenomenon called s-shaped IV-curves is investigated, which can sometimes occur for solar cells under illumination. As course of this a reduced surface recombination velocity can be found. Experimentally, the solar cells were fabricated using a special plasma treatment of the ITO contact. The measured IV-curves of such solar cells are reproduced by macroscopic simulations, where the surface recombination velocity is reduced. Hereby, it has to be distinguished between the surface recombination of majority and minority charge carriers at the respective contacts. The theory can be experimentally confirmed by illumination level dependent IV-curves as well as short circuit current density and open circuit voltage transients.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Wiessner2013, author = {Wießner, Michael}, title = {Isolierte Molek{\"u}le und delokalisierte Zust{\"a}nde: Einblick in die elektronische Struktur organischer Adsorbate mittels winkelaufgel{\"o}ster Photoemission}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die vorliegende Arbeit demonstriert an Hand von verschiedenen Modellsystemen wie detailliert sich die grundlegenden Eigenschaften molekularer Adsorbate mit der winkelaufgel{\"o}sten Photoemission erkunden lassen. Die von Peter Puschnig et al. vorgestellte Verkn{\"u}pfung zwischen Photoemissionsintensit{\"a}t und den Molek{\"u}lorbitalen im Grundzustand mittels einer Fouriertransformation war dabei entscheidend, um die verschiedenen physikalischen Effekte einordnen und verstehen zu k{\"o}nnen. W{\"a}hrend f{\"u}r Coronen oder HBC die Orbitale im Grundzustand sehr gut zum Experiment passen, lassen sich f{\"u}r PTCDA und NTCDA einige Abweichungen von der DFT-Rechnung auf Basis der (semi-)lokalen GGA- oder LDA-Funktionale erkennen, die sich bei Messungen mit s-Polarisation hervorheben lassen. Diese k{\"o}nnen auf den Einfluss des Endzustandes in der Photoemission zur{\"u}ckgef{\"u}hrt werden. Im Rahmen der Dysonorbitale lassen sich die daf{\"u}r verantwortlichen Relaxationseffekte zwischen dem N-Elektronensystem des Molek{\"u}ls im Grundzustand und dem (N-1)-Elektronensystem des zur{\"u}ckbleibenden Kations explizit beschreiben. Die Berechnung des Photoemissionssignals mittels Fouriertransformation des Grundzustandes kann dar{\"u}ber hinaus weitere physikalische Effekte nicht korrekt ber{\"u}cksichtigen. Erste Anzeichen hierf{\"u}r konnten am PTCDA-HOMO bei einer Photonenenergie von 27 eV und s-Polarisation detektiert werden. Dar{\"u}ber hinaus kann die N{\"a}herung des Photoelektronenendzustands als ebene Welle den beobachteten zirkularen Dichroismus am HOMO und LUMO von PTCDA nicht erkl{\"a}ren. Erst in der Erweiterung durch eine Partialwellenzerlegung des Photoelektronenendzustands tritt ein dichroisches Signal in der theoretischen Beschreibung auf. F{\"u}r das delokalisierte pi-Elektronensystem von PTCDA ist aber selbst diese Verfeinerung noch nicht ausreichend, um das Experiment korrekt beschreiben und weitere Eigenschaften vorhersagen zu k{\"o}nnen. Qualitativ lassen sich die Ver{\"a}nderungen im CDAD bei der Transformation um 90° f{\"u}r HOMO und LUMO mit einem gruppentheoretischen Ansatz verstehen. Damit ist es m{\"o}glich, den molekularen Zust{\"a}nden ihre irreduzible Darstellung zuzuweisen, wor{\"u}ber sich f{\"u}r PTCDA die Verteilung der quantenmechanischen Phase rekonstruieren l{\"a}sst. Dies ist deshalb {\"a}ußerst bemerkenswert, da {\"u}blicherweise in physikalischen Experimenten nur die Intensit{\"a}t und keine Informationen {\"u}ber die Phase messbar sind. Damit k{\"o}nnen die Photoemissionsmessungen im k||-Raum vollst{\"a}ndig in den Realraum transformiert werden, wodurch die laterale Ortsinformation {\"u}ber die h{\"o}chsten besetzen Molek{\"u}lorbitale von PTCDA zug{\"a}nglich wird. Neben der Bestimmung der molekularen Orbitale, deren Struktur von der Anordnung der Atome im Molek{\"u}l dominiert wird, enth{\"a}lt die winkelaufgel{\"o}ste Photoemission Informationen {\"u}ber die Adsorbat-Substrat-Wechselwirkung. F{\"u}r hoch geordnete Monolagen ist es m{\"o}glich, die verschiedenen Verbreiterungsmechanismen zu trennen und zu analysieren. Bei den untersuchten Systemen sind die Verbreiterungen aufgrund von unterschiedlichen Adsorptionspl{\"a}tzen oder Probeninhomogenit{\"a}ten ebenso wie die experimentelle Aufl{\"o}sung der 2D-Analysatoren vernachl{\"a}ssigbar gegen{\"u}ber Lebensdauereffekten und evtl. Verbreiterung aufgrund von Dispersionseffekten. Bereits bei den {\"a}ußerst schwach wechselwirkenden Systemen Coronen auf Ag(111) und Au(111) unterscheiden sich die beiden Systeme in ihrer Lorentzverbreiterung beim HOMO. In erster N{\"a}herung l{\"a}sst sich dies auf eine Lebensdauer des entstandenen Photolochs zur{\"u}ckf{\"u}hren, welches je nach St{\"a}rke der Substratkopplung unterschiedlich schnell mit Substratelektronen aufgef{\"u}llt werden kann. Die Lorentzbreite als Indikator f{\"u}r die Wechselwirkung bzw. Hybridisierungsst{\"a}rke zeigt f{\"u}r die Systeme mit Ladungstransfer vom Substrat in das Molek{\"u}l eine sehr viel gr{\"o}ßere Verbreiterung. Zum Beispiel betr{\"a}gt die Lorentzbreite des LUMO f{\"u}r NTCDA/Ag(110) FWHM=427 meV, und somit eine mehr als f{\"u}nfmal so große Verbreiterung als f{\"u}r das HOMO von Coronen/Au(111). Diese starke Verbreiterung geht im Fall von NTCDA/Ag(110) wie auch bei den untersuchten Systemen NTCDA/Cu(100) und PTCDA/Ag(110) einher mit einem Ladungstransfer vom Substrat ins Molek{\"u}l, sowie mit der Ausbildung eines zus{\"a}tzlichen charakteristischen Signals in der Winkelverteilung des LUMO, dem Hybridisierungszustand bei kx,y=0{\AA}-1. Die Intensit{\"a}t dieses Zustands korreliert bei den Systemen NTCDA auf Cu(100) bzw. auf Ag(110) jeweils mit der Lorentzbreite des LUMO-Zustands. Die Hybridisierung zwischen Molek{\"u}l und Substrat hat noch weitere Auswirkungen auf die beobachtbaren physikalischen Eigenschaften. So f{\"u}hrt die starke Hybridisierung mit dem Substrat wiederum dazu, dass sich die intermolekulare Dispersion f{\"u}r die Elektronen im LUMO-Zustand deutlich verst{\"a}rkt. Der direkte {\"U}berlapp der Wellenfunktionen ist im System PTCDA/Ag(110) laut DFT-Rechnungen relativ klein und f{\"u}hrt lediglich zu einer Bandbreite von 60 meV. Durch die Hybridisierung mit den delokalisierten Substratb{\"a}ndern erh{\"o}ht sich der Grad der Delokalisierung im LUMO-Zustand, d.h. die Bandbreite steigt auf 230 meV, wie das Experiment best{\"a}tigt. Im Gegensatz zu fr{\"u}heren STM/STS-basierten Messungen [Temirov2006] kann mit der Kombination aus DFT-Rechnung und ARPES-Experiment eindeutig nachgewiesen werden, dass das Substrat im Fall von PTCDA/Ag(110) die Bandbreite verst{\"a}rken kann, sodass sich die effektive Masse der Lochladungstr{\"a}ger von meff=3,9me auf meff=1,1me reduziert. Im Blick auf die eingangs gestellte Frage, ob sich molekulare Adsorbate eher wie isolierte Molek{\"u}le oder als periodische Festk{\"o}rper beschreiben lassen, kommt diese Arbeit auf ein differenziertes Ergebnis. In den Impulsverteilungen, die sich aus der Form der molekularen Wellenfunktionen ableiten lassen, spiegelt sich eindeutig der isolierte molekulare Charakter wieder. Dagegen zeigt sich in der Energiedispersion E(k||) ein delokalisierter, blochartiger Charakter, und es konnte demonstriert werden, dass es zu einem Vermischen von Metall- und Molek{\"u}lwellenfunktionen kommt. Molekulare Adsorbate sind also beides, isolierte Molek{\"u}le und zweidimensionale Kristalle mit delokalisierten Zust{\"a}nden.}, subject = {Organisches Molek{\"u}l}, language = {de} } @phdthesis{Joseph2013, author = {Joseph, Arun Antony}, title = {Real-time MRI of Moving Spins Using Undersampled Radial FLASH}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Nuclear spins in motion is an intrinsic component of any dynamic process when studied using magnetic resonance imaging (MRI). Moving spins define many functional characteristics of the human body such as diffusion, perfusion and blood flow. Quantitative MRI of moving spins can provide valuable information about the human physiology or of a technical system. In particular, phase-contrast MRI, which is based on two images with and without a flow-encoding gradient, has emerged as an important diagnostic tool in medicine to quantify human blood flow. Unfortunately, however, its clinical usage is hampered by long acquisition times which only provide mean data averaged across multiple cardiac cycles and therefore preclude Monitoring the immediate physiological responses to stress or exercise. These limitations are expected to be overcome by real-time imaging which constitutes a primary aim of this thesis. Short image acquisition times, as the core for real-time phase-contrast MRI, can be mainly realized through undersampling of the acquired data. Therefore the development focused on related technical aspects such as pulse sequence design, k-space encoding schemes and image reconstruction. A radial encoding scheme was experimentally found to be robust to motion and less sensitive to undersampling than Cartesian encoding. Radial encoding was combined with a FLASH acquisition technique for building an efficient real-time phase-contrast MRI sequence. The sequence was further optimized through overlapping of gradients to achieve the shortest possible echo time. Regularized nonlinear inverse reconstruction (NLINV), a technique which jointly estimates the image content and its corresponding coil sensitivities, was used for image reconstruction. NLINV was adapted specifically for phase-contrast MRI to produce both Magnitude images and phase-contrast maps. Real-time phase-contrast MRI therefore combined two highly undersampled (up to a factor of 30) radial gradient-echo acquisitions with and without a flow-encoding gradient with modified NLINV reconstructions. The developed method achieved real-time phase-contrast MRI at both high spatial (1.3 mm) and temporal resolution (40 ms). Applications to healthy human subjects as well as preliminary studies of patients demonstrated real-time phase-contrast MRI to offer improved patient compliance (e.g., free breathing) and immediate access to physiological variations of flow parameters (e.g., response to enhanced intrathoracic pressure). In most cases, quantitative blood flow was measured in the ascending aorta as an important blood vessel of the cardiovascular circulation system commonly studied in the clinic. The performance of real-time phase-contrast MRI was validated in comparison to standard Cine phase-contrast MRI using studies of flow phantoms as well as under in vivo conditions. The evaluations confirmed good agreement for comparable results. As a further extension to real-time phase-contrast MRI, this thesis implemented and explored a dual-echo phase-contrast MRI method which employs two sequential gradient echoes with and without flow encoding. The introduction of a flow-encoding gradient in between the two echoes aids in the further reduction of acquisition time. Although this technique was efficient under in vitro conditions, in vivo studies showed the influence of additional motion-induced Phase contributions. Due to these additional temporal phase information, the approach showed Little promise for quantitative flow MRI. As a further method three-dimensional real-time phase-contrast MRI was developed in this thesis to visualize and quantify multi-directional flow at about twice the measuring time of the standard real-time MRI method, i.e. at about 100 ms temporal resolution. This was achieved through velocity mapping along all three physical gradient directions. Although the method is still too slow to adequately cover cardiovascular blood flow, the preliminary results were found to be promising for future applications in tissues and organ systems outside the heart. Finally, future developments are expected to benefit from the adaptation of model-based reconstruction techniques to real-time phase-contrast MRI.}, subject = {Kernspintomografie}, language = {en} } @article{SzalayWeibelHofmannetal.2013, author = {Szalay, Aladar A and Weibel, Stephanie and Hofmann, Elisabeth and Basse-Luesebrink, Thomas Christian and Donat, Ulrike and Seubert, Carolin and Adelfinger, Marion and Gnamlin, Prisca and Kober, Christina and Frentzen, Alexa and Gentschev, Ivaylo and Jakob, Peter Michael}, title = {Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer}, series = {Journal of Translational Medicine}, journal = {Journal of Translational Medicine}, doi = {doi:10.1186/1479-5876-11-106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96016}, year = {2013}, abstract = {Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer.}, subject = {Lungenkrebs}, language = {en} }