@article{KrallmannWenzelOttHackeretal.1989, author = {Krallmann-Wenzel, U. and Ott, M. and Hacker, J{\"o}rg and Schmidt, G}, title = {Chromosomal mapping of genes encoding mannose-sensitive (type I) and mannose-resistant F8(P) fimbriae of Escherichia coli O18:K5:H5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59545}, year = {1989}, abstract = {DNA hybridization experiments demonstrated that the gene clusters encoding the F8 fimbriae (fei) as well as the type I fimbriae (pi/) exist in a single copy on the chromosome of E. coli 018:K5 strain 2980. In conjugation experiments with appropriate donors, the chromosomal site of these gene clusters was determined. The pil genes were mapped close to the gene clusters thr and Jeu controlling the biosynthesis of threonine and leucine, respectively. The fei genes were found to be located close to the galactose operon (gal) between the position 17 and 21 of the E. coli chromosomallinkage map.}, subject = {Infektionsbiologie}, language = {en} } @article{MarreHackerWoodetal.1989, author = {Marre, R. and Hacker, J{\"o}rg and Wood, G. and Schmidt, G.}, title = {Oral vaccination of rats with live avirulent Salmonella derivatives expressing adhesive fimbrial agents of uropathogenic Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59559}, year = {1989}, abstract = {The avirulent Salmonella typhimurium F885 was transformed with a plasmid carrying the cloned S fimbriae genes of a uropathogenic Escherichia coli. The resulting transformant (F885-1) produced efficiently E. coli S fimbriae and was used for live oral vaccination of rats. For comparison rats were immunized subcutaneously with isolated S fimbriae. Both routes of vaccination resulted in a significant lgG antibody response to S fimbriae. In addition live oral vaccination induced a serum lgA response against S fimbriae. After transurethral infection of rats with a S fimbriae producing E. coli a 10-fold reduction of bacterial counts in the kidney was observed in rats orally vaccinated with F885-1 as compared to unvaccinated controls. This study suggests that the avirulent Salmonella F885 may be used as a fimbrial antigen carrier for oral vaccination against renal infections.}, subject = {Infektionsbiologie}, language = {en} } @article{KoenigKoenigSchefferetal.1989, author = {K{\"o}nig, W. and K{\"o}nig, B. and Scheffer, J. and Hacker, J{\"o}rg and Goebel, W.}, title = {Role of cloned virulence factors (mannose-resistant hemagglutination, mannose-resistant adhesins) from uropathogenic Escherichia coli strains in release of inflammatory mediators from neutrophils and mast cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59564}, year = {1989}, abstract = {Genetically cloned E. co/i strains expressing cloned virulence factors were studied with regard to their capability to induce inflammatory mediator release from various target cells. Among the strains were E. co/i strains with mannose-resistant haemagglutination (MRH +) and mannose-resistant adhesins, e.g. E. coli 536/21 pANN 80 I /4, E. coli 536/21 pANN 921 and E. coli 536/21 pANN 801-1. In comparison, E. coli 536/21, E. coli 536/21 pGB 30 int and E. coli Kl2, without and with mannosesensitive haemagglutination (MSH±), and adhesins were studied. The properties of the various strains for human PMN with regard to adherence and phagocytosis, chemiluminescence, 5-lipoxygenase activation of arachidonic acid, leukotriene formation, granular enzyme release and release of histamine from rat mast cells were analysed. It is evident that the various 'biochemical processes of cell activation are dissociated events. The highest chemiluminescence response is obtained with strains expressing MSH+, P-M RH+ or S-M RH+; the presence of S-adhesins suppressed the response. Highest leukotriene formation is obtained with E. coli 536/21 pANN 801-4, while E. coli with MSH was inactive. The concomitant presence of haemolysin secretion enhanced mediator release significantly. Our data suggest a potent role for mannose-resistant haemagglutination (MRH), adhesins and haemolysin as virulence factors in inducing the release of inflammatory mediators.}, subject = {Infektionsbiologie}, language = {en} } @article{MarreHackerBraun1989, author = {Marre, R. and Hacker, J{\"o}rg and Braun, V.}, title = {The cell-bound hemolysin of Serratia marcescens contributes to uropathogenicity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59576}, year = {1989}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{SchmollHoschuetzkyMorschhaeuseretal.1989, author = {Schmoll, T. and Hosch{\"u}tzky, H. and Morschh{\"a}user, J. and Lottspeich, F. and Jann, K. and Hacker, J{\"o}rg}, title = {Analysis of genes coding for the Sialic acid-binding adhesin and two other minor fimbrial subunits of the S-fimbrial adhesin determinant of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59585}, year = {1989}, abstract = {The S flmbrial adhesln (Sfa) enables Esch richla colito attach to slalfc acld-containing receptor molecules of eukaryotJc cells. As prevlously reported, the genetlc determinant coding for the Sfa of an E. co/1 06 strain was cloned, the gene codlng for the major fimbrfal subunit was ldentlfled and sequenced and th.e S speclflc adhesin was detected. Here we present evidence that ln addltlon to the major subunit proteln SfaA three other minor subunit proteins, SfaG (17 kD), SfaS (14kD) and SfaH (31 kD) can be isolated from the S..speclfic flmbrial adhesln complex. The genes coding for these minor subunits were ldenblied, mutagenlzed separately and sequenced. Using haemagglutlnatton tests. electron-microscopy and quantitative ELISA assays with monoclonal anti-SfaA and anti-SfaS antlbodles the functlons of the minor subunlts were determined. lt was determlned that SfaS ls ldentlcal to the S-specific adhesln; whlch also plays a role ln deterrninatlon of the degree of fimbri· ation ofthe cell. The mlnor subunit SfaH also had some Jnfluence on the Ievei of fimbrlation of the cell. while StaG ls necessary for full expression of S·specific binding. lt was further shown that the amino-terminal proteln sequence of the isolated SfaS profein was identJcal to the proteln sequence calculated from the DNA sequence of the sfaS gene locus.}, subject = {Infektionsbiologie}, language = {en} } @article{MollScollay1989, author = {Moll, Heidrun and Scollay, Roland}, title = {L3T4+ T cells promoting susceptibility to murine cutaneous leishmaniasis express the surface marker Ly-24 (Pgp-1)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61275}, year = {1989}, abstract = {No abstract available}, subject = {Biologie}, language = {en} } @article{MollMitchellMcConvilleetal.1989, author = {Moll, Heidrun and Mitchell, Graham F. and McConville, Malcom J. and Handman, Emanuela}, title = {Evidence for T cell recognition in mice of a purified lipophosphoglycan from Leishmania major}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61288}, year = {1989}, abstract = {We have previously reported that a Leishmania major lipophosphoglycan (LPG), given with killed Corynebacterium parvum as an adjuvant, can vaccinate mice against cutaneous leishmaniasis. In order to analyze whetber T cells are able to recognize this important parasite antigen, we have studied both humoral and cellular immune responses to L. major LPG that bad been isolated from promastigotes by sequential solvent extraction and bydrophobic chromatography. The data sbow that immunization of mice with highly purified LPG induced an increase in frequency of L. major-reactive T cells and the production of immunoglobulin G antibodies to LPG. Furthermore, genetically resistant mice infected with L. major were able to develop a specific delayed-type hypersensitivity response in the ear to L. major LPG. These findings strongly suggest that T cells can recognize and respond to glycolipid antigens, in this case a bost-protective Leishmania LPG, even though such antigens appear not to be potent T-cell stimulators in mice.}, subject = {Biologie}, language = {en} } @article{TiuDavernGarciaetal.1989, author = {Tiu, W. U. and Davern, K. M. and Garcia, E. G. and Moll, Heidrun and Mitchell, Graham F.}, title = {Monoclonal antibodies reacting with Schistosoma japonicum eggs and their target epitopes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30916}, year = {1989}, abstract = {Ten monoclonal antibodies (McAbs) raised to Schistosoma japonicum eggs could be assigned using several serological and immunochemical techniques to 3 groups. The McAbs, termed A, B and C-McAbs, apparently recognize carbohydrate epitopes that can be located on the same antigen molecule. The antibodies, generally of IgM isotype, are idiotypically related. They are distinct from another IgM McAb (Group D-McAb) the carbohydrate target epitope of which can also be associated with the epitopes of A. B and C-McAbs. The McAbs produce large vacuolated bleb reactions in the circumoval precipitin test (COPT) and target epitopes have different representations in various life cycle stages such as immature and mature eggs, male and female worms (including S. mansoni). Antigens affinity purified on columns containing A, B, C and D-McAbs stimulate proliferation of T cells from egg-sensitized mice and elicit DTH reactions in such mice. This raises the possibility that the target antigens of these carbohydrate-reactive monoclonal antibodies are immunopathologic and involved in egg-induced granuloma formation.}, language = {en} } @article{ParkkinenKorhonenPereetal.1988, author = {Parkkinen, J. and Korhonen, T. K. and Pere, A. and Hacker, J{\"o}rg and Soinila, S.}, title = {Binding sites in the rat brain for Escherichia coli S fimbriae associated with neontal meningitis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59500}, year = {1988}, abstract = {Escherichia coli strains that cause sepsis and meningitis in neonatal infants carry S fimbriae that bind to sialyl galactoside units of cell surface glycoproteins. To investigate the possible role of S fimbriae in determining the tissue tropism of neonatal menlngitis, we have studied the preselice of binding sites for S fimbriae in different tissues of the neonatal rat which is susceptible to meningitis caused by S-fimbriated E. coli. Purified S fimbriae were incubated on cryostat sections of different rat oipns and their bindina was assessed by indirect immunofluorescence. In the bnin of the neonatal rat, S fimbriae specifically bound to the luminal surfaces of the vascular endothelium and of the epithelium lining the choroid plexuses and bnin ventricles. The · bindlog W.s completely inhibited by the trisaccharide NeuAca2-3Ga)ßl-4Gic, a receptor analogue of S fimbriae, and by a preceding neuraminidase treatment of the sections. A recombinant E. coli strain expressina S fimbriae adhered in large numbers to the same tissue sites in the neonatal brain sections as did the purified fimbriae, · whereas the nonfimbriated host strahi and a recombiiuuit strain expresslog P fi.mbriae did not adhere to brain tissues. The results soggest that adhesion of S-fimbriated bacteria to the binding sites observed in the neonatai bnin has a pathogenetic roJe durlog bacterial Invasion from cii'culation into the cerebrospinal fluid.}, subject = {Infektionsbiologie}, language = {en} } @article{OttHoschuetzkyJannetal.1988, author = {Ott, M. and Hosch{\"u}tzky, H. and Jann, K. and Van Die, I. and Hacker, J{\"o}rg}, title = {Gene clusters for S fimbrial adhesin (sfa) and F1C Fimbriae (foc) of Escherichia coli: Comparative aspects of structure and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59519}, year = {1988}, abstract = {Fimbrial 8dhesins en8ble b8cteria to 8ttach t9 eucaryotic ceU~. The genetic determin8nts for S fimbrial 8dhesins (sja) an.d for FlC ("pseudotype I") fimbri8e ifoc) were compared. Sfa and FlC represent functionally distinct 8dbesins in tbeir receptor specificities. Nevertheless, 8 high degree of bomology between both determin8nts was found on the basis of DNA-DNA hybridizations. Characteristic difl'erences in the restriCtion maps of tbe corresponding gene clusters, bowever, were visible in regions coding for the fimbrial subunits and for the S-specific 8dhesin. While a plasmid carrying the geneiic deternlinant for FlC fimbri8e was 8ble to complement transposon-induced sfa mutants, 8 plasmid carrying tbe genetic determin8nt for 8 tbird 8dht\$in type, termed P fimbriae, was un8ble to do so. Proximal sfa-specific sequences carrying the S fimbrial st'"uctural gene were fused to sequences representing tbe di\$tal part of the foc gene cluster to form 8 hybrid cluster, and tbe foc proxim~ region coding for tbe structural protein was Iigated to sfa distal sequences to form 8 second hybrid. Botb hybrid clones produced intact fimbriae. Anti-FlC monoclonal8ntibodies (MAbs) only recognized clones which produced FlC fimbriae, and an ~ti-S 8dhesin MAb marked clones whicb expressed the S adhesin. Bowever, one of four other anti-S fimbri8e-specific MAbs reacted witb both fimbrial structures, S and FlC, indicating 8 common epitope on both antigens. The results presented bere ~upport tbe view th8t sfa and foc determinants code for fimbri8e tb8t 8re simil8r in several aspects, wbile the P fimbri8e are members of 8 more distantly rel8ted group.}, subject = {Infektionsbiologie}, language = {en} } @article{PawelzikHeesemannHackeretal.1988, author = {Pawelzik, M. and Heesemann, J. and Hacker, J{\"o}rg and Opferkuch, W.}, title = {Cloning and characterization of a new type of fimbria (S/F1C-related fimbria) expressed by an Escherichia coli O75:K1:H7 blood culture isolate}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59529}, year = {1988}, abstract = {The Escherichia coli blood culture isolate BK658 (07S:K1:H7) expresses F1A and F1B fimbriae as weil as a third fimbrial type which reacts with anti-S-fimbrial antiserum but fails to show S-specific binding properlies (i.e., agglutination of bovine erythrocytes). To characterize these fimbriae, we cloned the respective genetic determinant in E. coli K-12. The resulting recombinant clone HB101(pMMP658-6) expresses fimbriae of 1.2-p.m length and a diameter of approximately 7 nm. The determinant codes for the fimbrillin subunit, a protein of 17 kUodaltons in size, and for at least five other proteins of 87, 31, 23, 14.3, and 13.8 kUodaltons. By restriction analysis and by DNA-DNA hybridization, it could be shown that the cloned fimbrial determinant of strain BK658 exhibits a high degree of sequence homology to the gene clusters coding for S fimbrial adhesins (sfa) and F1C fimbriae (/oc). By using the Western blot (immunoblot) technique and a quantitative enzyme-linked immunosorbent assay, it could be further demonstrated that the cloned fimbriae of BK658, S fimbriae, and FlC fimbriae share cross-reactive epitopes as weil as antigenic determinants specific for each fimbrial type. No antigenic cross-reactivity with F1C fimbriae could be detected. The results indicate a genetical and serological relatedness of the cloned fimbriae toS fimbriae and F1C fimbriae. Therefore, this new type of fimbriae is preliminarily termed SIF1C-related fimbriae (Sfr).}, subject = {Infektionsbiologie}, language = {en} } @article{MunoaHackerJuarez1988, author = {Munoa, F. and Hacker, J{\"o}rg and Juarez, A.}, title = {Characterization of a chromosomal mutant that blocks hemolysin excretion in Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59534}, year = {1988}, abstract = {We analyzed an Escherichia coli strain which harbours a chromosomal mutation that blocks the hemolysin excretion. Compartmentation studies showed that hemolysin accumulates in the cytoplasm and not in the periplasm. The mutation did not affect the SDS-PAGE protein pattern of the outer membrane, although some alterations were apparent in the periplasmic protein pattern. The mutant strain, E. coli Hsb-1 also failed to export a cloned fimbrial adhesin. The mutation maps in the min. 3.5 of the E. coli genetic map.}, subject = {Infektionsbiologie}, language = {en} } @article{MollScollayMitchell1988, author = {Moll, Heidrun and Scollay, R. and Mitchell, G. F.}, title = {Resistance to cutaneous leishmaniasis in nude mice injected with L3T4+ T cells but not with Ly-2+ T cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61269}, year = {1988}, abstract = {No abstract available}, subject = {Biologie}, language = {en} } @article{MollMitchell1988, author = {Moll, Heidrun and Mitchell, Graham F.}, title = {Analysis of variables associated with the promotion of resistance, and its abrogation, in T cell-reconstituted nude mice infected with Leishmania major}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30949}, year = {1988}, abstract = {No abstract available}, language = {en} } @article{HackerUlmerFasskeetal.1987, author = {Hacker, J{\"o}rg and Ulmer, E. and Fasske, E. and Schmidt, G.}, title = {Isolation and characterization of coliphage Omega18A specific for Escherichia coli O18ac strains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73001}, year = {1987}, abstract = {The bactedophage Q18A, specific for Escherichia coli 018ac srrains, was isolated frorn sewage. The results of host range and conjugation experiments showed that the sensitivity of bacteria to the phage is associated with rhe presence of 018ac antigens. With sorne of rhe 018 strains rhe phage Q18A produces clear Iysis on bacterial lawns only when applied at a high multiplicity and moreover the phage does not multiply. With rhe help of the phage Ql8A, E. coli 0 18ac strains could be divided inro rwo serologically clistinct subgroups called 018A and 018A1• E. coli strains belanging to the sugroup 0 ISAare sensitive to phage Q t8A wheteas bacteria of subgroup A1 are resistanr.}, subject = {Escherichia coli}, language = {en} } @article{HughesHackerDueveletal.1987, author = {Hughes, C. and Hacker, J{\"o}rg and D{\"u}vel, H. and Goebel, W}, title = {Chromosomal deletions and rearrangements cause coordinate loss of hemolysis, fimbriation and serum resistance in an uropathogenic strain of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59470}, year = {1987}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{MarreHacker1987, author = {Marre, R. and Hacker, J{\"o}rg}, title = {Role of S and common type I-fimbriae of Escherichia coli in experimental upper and lower urinary tract infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59468}, year = {1987}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{SchmollHackerGoebel1987, author = {Schmoll, T. and Hacker, J{\"o}rg and Goebel, W.}, title = {Nucleotide sequence of the sfaA gene coding for the S fimbrial protein subunit of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59480}, year = {1987}, abstract = {The sfaA gene of the uropathogenic Escherichia coli 06 strain 536, which is responsible for the determination of the S fimbrial protein subunit, was sequenced. The structural gene codes for a polypeptide of 180 amino acids including a 24-residue N-terminal signal sequence. A size of 15.95 kDa was calculated for the processed SfaA protein. The nucleotide and deduced amino acid sequences show significant homology to those of the F1C fimbria and, to a lesser extent, of the mannose- sensitive hemagglutinating fimbria (FimA, PilA). Only week homology toP fimbriae subunits (F72 , Pap) was found.}, subject = {Infektionsbiologie}, language = {en} } @article{OttSchmollGoebeletal.1987, author = {Ott, M. and Schmoll, T. and Goebel, W. and Van Die, I. and Hacker, J{\"o}rg}, title = {Comparison of the genetic determinant coding for the S-fimbrial adhesin (sfa) of Escherichia coli to other chromosomally encoded fimbrial determinants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59499}, year = {1987}, abstract = {DNA probes specific for different regions of the S-fimbrial adhesin (sja) determinant were constructed and hybridized with DNA sequences coding for P (F8 and F13), mannose-sensitive hemagglutinating type 1 (FlA), and FlC fimbriae. While the sfa and F1C DNA determinants exhibited homology along their entire lengths, the P-fimbrial and type 1-fimbrial determinants exhibited homology to regions of the sfa duster responsible for the control of transcription and, to a minor extent, to regions coding for proteins involved in biogenesis and/or adhesion of the fimbriae and for the N-terminal part of the fimbrillin subunit.}, subject = {Infektionsbiologie}, language = {en} } @article{ChakrabortyKathariouHackeretal.1987, author = {Chakraborty, Trinad and Kathariou, Sophia and Hacker, J{\"o}rg and Hof, Herbert and Huhle, Burkhard and Wagner, Wilma and Kuhn, Michael and Goebel, Werner}, title = {Molecular analysis of bacterial cytolysins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40328}, year = {1987}, abstract = {Results of molecular and pathogenic studies of three different bacterial hemolysins (cytolysins) are presented. These exoproteins derive from the two gram-negative bacteria Escherichia coli and Aeromonas hydrophila and from the gram-positive pathogen Listeria monocytogenes. The hemolysin of E. coli is determined by an 8-kilobase (kb) region that includes four clustered genes (hlyC, hlyA, hlyB, and hlyD). This hemolysin determinant is part either of large transmissible plasmids or of the chromosome. The genes located chromosomally are found predominantly in E. coli strains that can cause pyelonephritis and/or other extraintestinal infections. A detailed analysis of the chromosomal hly determinants of one nephropathogenic E. coli strain revealed the existence of specific, large chromosomal insertions 75 kb and lOO kb in size that carry the hly genes but that also influence the expression of other virulence properties, i.e., adhesion and serum resistance. The direct involvement of E. coli hemolysin in virulence could be demonstrated in several model systems. The genetic determinants for hemolysin (cytolysin) formation in , A. hydrophila (aerolysin) and L. monocytogenes (listeriolysin) are less complex. Both cytolysins seem to be encoded by single genes, although two loci (aerB and aerC) that affect the expression and activity of aerolysin have been identified distal and proximal to the structural gene for aerolysin (aerA). Cytolysin-negative mutants of both bacteria were obtained by site-specific deletion and/or transposon mutagenesis. These mutants show a drastic reduction in the virulence of the respective bacteria.}, language = {en} }