@article{TutovChenWerneretal.2023, author = {Tutov, Anna and Chen, Xinyu and Werner, Rudolf A. and M{\"u}hlig, Saskia and Zimmermann, Thomas and Nose, Naoko and Koshino, Kazuhiro and Lapa, Constantin and Decker, Michael and Higuchi, Takahiro}, title = {Rationalizing the binding modes of PET radiotracers targeting the norepinephrine transporter}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {2}, issn = {1999-4923}, doi = {10.3390/pharmaceutics15020690}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303949}, year = {2023}, abstract = {Purpose: A new PET radiotracer \(^{18}\)F-AF78 showing great potential for clinical application has been reported recently. It belongs to a new generation of phenethylguanidine-based norepinephrine transporter (NET)-targeting radiotracers. Although many efforts have been made to develop NET inhibitors as antidepressants, systemic investigations of the structure-activity relationships (SARs) of NET-targeting radiotracers have rarely been performed. Methods: Without changing the phenethylguanidine pharmacophore and 3-fluoropropyl moiety that is crucial for easy labeling, six new analogs of \(^{18}\)F-AF78 with different meta-substituents on the benzene-ring were synthesized and evaluated in a competitive cellular uptake assay and in in vivo animal experiments in rats. Computational modeling of these tracers was established to quantitatively rationalize the interaction between the radiotracers and NET. Results: Using non-radiolabeled reference compounds, a competitive cellular uptake assay showed a decrease in NET-transporting affinity from meta-fluorine to iodine (0.42 and 6.51 µM, respectively), with meta-OH being the least active (22.67 µM). Furthermore, in vivo animal studies with radioisotopes showed that heart-to-blood ratios agreed with the cellular experiments, with AF78(F) exhibiting the highest cardiac uptake. This result correlates positively with the electronegativity rather than the atomic radius of the meta-substituent. Computational modeling studies revealed a crucial influence of halogen substituents on the radiotracer-NET interaction, whereby a T-shaped π-π stacking interaction between the benzene-ring of the tracer and the amino acid residues surrounding the NET binding site made major contributions to the different affinities, in accordance with the pharmacological data. Conclusion: The SARs were characterized by in vitro and in vivo evaluation, and computational modeling quantitatively rationalized the interaction between radiotracers and the NET binding site. These findings pave the way for further evaluation in different species and underline the potential of AF78(F) for clinical application, e.g., cardiac innervation imaging or molecular imaging of neuroendocrine tumors.}, language = {en} } @article{ToyamaWernerRuizBedoyaetal.2021, author = {Toyama, Yoshitaka and Werner, Rudolf A. and Ruiz-Bedoya, Camilo A. and Ordonez, Alvaro A. and Takase, Kei and Lapa, Constantin and Jain, Sanjay K. and Pomper, Martin G. and Rowe, Steven P. and Higuchi, Takahiro}, title = {Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon}, series = {Theranostics}, volume = {11}, journal = {Theranostics}, number = {12}, doi = {10.7150/thno.58682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260090}, pages = {6105-6119}, year = {2021}, abstract = {In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology.}, language = {en} } @article{WernerSchmidHiguchietal.2018, author = {Werner, Rudolf and Schmid, Jan-Stefan and Higuchi, Takahiro and Javadi, Mehrbod S. and Rowe, Steven P. and M{\"a}rkl, Bruno and Aulmann, Christoph and Fassnacht, Martin and Kroiß, Matthias and Reiners, Christoph and Buck, Andreas and Kreissl, Michael and Lapa, Constantin}, title = {Predictive value of \(^{18}\)F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.199778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161256}, year = {2018}, abstract = {Introduction: Therapeutic options in advanced medullary thyroid carcinoma (MTC) have markedly improved since the introduction of tyrosine kinase inhibitors (TKI). We aimed to assess the role of metabolic imaging using 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography/computed tomography (PET/CT) shortly before and 3 months after initiation of TKI treatment. Methods: Eighteen patients with advanced and progressive MTC scheduled for vandetanib treatment underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after TKI treatment initiation. During follow-up, CT scans were performed every 3 months and analyzed according to Response Evaluation Criteria In Solid Tumors (RECIST). The predictive value for estimating progression-free (PFS) and overall survival (OS) was examined by investigating \(^{18}\)F-FDG mean/maximum standardized uptake values (SUVmean/max) of the metabolically most active lesion as well as by analyzing clinical parameters (tumor marker doubling times {calcitonin, carcinoembryonic antigen (CEA)}, prior therapies, RET (rearranged during transfection) mutational status, and disease type). Results: Within a median follow-up of 5.2 years, 9 patients experienced disease progression after a median time interval of 2.1y whereas the remainder had ongoing disease control (n=5 partial response and n=4 stable disease). Eight of the 9 patients with progressive disease died from MTC after a median of 3.5y after TKI initiation. Pre-therapeutic SUVmean >4.0 predicted a significantly shorter PFS (PFS: 1.9y vs. 5.2y; p=0.04). Furthermore, sustained high 18F-FDG uptake at 3 months with a SUVmean>2.8 tended to portend an unfavorable prognosis with a PFS of 1.9y (vs. 3.5y; p=0.3). Prolonged CEA doubling times were significantly correlated with longer PFS (r=0.7) and OS (r=0.76, p<0.01, respectively). None of the other clinical parameters had prognostic significance. Conclusions: Pre-therapeutic \(^{18}\)F-FDG PET/CT holds prognostic information in patients with advanced MTC scheduled for treatment with the TKI vandetanib. Low tumor metabolism of SUVmean < 4.0 prior to treatment predicts longer progression-free survival.}, subject = {Medull{\"a}rer Schilddr{\"u}senkrebs}, language = {en} } @inproceedings{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Nose, Naoko and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on [\(^{11}\)C]meta-Hydroxyephedrine Uptake in the Rat Heart}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162228}, pages = {100}, year = {2018}, abstract = {No abstract available.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerWakabayashiBaueretal.2018, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Bauer, Jochen and Sch{\"u}tz, Claudia and Zechmeister, Christina and Hayakawa, Nobuyuki and Javadi, Mehrbod S. and Lapa, Constantin and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {Longitudinal \(^{18}\)F-FDG PET imaging in a Rat Model of Autoimmune Myocarditis}, series = {European Heart Journal Cardiovascular Imaging}, journal = {European Heart Journal Cardiovascular Imaging}, issn = {2047-2404}, doi = {10.1093/ehjci/jey119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165601}, pages = {1-8}, year = {2018}, abstract = {Aims: Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-\(^{18}\)F-fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. Methods and results: Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund's adjuvant. Time course of disease was assessed by longitudinal \(^{18}\)F-FDG PET imaging. A correlative analysis between in- and ex vivo \(^{18}\)F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal \(^{18}\)F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo \(^{18}\)F-FDG PET signalling (R\(^2\) = 0.92) as well as with ex vivo 18F-FDG autoradiography (R\(^2\) = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at \(^{18}\)F-FDG decrease). Conclusion: \(^{18}\)F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis.}, subject = {Myokarditis}, language = {en} } @article{WernerChenRoweetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers}, series = {The International Journal of Cardiovascular Imaging}, journal = {The International Journal of Cardiovascular Imaging}, issn = {1569-5794}, doi = {10.1007/s10554-018-1469-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169134}, year = {2018}, abstract = {The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed.}, subject = {Positronenemissionstomografie}, language = {en} } @article{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Higuchi, Takahiro and Weich, Alexander and Sheikhbahaei, Sara and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {MI-RADS: Molecular Imaging Reporting and Data Systems - A Generalizable Framework for Targeted Radiotracers with Theranostic Implications}, series = {Annals of Nuclear Medicine}, journal = {Annals of Nuclear Medicine}, issn = {0914-7187}, doi = {10.1007/s12149-018-1291-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166995}, year = {2018}, abstract = {Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader's confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerBundschuhHiguchietal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Higuchi, Takahiro and Javadi, Mehrbod S. and Rowe, Steven P. and Zs{\´o}t{\´e}r, Norbert and Kroiss, Matthias and Fassnacht, Martin and Buck, Andreas K. and Kreissl, Michael C. and Lapa, Constantin}, title = {Volumetric and Texture Analysis of Pretherapeutic \(^{18}\)F-FDG PET can Predict Overall Survival in Medullary Thyroid Cancer Patients Treated with Vandetanib}, series = {Endocrine}, journal = {Endocrine}, issn = {1355-008X}, doi = {10.1007/s12020-018-1749-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167910}, year = {2018}, abstract = {Purpose: The metabolically most active lesion in 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) PET/CT can predict progression-free survival (PFS) in patients with medullary thyroid carcinoma (MTC) starting treatment with the tyrosine kinase inhibitor (TKI) vandetanib. However, this metric failed in overall survival (OS) prediction. In the present proof of concept study, we aimed to explore the prognostic value of intratumoral textural features (TF) as well as volumetric parameters (total lesion glycolysis, TLG) derived by pre-therapeutic \(^{18}\)F-FDG PET. Methods: Eighteen patients with progressive MTC underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after vandetanib initiation. By manual segmentation of the tumor burden at baseline and follow-up PET, intratumoral TF and TLG were computed. The ability of TLG, imaging-based TF, and clinical parameters (including age, tumor marker doubling times, prior therapies and RET (rearranged during transfection) mutational status) for prediction of both PFS and OS were evaluated. Results: The TF Complexity and the volumetric parameter TLG obtained at baseline prior to TKI initiation successfully differentiated between low- and high-risk patients. Complexity allocated 10/18 patients to the high-risk group with an OS of 3.3y (vs. low-risk group, OS=5.3y, 8/18, AUC=0.78, P=0.03). Baseline TLG designated 11/18 patients to the high-risk group (OS=3.5y vs. low-risk group, OS=5y, 7/18, AUC=0.83, P=0.005). The Hazard Ratio for cancer-related death was 6.1 for Complexity (TLG, 9.5). Among investigated clinical parameters, the age at initiation of TKI treatment reached significance for PFS prediction (P=0.02, OS, n.s.). Conclusions: The TF Complexity and the volumetric parameter TLG are both independent parameters for OS prediction.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{ChenWernerLapaetal.2018, author = {Chen, Xinyu and Werner, Rudolf A. and Lapa, Constantin and Nose, Naoko and Hirano, Mitsuru and Javadi, Mehrbod S. and Robinson, Simon and Higuchi, Takahiro}, title = {Subcellular storage and release mode of the novel \(^{18}\)F-labeled sympathetic nerve PET tracer LMI1195}, series = {EJNMMI Research}, volume = {8}, journal = {EJNMMI Research}, number = {12}, issn = {2191-219X}, doi = {10.1186/s13550-018-0365-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167081}, year = {2018}, abstract = {Background: \(^{18}\)F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (\(^{18}\)F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover. Results: Both vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of \(^{18}\)F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. \(^{131}\)I-meta-iodobenzylguanidine (\(^{131}\)I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced \(^{18}\)F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131I-MIBG. In case of KCl exposure, Ca\(^{2+}\)-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca\(^{2+}\) influx resulting from membrane depolarization. Conclusions: Analogous to \(^{131}\)I-MIBG, the current in vitro tracer uptake study confirmed that \(^{131}\)F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of \(^{18}\)FLMI1195 at a subcellular level is important for the design of clinical imaging protocols and imaging interpretation.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {SPECT vs. PET in Cardiac Innervation Imaging: Clash of the Titans}, series = {Clinical and Translational Imaging}, journal = {Clinical and Translational Imaging}, issn = {2281-5872}, doi = {10.1007/s40336-018-0289-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163628}, year = {2018}, abstract = {Purpose: We aim to provide an overview of the conventional single photon emission computed tomography (SPECT) and emerging positron emission tomography (PET) catecholamine analogue tracers for assessing myocardial nerve integrity, in particular focusing on \(^{18}\)F-labeled tracers. Results: Increasingly, the cardiac sympathetic nervous system (SNS) is being studied by non-invasive molecular imaging approaches. Forming the backbone of myocardial SNS imaging, the norepinephrine (NE) transporter at the sympathetic nerve terminal plays a crucial role for visualizing denervated myocardium: in particular, the single-photon-emitting NE analogue \(^{123}\)I-meta-Iodobenzylguanidine (\(^{123}\)I-mIBG) has demonstrated favorable results in the identification of patients at a high risk for cardiac death. However, cardiac neuronal PET agents offer several advantages inlcuding improved spatio-temporal resolution and intrinsic quantifiability. Compared to their \(^{11}\)C-labeled counterparts with a short half-life (20.4 min), novel \(^{18}\)F-labeled PET imaging agents to assess myocardial nerve integrity have the potential to revolutionize the field of SNS molecular imaging: The longer half-life of \(^{18}\)F (109.8 min) allows for more flexibility in the study design and delivery from central cyclotron facilities to smaller hospitals may lead to further cost reduction. A great deal of progress has been made by the first in-human studies of such \(^{18}\)F-labeled SNS imaging agents. Moreover, dedicated animal platforms open avenues for further insights into the handling of radiolabeled catecholamine analogues at the sympathetic nerve terminal. Conclusions: \(^{18}\)F-labeled imaging agents demonstrate key properties for mapping cardiac sympathetic nerve integrity and might outperform current SPECT-based or \(^{11}\)C-labeled tracers in the long run.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @inproceedings{WernerChenLapaetal.2017, author = {Werner, Rudolf and Chen, Xinyu and Lapa, Constantin and Robinson, Simon and Higuchi, Takahiro}, title = {Intracellular behavior of the novel sympathetic nerve agent \(^{18}\)F-LMI1195}, series = {Journal of Nuclear Cardiology}, volume = {24}, booktitle = {Journal of Nuclear Cardiology}, number = {4 Supplement (2017) Aug}, issn = {1071-3581}, doi = {10.1007/s12350-017-0984-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161137}, pages = {1461-1496}, year = {2017}, abstract = {No abstract available.}, subject = {Herz}, language = {en} } @inproceedings{WernerHiguchiMueggeetal.2017, author = {Werner, Rudolf and Higuchi, Takahiro and Muegge, Dirk and Javadi, Mehrbod S. and M{\"a}rkl, Bruno and Aulmann, Christoph and Buck, Andreas K. and Fassnacht, Martin and Lapa, Constantin and Kreissl, Michael C.}, title = {Predictive value of FDG-PET in patients with advanced medullary thyroid cancer undergoing vandetanib treatment}, series = {Journal of Nuclear Medicine}, volume = {58}, booktitle = {Journal of Nuclear Medicine}, number = {no. supplement 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161147}, pages = {169}, year = {2017}, abstract = {Introduction: The prognosis of medullary thyroid carcinoma (MTC) is poor using common chemotherapeutic approaches. However, during the last years encouraging results of recently introduced tyrosine kinase inhibitors (TKI) such as vandetanib have been published. In this study we aimed to correlate the results of \(^{18}\)F-fluorodeoxyglucose ([\(^{18}\)F]FDG) positron emission tomography (PET) imaging with treatment outcome. Methods: Eighteen patients after thyroidectomy with recurrent/advanced MTC lesions receiving vandetanib (300 mg orally/day) could be analysed. A baseline \(^{18}\)F-FDG PET prior to and a follow-up \(^{18}\)F-FDG PET 3 months after TKI initiation were performed. During follow-up, tumor progression was assessed every 3 months including computed tomography according to RECIST. Progression-free survival (PFS) was correlated with the maximum standardized uptake value of \(^{18}\)F-FDG in lymph nodes (SUV(LN)max) or visceral metastases (SUV(MTS)max) as well as with clinical parameters using ROC analysis. Results: Within median 3.6 years of follow-up, 9 patients showed disease progression at median 8.5 months after TKI initiation. An elevated glucose consumption assessed by baseline \(^{18}\)F-FDG PET (SUV(LN)max > 7.25) could predict a shorter PFS (2 y) with an accuracy of 76.5\% (SUV(LN)max <7.25, 4.3 y; p=0.03). Accordingly, preserved tumor metabolism in the follow-up PET (SUV(MTS)max >2.7) also demonstrated an unfavorable prognosis (accuracy, 85.7\%). On the other hand, none of the clinical parameters reached significance in response prediction. Conclusions: In patients with advanced and progressive MTC, tumors with higher metabolic activity at baseline are more aggressive and more prone to progression as reflected by a shorter PFS; they should be monitored more closely. Preserved glucose consumption 3 months after treatment initiation was also related to poorer prognosis.}, language = {en} } @article{LueckerathLapaAlbertetal.2015, author = {L{\"u}ckerath, Katharina and Lapa, Constantin and Albert, Christa and Herrmann, Ken and J{\"o}rg, Gerhard and Samnick, Samuel and Einsele, Herrmann and Knop, Stefan and Buck, Andreas K.}, title = {\(^{11}\)C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {10}, doi = {10.18632/oncotarget.3053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148688}, pages = {8418-8429}, year = {2015}, abstract = {Multiple myeloma (MM) remains an essentially incurable hematologic malignancy. However, new treatment modalities and novel drugs have been introduced and thus additional tools for therapy monitoring are increasingly needed. Therefore, we evaluated the radiotracers \(^{11}\)C-Methionine (paraprotein-biosynthesis) and \(^{18}\)F-FDG (glucose-utilization) for monitoring response to anti-myeloma-therapy and outcome prediction. Influence of proteasome-inhibition on radiotracer-uptake of different MM cell-lines and patient-derived CD138\(^{+}\) plasma cells was analyzed and related to tumor-biology. Mice xenotransplanted with MM. 1S tumors underwent MET- and FDG-\(\mu\)PET. Tumor-to-background ratios before and after 24 h, 8 and 15 days treatment with bortezomib were correlated to survival. Treatment reduced both MET and FDG uptake; changes in tracer-retention correlated with a switch from high to low CD138-expression. In xenotransplanted mice, MET-uptake significantly decreased by 30-79\% as early as 24 h after bortezomib injection. No significant differences were detected thus early with FDG. This finding was confirmed in patient-derived MM cells. Importantly, early reduction of MET-but not FDG-uptake correlated with improved survival and reduced tumor burden in mice. Our results suggest that MET is superior to FDG in very early assessment of response to anti-myeloma-therapy. Early changes in MET-uptake have predictive potential regarding response and survival. MET-PET holds promise to individualize therapies in MM in future.}, language = {en} } @article{LapaLinsenmannLueckerathetal.2015, author = {Lapa, Constantin and Linsenmann, Thomas and L{\"u}ckerath, Katharina and Samnick, Samuel and Herrmann, Ken and Stoffer, Carolin and Ernestus, Ralf-Ingo and Buck, Andreas K. and L{\"o}hr, Mario and Monoranu, Camelia-Maria}, title = {Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy?}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0122269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125498}, pages = {e0122269}, year = {2015}, abstract = {Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10\% to >50\% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.}, language = {en} } @article{PhilippAbbrederisHerrmannKnopetal.2015, author = {Philipp-Abbrederis, Kathrin and Herrmann, Ken and Knop, Stefan and Schottelius, Margret and Eiber, Matthias and L{\"u}ckerath, Katharina and Pietschmann, Elke and Habringer, Stefan and Gerngroß, Carlos and Franke, Katharina and Rudelius, Martina and Schirbel, Andreas and Lapa, Constantin and Schwamborn, Kristina and Steidle, Sabine and Hartmann, Elena and Rosenwald, Andreas and Kropf, Saskia and Beer, Ambros J and Peschel, Christian and Einsele, Hermann and Buck, Andreas K and Schwaiger, Markus and G{\"o}tze, Katharina and Wester, Hans-J{\"u}rgen and Keller, Ulrich}, title = {In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {4}, doi = {10.15252/emmm.201404698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148738}, pages = {477-487}, year = {2015}, abstract = {CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases.}, language = {en} }