@article{TiuDavernGarciaetal.1989, author = {Tiu, W. U. and Davern, K. M. and Garcia, E. G. and Moll, Heidrun and Mitchell, Graham F.}, title = {Monoclonal antibodies reacting with Schistosoma japonicum eggs and their target epitopes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30916}, year = {1989}, abstract = {Ten monoclonal antibodies (McAbs) raised to Schistosoma japonicum eggs could be assigned using several serological and immunochemical techniques to 3 groups. The McAbs, termed A, B and C-McAbs, apparently recognize carbohydrate epitopes that can be located on the same antigen molecule. The antibodies, generally of IgM isotype, are idiotypically related. They are distinct from another IgM McAb (Group D-McAb) the carbohydrate target epitope of which can also be associated with the epitopes of A. B and C-McAbs. The McAbs produce large vacuolated bleb reactions in the circumoval precipitin test (COPT) and target epitopes have different representations in various life cycle stages such as immature and mature eggs, male and female worms (including S. mansoni). Antigens affinity purified on columns containing A, B, C and D-McAbs stimulate proliferation of T cells from egg-sensitized mice and elicit DTH reactions in such mice. This raises the possibility that the target antigens of these carbohydrate-reactive monoclonal antibodies are immunopathologic and involved in egg-induced granuloma formation.}, language = {en} } @article{ParkkinenKorhonenPereetal.1988, author = {Parkkinen, J. and Korhonen, T. K. and Pere, A. and Hacker, J{\"o}rg and Soinila, S.}, title = {Binding sites in the rat brain for Escherichia coli S fimbriae associated with neontal meningitis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59500}, year = {1988}, abstract = {Escherichia coli strains that cause sepsis and meningitis in neonatal infants carry S fimbriae that bind to sialyl galactoside units of cell surface glycoproteins. To investigate the possible role of S fimbriae in determining the tissue tropism of neonatal menlngitis, we have studied the preselice of binding sites for S fimbriae in different tissues of the neonatal rat which is susceptible to meningitis caused by S-fimbriated E. coli. Purified S fimbriae were incubated on cryostat sections of different rat oipns and their bindina was assessed by indirect immunofluorescence. In the bnin of the neonatal rat, S fimbriae specifically bound to the luminal surfaces of the vascular endothelium and of the epithelium lining the choroid plexuses and bnin ventricles. The · bindlog W.s completely inhibited by the trisaccharide NeuAca2-3Ga)ßl-4Gic, a receptor analogue of S fimbriae, and by a preceding neuraminidase treatment of the sections. A recombinant E. coli strain expressina S fimbriae adhered in large numbers to the same tissue sites in the neonatal brain sections as did the purified fimbriae, · whereas the nonfimbriated host strahi and a recombiiuuit strain expresslog P fi.mbriae did not adhere to brain tissues. The results soggest that adhesion of S-fimbriated bacteria to the binding sites observed in the neonatai bnin has a pathogenetic roJe durlog bacterial Invasion from cii'culation into the cerebrospinal fluid.}, subject = {Infektionsbiologie}, language = {en} } @article{OttHoschuetzkyJannetal.1988, author = {Ott, M. and Hosch{\"u}tzky, H. and Jann, K. and Van Die, I. and Hacker, J{\"o}rg}, title = {Gene clusters for S fimbrial adhesin (sfa) and F1C Fimbriae (foc) of Escherichia coli: Comparative aspects of structure and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59519}, year = {1988}, abstract = {Fimbrial 8dhesins en8ble b8cteria to 8ttach t9 eucaryotic ceU~. The genetic determin8nts for S fimbrial 8dhesins (sja) an.d for FlC ("pseudotype I") fimbri8e ifoc) were compared. Sfa and FlC represent functionally distinct 8dbesins in tbeir receptor specificities. Nevertheless, 8 high degree of bomology between both determin8nts was found on the basis of DNA-DNA hybridizations. Characteristic difl'erences in the restriCtion maps of tbe corresponding gene clusters, bowever, were visible in regions coding for the fimbrial subunits and for the S-specific 8dhesin. While a plasmid carrying the geneiic deternlinant for FlC fimbri8e was 8ble to complement transposon-induced sfa mutants, 8 plasmid carrying tbe genetic determin8nt for 8 tbird 8dht\$in type, termed P fimbriae, was un8ble to do so. Proximal sfa-specific sequences carrying the S fimbrial st'"uctural gene were fused to sequences representing tbe di\$tal part of the foc gene cluster to form 8 hybrid cluster, and tbe foc proxim~ region coding for tbe structural protein was Iigated to sfa distal sequences to form 8 second hybrid. Botb hybrid clones produced intact fimbriae. Anti-FlC monoclonal8ntibodies (MAbs) only recognized clones which produced FlC fimbriae, and an ~ti-S 8dhesin MAb marked clones whicb expressed the S adhesin. Bowever, one of four other anti-S fimbri8e-specific MAbs reacted witb both fimbrial structures, S and FlC, indicating 8 common epitope on both antigens. The results presented bere ~upport tbe view th8t sfa and foc determinants code for fimbri8e tb8t 8re simil8r in several aspects, wbile the P fimbri8e are members of 8 more distantly rel8ted group.}, subject = {Infektionsbiologie}, language = {en} } @article{PawelzikHeesemannHackeretal.1988, author = {Pawelzik, M. and Heesemann, J. and Hacker, J{\"o}rg and Opferkuch, W.}, title = {Cloning and characterization of a new type of fimbria (S/F1C-related fimbria) expressed by an Escherichia coli O75:K1:H7 blood culture isolate}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59529}, year = {1988}, abstract = {The Escherichia coli blood culture isolate BK658 (07S:K1:H7) expresses F1A and F1B fimbriae as weil as a third fimbrial type which reacts with anti-S-fimbrial antiserum but fails to show S-specific binding properlies (i.e., agglutination of bovine erythrocytes). To characterize these fimbriae, we cloned the respective genetic determinant in E. coli K-12. The resulting recombinant clone HB101(pMMP658-6) expresses fimbriae of 1.2-p.m length and a diameter of approximately 7 nm. The determinant codes for the fimbrillin subunit, a protein of 17 kUodaltons in size, and for at least five other proteins of 87, 31, 23, 14.3, and 13.8 kUodaltons. By restriction analysis and by DNA-DNA hybridization, it could be shown that the cloned fimbrial determinant of strain BK658 exhibits a high degree of sequence homology to the gene clusters coding for S fimbrial adhesins (sfa) and F1C fimbriae (/oc). By using the Western blot (immunoblot) technique and a quantitative enzyme-linked immunosorbent assay, it could be further demonstrated that the cloned fimbriae of BK658, S fimbriae, and FlC fimbriae share cross-reactive epitopes as weil as antigenic determinants specific for each fimbrial type. No antigenic cross-reactivity with F1C fimbriae could be detected. The results indicate a genetical and serological relatedness of the cloned fimbriae toS fimbriae and F1C fimbriae. Therefore, this new type of fimbriae is preliminarily termed SIF1C-related fimbriae (Sfr).}, subject = {Infektionsbiologie}, language = {en} } @article{MunoaHackerJuarez1988, author = {Munoa, F. and Hacker, J{\"o}rg and Juarez, A.}, title = {Characterization of a chromosomal mutant that blocks hemolysin excretion in Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59534}, year = {1988}, abstract = {We analyzed an Escherichia coli strain which harbours a chromosomal mutation that blocks the hemolysin excretion. Compartmentation studies showed that hemolysin accumulates in the cytoplasm and not in the periplasm. The mutation did not affect the SDS-PAGE protein pattern of the outer membrane, although some alterations were apparent in the periplasmic protein pattern. The mutant strain, E. coli Hsb-1 also failed to export a cloned fimbrial adhesin. The mutation maps in the min. 3.5 of the E. coli genetic map.}, subject = {Infektionsbiologie}, language = {en} } @article{MollScollayMitchell1988, author = {Moll, Heidrun and Scollay, R. and Mitchell, G. F.}, title = {Resistance to cutaneous leishmaniasis in nude mice injected with L3T4+ T cells but not with Ly-2+ T cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61269}, year = {1988}, abstract = {No abstract available}, subject = {Biologie}, language = {en} } @article{MollMitchell1988, author = {Moll, Heidrun and Mitchell, Graham F.}, title = {Analysis of variables associated with the promotion of resistance, and its abrogation, in T cell-reconstituted nude mice infected with Leishmania major}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30949}, year = {1988}, abstract = {No abstract available}, language = {en} } @article{HackerUlmerFasskeetal.1987, author = {Hacker, J{\"o}rg and Ulmer, E. and Fasske, E. and Schmidt, G.}, title = {Isolation and characterization of coliphage Omega18A specific for Escherichia coli O18ac strains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73001}, year = {1987}, abstract = {The bactedophage Q18A, specific for Escherichia coli 018ac srrains, was isolated frorn sewage. The results of host range and conjugation experiments showed that the sensitivity of bacteria to the phage is associated with rhe presence of 018ac antigens. With sorne of rhe 018 strains rhe phage Q18A produces clear Iysis on bacterial lawns only when applied at a high multiplicity and moreover the phage does not multiply. With rhe help of the phage Ql8A, E. coli 0 18ac strains could be divided inro rwo serologically clistinct subgroups called 018A and 018A1• E. coli strains belanging to the sugroup 0 ISAare sensitive to phage Q t8A wheteas bacteria of subgroup A1 are resistanr.}, subject = {Escherichia coli}, language = {en} } @article{HughesHackerDueveletal.1987, author = {Hughes, C. and Hacker, J{\"o}rg and D{\"u}vel, H. and Goebel, W}, title = {Chromosomal deletions and rearrangements cause coordinate loss of hemolysis, fimbriation and serum resistance in an uropathogenic strain of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59470}, year = {1987}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{MarreHacker1987, author = {Marre, R. and Hacker, J{\"o}rg}, title = {Role of S and common type I-fimbriae of Escherichia coli in experimental upper and lower urinary tract infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59468}, year = {1987}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{SchmollHackerGoebel1987, author = {Schmoll, T. and Hacker, J{\"o}rg and Goebel, W.}, title = {Nucleotide sequence of the sfaA gene coding for the S fimbrial protein subunit of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59480}, year = {1987}, abstract = {The sfaA gene of the uropathogenic Escherichia coli 06 strain 536, which is responsible for the determination of the S fimbrial protein subunit, was sequenced. The structural gene codes for a polypeptide of 180 amino acids including a 24-residue N-terminal signal sequence. A size of 15.95 kDa was calculated for the processed SfaA protein. The nucleotide and deduced amino acid sequences show significant homology to those of the F1C fimbria and, to a lesser extent, of the mannose- sensitive hemagglutinating fimbria (FimA, PilA). Only week homology toP fimbriae subunits (F72 , Pap) was found.}, subject = {Infektionsbiologie}, language = {en} } @article{OttSchmollGoebeletal.1987, author = {Ott, M. and Schmoll, T. and Goebel, W. and Van Die, I. and Hacker, J{\"o}rg}, title = {Comparison of the genetic determinant coding for the S-fimbrial adhesin (sfa) of Escherichia coli to other chromosomally encoded fimbrial determinants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59499}, year = {1987}, abstract = {DNA probes specific for different regions of the S-fimbrial adhesin (sja) determinant were constructed and hybridized with DNA sequences coding for P (F8 and F13), mannose-sensitive hemagglutinating type 1 (FlA), and FlC fimbriae. While the sfa and F1C DNA determinants exhibited homology along their entire lengths, the P-fimbrial and type 1-fimbrial determinants exhibited homology to regions of the sfa duster responsible for the control of transcription and, to a minor extent, to regions coding for proteins involved in biogenesis and/or adhesion of the fimbriae and for the N-terminal part of the fimbrillin subunit.}, subject = {Infektionsbiologie}, language = {en} } @article{ChakrabortyKathariouHackeretal.1987, author = {Chakraborty, Trinad and Kathariou, Sophia and Hacker, J{\"o}rg and Hof, Herbert and Huhle, Burkhard and Wagner, Wilma and Kuhn, Michael and Goebel, Werner}, title = {Molecular analysis of bacterial cytolysins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40328}, year = {1987}, abstract = {Results of molecular and pathogenic studies of three different bacterial hemolysins (cytolysins) are presented. These exoproteins derive from the two gram-negative bacteria Escherichia coli and Aeromonas hydrophila and from the gram-positive pathogen Listeria monocytogenes. The hemolysin of E. coli is determined by an 8-kilobase (kb) region that includes four clustered genes (hlyC, hlyA, hlyB, and hlyD). This hemolysin determinant is part either of large transmissible plasmids or of the chromosome. The genes located chromosomally are found predominantly in E. coli strains that can cause pyelonephritis and/or other extraintestinal infections. A detailed analysis of the chromosomal hly determinants of one nephropathogenic E. coli strain revealed the existence of specific, large chromosomal insertions 75 kb and lOO kb in size that carry the hly genes but that also influence the expression of other virulence properties, i.e., adhesion and serum resistance. The direct involvement of E. coli hemolysin in virulence could be demonstrated in several model systems. The genetic determinants for hemolysin (cytolysin) formation in , A. hydrophila (aerolysin) and L. monocytogenes (listeriolysin) are less complex. Both cytolysins seem to be encoded by single genes, although two loci (aerB and aerC) that affect the expression and activity of aerolysin have been identified distal and proximal to the structural gene for aerolysin (aerA). Cytolysin-negative mutants of both bacteria were obtained by site-specific deletion and/or transposon mutagenesis. These mutants show a drastic reduction in the virulence of the respective bacteria.}, language = {en} } @inproceedings{MochHoschuetzkyHackeretal.1987, author = {Moch, Thomas and Hosch{\"u}tzky, Heinz and Hacker, J{\"o}rg and Kr{\"o}nke, Klaus-D. and Jann, Klaus}, title = {Isolation and characterization of the \(\alpha\)-Sialyl-\(\beta\) 2-3-Galactosyl (S)-Specific Adhesin fimbriated Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40330}, year = {1987}, abstract = {The \(\alpha\)-Sialyl-\(\beta\) 2-3-Galactosyl-specific adhesin (S adhesin) was isolated from cells of a recombinant Escherichia coli K-12 strain expressing the S-flmbrial adhesin complex. A crude cell extract was partiaUy dissociated into fimbriae and an adhesin-enriched fraction by heating to 7O°C. From the latter, adhesin was purified to apparent homogeneity (by fast protein liquid chromatography, immunoblot, and NaDodSO\(_4\)/PAGE) by differential ammonium sulfate precipitation, dissociation in 8 M guanidine hydrochloride, and high-resolution anion-exchange chromatography in 8 M urea. The purified adhesin formed an aggregate of M\(_r\)\(\approx\)10\(^6\) that was made up of one type of 12-kDa polypeptide (fimbrillin is 16.5 kDa). It had pI value of 4.7 (fimbriae has a pI value of 6). Adhesin and fimbrillin had different amino add compositions. The purified adhesins agglutinated human and bovine erythrocytes with the same speclfkity as the whole bacteria; purified fimbriae were not adhesive. Monoclonal anti-adhesin and anti-fimbriae antibodies were obtained. Monoclonal antiadhesin, but none of the anti-fimbriae, antibodies inhibited the agglutination of erythrocytes. The anti-adhesive antibodies were used in immuno-gold electron microscopy to localize adhesin exclusively on the fimbriae, with a possible preference to their tips.}, language = {en} } @incollection{HandmanMitchellMcConvilleetal.1987, author = {Handman, E. and Mitchell, G. F. and McConville, M. J. and Moll, Heidrun}, title = {Towards a carbohydrate-based vaccine against leishmaniasis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33827}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1987}, abstract = {No abstract available}, language = {en} } @article{HackerSchrettenbrunnerSchroeteretal.1986, author = {Hacker, J{\"o}rg and Schrettenbrunner, A. and Schr{\"o}ter, G. and Schmidt, G. and D{\"u}vel, H. and Goebel, W.}, title = {Characterization of Escherichia coli wild-type strains by means of agglutination with antisera raised against cloned P-, S- and MS-fimbriae antigens, hemagglutination, serotyping and hemolysin-production}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72992}, year = {1986}, abstract = {E. coli stcains isolated from patients with urinary tcact infecrions (UTn very often possess mannose"sensitive (MS) and mannose-resistant (MR) adherence facmrs (fimbriae). According to their receptor specificity the mannose-resistant adhesins can be divided inm several types, P, S, M and X. We have cloned rhe determinants of rhree groups of UTI E. coli adhesins, MS, p and S, and prepared specific aorisera against the fimbriae antigens. 189 hernagglutination (HA+) -positive stcains, 96 fecal isolates and 93 strains isoJated from UTI . have been tesred with rhese specific antisera and further characterized by receptor specific : HA, HA parteras and further of rhe "common 0 serogroups" 01, 02, 04, 06, 07, 08, 018, ' 025, 075, most prevalenr in UTI, and hemolysin production. · 68 (73 \%) of the UTI srrains a.nd 50 (52\%) of the fecal isolates showed P-receptor specificiry; 16 (17\%) of the uropathogenic bacteria and 33 (34\%) of the fecal strains exhibited S, M or X-fimbriae antigens. 24\% of rhe P-hemagglutinating (P+) strains reacted wirb P (F8)-specific antiserum. In contrast, more than three quaner of the s+-srrains were agglutinated by S-specific antiserum. HA-pattern VJ and 018 amigen were found to be associared with P-fimbriae strains, wbereas HA-pattern V and VII and the 0 anrigens 02 (M-type), 06 and 018 (5-type) occurred most frequently in p- -strains. A high percentage of P-fimbriated strains showed mannose-sensitive hemagglurination and hemolysin production.}, subject = {Escherichia coli}, language = {en} } @article{MoserOrskovHackeretal.1986, author = {Moser, I. and Orskov, I. and Hacker, J{\"o}rg and Jann, K.}, title = {Characterization of a monoclonal antibody against the fimbrial F8 antigen of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59385}, year = {1986}, abstract = {A monoclonal lgG 1 antibody against F8 fimbriae was obtained with the hybridoma technique using spieen cells from C3H/f rnice immunised with a fimbrial preparation of Escherichia coli 2980 (018ac: K5: H-: FIC, F8) and Sp 2/0 Ag8 myeloma cells. The hybrid cells were cloned twice by lirniting dilution and grown in tissue culture. The monoclonal antibody was purified from culture supernatants on Protein A Sepharose. lt reacted with F8 fimbriae in colony blot, enzyme-linked immunosorbent assay (ELISA) and immunoblot after electrotransfer from sodium dodecyl sulphate-polyacrylarnide gel electrophoresis (SOS-PAGE) of fimbrial preparations. The antibody bound to and agglutinated F8-fimbriated bacteria.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerOttSchmidtetal.1986, author = {Hacker, J{\"o}rg and Ott, M. and Schmidt, G. and Hull, R. and Goebel, W.}, title = {Molecular cloning of the F8 fimbrial antigen from Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59391}, year = {1986}, abstract = {The genetic determinant coding for the Pspecific F8 fimbriae was cloned from · the chromosome of the Escherichia coli wild-type strain 2980 (018: K5: H5: FlC, F8). The F8 determinant was further subcloned into the Pstl site of pBR322 and a restriction map was established. In a Southern hybridization experiment identity between the chromosomally encoded F8 determinant of 2980 and its cloned Counterpart was demonstrated. The cloned F8 fimbri{\"a}e and those of the wild type strain consist of a protein subunit of nearly 20 kDa. F8 fimbriated strains were agglutinated by an F8 polyclonal antiserum, caused mannose-resistant hemagglutination and attached to human uroepi thellal cells. The cloned F8 determinant was weil expressed in a variety of host strains.}, subject = {Infektionsbiologie}, language = {en} } @article{KnappHackerJarchauetal.1986, author = {Knapp, S. and Hacker, J{\"o}rg and Jarchau, T. and Goebel, W}, title = {Large, Unstable Inserts in the Chromosome Affect Virulence Properties Of Uropathogenic Escherichia coli 06 Strain 536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59402}, year = {1986}, abstract = {The hemolytic, uropathogenic Escherichia coli 536 (06:K15:H31) contains two inserts in its chromosome (insert I and insert II), both of which carried hly genes, were rather unstable, and were deleted spontaneously with a frequen~y of 10-3 to 10-4• These inserts were not found in the chromosome of two nonhemolytic E. coli strains, whereas the chromosomal ~equences adjacent to these inserts appeared tobe again homologous in the uropathogenic and two other E. co{\"u} strains. Insert I was 75 kilobases in size and was ftanked at both ends by 16 base pairs (bp) (TTCGACTCCTGTGATC) which were arranged in direct orientation. For insert I it was demonstrated that deletion occurred by recombination between the two 16-bp ftanking sequences, since mutants lacking this insert still carried a single copy of the 16-bp sequence in the chromosome. 8oth inserts contained a functional hemolysin determinant. However, the loss of the inserts not only atfected the hemolytic phenotype bot led to a considerable reduction in serum resistance and the loss of mannose-resistant hemagglutination, caused by the presence of S-type funbriae (sja). lt is shown that the Sfa-negative phenotype is due to a block in transcription of the sfa genes. Mutants of strain 536 which lacked both inserts were entirely avirulent when tested in several animal model systems.}, subject = {Infektionsbiologie}, language = {en} } @article{KorhonenParkkinenHackeretal.1986, author = {Korhonen, T. K. and Parkkinen, J. and Hacker, J{\"o}rg and Finne, J. and Pere, A. and Rhen, M. and Holth{\"o}fer, H}, title = {Binding of Escherichia coli S fimbriae to human kidney epithelium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59415}, year = {1986}, abstract = {Purified S fimbriae and an Escherichia coli strain carrying the recombinant plasmid pANN801-4 that encodes S fimbriae were tested for adhesion to frozen sections of human kidney. The fimbrlae and the bacteria bound to the same tissue domains, and in both cases the binding was specifically inhibited by the receptor analog of S fimbria, sialyl(a2-3)1actose. S fimbriae bound specifically to the epithelial elements in the kidneys; to the epithelial cells of proximal and distal tubules as weil as of the collecting ducts and to the visceral and parietal glomerular epithelium. In addition, they bound to the vascular endothelium of glomerull and of the renal Interstitium. No blnding to connective tissue elements was observed. The results suggest that the biological functlon of S fimbriae is to mediate the adheslon of E. coli to human epithelial and vascular endothellal ceUs.}, subject = {Infektionsbiologie}, language = {en} }