@phdthesis{Schoeppler2012, author = {Sch{\"o}ppler, Friedrich Eugen}, title = {Photolumineszenzmikroskopie und-spektroskopie halbleitender Kohlenstoffnanor{\"o}hren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73329}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Dissertation wurden optische Eigenschaften von halbleitenden, einwandigen Kohlenstoffnanor{\"o}hren (SWNTs) der (6,5)-Chiralit{\"a}t untersucht. Dies gelang durch Ensemblemessungen aber vor allem durch den Aufbau eines Mikroskops zur Messung an einzelnen SWNTs. Dieses Einzel- SWNT-Mikroskop erm{\"o}glichte nebst „normaler" Bildgebung durch Sammlung und Abbildung der nahinfraroten Photolumineszenz (PL) der (6,5)-SWNTs auch die spektral- und zeitaufgel{\"o}ste Untersuchung der PL. Durch Verwendung von Dichtegradientenultrazentrifugation (DGU) zur chiralen Aufreinigung des SWNT-Rohmaterials konnten alle Messungen unter Minimierung des st{\"o}renden Einflusses von Aggregaten oder SWNTs anderer Chiralit{\"a}t durchgef{\"u}hrt werden. Untersucht und bestimmt wurde der Absorptionsquerschnitt und die Exzitonengr{\"o}ße, die PL-Eigenschaften aggregierter SWNTs und der Einfluß der Permittivit{\"a}t auf die PL einzelner SWNTs.}, subject = {Mikroskopie}, language = {de} } @phdthesis{SeligParthey2012, author = {Selig-Parthey, Ulrike}, title = {Methods of Nonlinear Femtosecond Spectroscopy in the Visible and Ultraviolet Regime and their Application to Coupled Multichromophore Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74356}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Time-resolved spectroscopic studies of energy transfer between molecules in solution form a basis for both, our understanding of fundamental natural processes like photosynthesis as well as directed synthetic approaches to optimize organic opto-electronic devices. Here, coherent two-dimensional (2D) spectroscopy opens up new possibilities, as it reveals the correlation between absorption and emission frequency and hence the full cause-and-effect chain. In this thesis two optical setups were developed and implemented, permitting the recording of electronic 2D spectra in the visible and in the hitherto unexplored ultraviolet spectral range. Both designs rely on the exclusive manipulation of beam pairs, which reduces the signal modulation to the difference between the transition frequency of the system and the laser frequency. Thus - as has been shown experimentally and theoretically - the timing precision as well as mechanical stability requirements are greatly reduced, from fractions of the oscillation period of the exciting light wave to fractions of the pulse duration. Two-dimensional spectroscopy and femtosecond transient absorption (TA) as well as different theoretical approaches and simulation models were then applied to coupled multichromophore systems of increasing complexity. Perylene bisimide-perylene monoimide dyads were investigated in cooperation with Prof. Dr. Frank W{\"u}rthner and Prof. Dr. Bernd Engels at the University of W{\"u}rzburg. In these simplest systems studied, global analysis of six different TA experiments unequivocally revealed an ultrafast interchromophoric energy transfer in the 100 fs range. Comparison between the obtained transfer rates and the predictions of F{\"o}rster theory suggest a breakdown of this point-transition-dipole-based picture at the donor-acceptor distances realized in our compounds. Furthermore, a model including conformational changes and an interchromophoric charge transfer has been derived to consistently describe the observed pico- to nanosecond dynamics and fluorescence quantum yields. A second collaboration with Prof. Dr. Gregory Scholes (University of Toronto, Canada) and Prof. Dr. Paul Burn (University of Queensland, Australia) addressed the photophysics of a series of uorene-carbazole dendrimers. Here, a combination of 2D-UV spectroscopy and femtosecond ansiotropy decay experiments revealed the initial delocalization of the excited state wave function that saturates with the second generation. In room temperature solution, disorder-induced localization takes place on the time scales comparable to our instrument response, i.e. 100 fs, followed by energy transfer via incoherent hopping processes. Lastly, in tubular zinc chlorin aggregates, semi-synthetic analogues of natural lightharvesting antennae that had again been synthesized in the group of Prof. Dr. Frank W{\"u}rthner, the interchromophoric coupling is so strong that coherently coupled domains prevail even at room temperature. From an analysis of intensity-dependent TA measurements the dimensions of these domains, the exciton delocalization length, could be determined to span 5-20 monomers. In addition, 2D spectra uncovered efficient energy transfer between neighboring domains, i.e. ultrafast exciton diffusion.}, subject = {Femtosekundenspektroskopie}, language = {en} } @phdthesis{Settels2012, author = {Settels, Volker}, title = {Quantum chemical description of ultrafast exciton self-trapping in perylene based materials}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69861}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Dissertation wurden sehr lange Exzitonen-Diffusionsl{\"a}ngen (LD) unter idealen Bedingungen f{\"u}r Perylen-basierte Materialien simuliert. Dies ist ein Indiz daf{\"u}r, dass die sehr kurzen LD in realen Materialien aus einer extrinsischen sowie einer intrinsischen Immobilisierung resultieren. Letztere basiert auf einer Relaxation in sogenannten „Self-Trapping"-Zust{\"a}nde. Ein tieferes Verst{\"a}ndnis der dem Self-Trapping zugrunde liegenden atomistischen Prozesse ist notwendig, um zuk{\"u}nftig Materialien mit langen LD entwickeln zu k{\"o}nnen, bei denen eine intrinsische Exzitonen-Immobilisierung verhindert wird. F{\"u}r die Entwicklung eines solchen mechanistischen Verst{\"a}ndnisses ist das Vorliegen einer eindeutigen Korrelation zwischen der molekularen Anordnung und der LD unabdingbar. Diese weisen Einkristalle von Diindenoperylen (DIP) und α-Perylen-tetracarboxyl-anhydrid (α-PTCDA) auf. Bei ersteren wurde eine außergew{\"o}hnlich lange LD von 90 nm und bei letzteren nur 22 nm gemessen. Teil dieser Arbeit war es, Gr{\"u}nde f{\"u}r diesen Unterschied in der LD zu finden. Nur Self-Trapping kommt als Ursache in Frage. Aus diesem Grund eignen sich diese Materialien, um ein atomistisches Verst{\"a}ndnis des Self-Trappings exemplarisch an ihnen zu erarbeiten. Mutmaßlich k{\"o}nnten Differenzen in der elektronischen Struktur in DIP und α-PTCDA f{\"u}r das unterschiedliche Self-Trapping verantwortlich sein. Allerdings konnte gezeigt werden, dass es f{\"u}r viele Perylen-basierte Materialien keine signifikanten Unterschiede in der elektronischen Struktur gibt, wodurch diese f{\"u}r die Aufkl{\"a}rung von Immobilisierungsmechanismen zu vernachl{\"a}ssigen sind. Eine weitere m{\"o}gliche Begr{\"u}ndung w{\"a}re in Polarisationseffekten im Kristall zu suchen, welche die elektronische Struktur in Perylen-basierten Materialien unterschiedlich beeinflussen. Vor allem ihr Einfluss auf Ladungstrennungs-Zust{\"a}nde (CT), die oberhalb des optisch hellen Frenkel-Zustandes liegen, war fraglich, weil sie energetisch abgesenkt werden k{\"o}nnten. Ein signifikanter Einfluss von Polarisationseffekten konnte aber f{\"u}r alle Zust{\"a}nde mittels eines polarisierbaren Kontinuum-Modells ausgeschlossen werden. Die geringe LD im α-PTCDA ist folglich ein Indiz f{\"u}r ein Self-Trapping, das durch die Kristallstruktur aus π-Stapeln evoziert wird, welche in DIP fischgr{\"a}tenartig ist. Da Polarisationseffekte auszuschließen sind, {\"u}bt der Kristall lediglich durch sterische Restriktionen einen Einfluss auf das Dimer aus. Daher muss die Methode f{\"u}r die Beschreibung von Self-Trapping nur diese Effekte ber{\"u}cksichtigen, so dass sich f{\"u}r den Einsatz des mechanical embedding QM/MM-Ansatzes entschieden wurde. Nun konnten Potentialfl{\"a}chen berechnet werden, auf denen anschließend eine Wellenpaketdynamik durchgef{\"u}hrt wurde. Diese Methode erlaubt es erstmals, Mechanismen der Exzitonen-Immobilisierung in organischen Materialien auf einer atomistischen Ebene zu beschreiben. Als Erkl{\"a}rung f{\"u}r Self-Trapping in α-PTCDA dienten Potentialfl{\"a}chen, die eine intermolekulare Verschiebung des Dimers im Kristall abbilden. So wurde eine Exzitonen-Immobilisierung innerhalb von 500 fs gefunden, die aus einem irreversiblem Energieverlust und einer lokalen Verzerrung der Kristallstruktur resultiert und auf diese Weise den weiteren Transport des Exzitons verhindert. Im Fall von DIP kann diese Immobilisierung aufgrund hoher Energiebarrieren nicht stattfinden. Diese Barrieren resultieren aus der fischgr{\"a}tenartigen Kristallstruktur des DIP. Diese Diskrepanzen in der Dynamik erkl{\"a}ren die unterschiedlichen LD-Werte f{\"u}r DIP und α-PTCDA. In einem weiteren Fall wurde eine Exzitonen-Immobilisierung in helikalen π Aggregaten von Perylen-tetracarboxyl-bisimid (PBI) Molek{\"u}len festgestellt. Hier wird Self-Trapping durch einen Relaxationsmechanismus verursacht, in dem das Exziton durch geringe asymmetrische Schwingungen des Aggregats innerhalb von 200 fs von dem hellen Frenkel- in den dunklen Frenkel-Zustand transferiert wird, wobei dieser {\"U}bergang von einem CT-Zustand vermittelt wird. Der gesamte Vorgang ist nur bei helikalen Aggregaten m{\"o}glich, weil nur hier CT-Zust{\"a}nde sehr dicht bei dem hellen Frenkel-Zustand vorhanden sind. Im finalen Frenkel-Zustand tritt eine Torsionsbewegung um die π-Stapelachse ein, so dass ein Energieverlust und eine lokale {\"A}nderung der Aggregatstruktur erfolgt - also ein Self-Trapping des Exzitons. Dieser modellierte Mechanismus steht im Einklang zu allen vorliegenden experimentellen Daten. Diese Erkenntnisse lassen die Schlussfolgerung zu, dass in k{\"u}nftigen Materialen f{\"u}r organische Solarzellen eine irreversible und ultraschnelle Deformation des Aggregats nach der Photoanregung vermieden werden muss - will man lange LD erreichen. Nur so kann Self-Trapping von Exzitonen verhindert werden.}, subject = {Exziton}, language = {en} } @phdthesis{Steinbauer2012, author = {Steinbauer, Michael Christoph}, title = {Ionen- und Elektronenimaging reaktiver Molek{\"u}le: Ethyl, Propargylen und Fulvenallenyl}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75649}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Bei Verbrennungsprozessen im Otto-Motor, beim Raffinationsprozess in Erd{\"o}lraffinerien, im interstellaren Raum oder in der Chemie der Erdatmosph{\"a}re spielen Molek{\"u}le, wie sie in dieser Arbeit untersucht wurden, eine wichtige Rolle. Allerdings stellt es eine große Herausforderung dar, solch reaktive Substanzen zu erzeugen und zu handhaben. Um das Ethyl-Radikal, ein wichtiges Intermediat z.B. in der Erzeugung von Ethylen, zu untersuchen, wurde eine bestehende Apparatur modifiziert. Diese erm{\"o}glicht es, die Geschwindigkeitsverteilung der Fragmente (Ionen oder Elektronen) zweidimensional aufzuzeichnen, die nach der Anregung mittels Laserlicht durch Photodissoziation entstehen. Diese velocity-map imaging Apparatur wurde in einem ersten Schritt mittels der Photodissoziation von Pyrrol bei 240 nm kalibriert. Cycloheptatrien konnte erfolgreich auf seine Photodissoziation untersucht werden, was als Test des VMI-Experiment genutzt wurde. Die gewonnenen Ergebnisse stimmten mit Resultaten {\"u}berein, welche durch Doppler-Fragmentspektroskopie in dieser und fr{\"u}heren Arbeiten gewonnen wurden. Zwischen 11 und 13 \% der {\"U}berschussenergie gehen dabei in die Translation des H-Atoms. • Das Ethyl-Radikal zeigte, als das erste mit unserer VMI-Apparatur untersuchte Radikal, eine interessante Photodissoziation: Wird es bei 250 nm angeregt, ergeben sich zwei Dissoziationskan{\"a}le, wobei ein bekannter Kanal nach schneller interner Konversion in den Grundzustand Fragmente mit geringer Translationsenergie erzeugt. Der zweite Kanal zeigt anisotropes Verhalten und erzeugt Wasserstoffatome mit hoher Translationsenergie, die mehr als die H{\"a}lfte der {\"U}berschussenergie abf{\"u}hren. Die Erkl{\"a}rung dieses Prozesses erweist sich schwierig in Anbetracht von durchgef{\"u}hrten Isotopenmarkierungsexperimenten sowie der beobachteten Ratenkonstanten f{\"u}r die Photodissoziation. Eine Interaktion von Valenz- und Rydbergzust{\"a}nden im Ethyl-Radikal k{\"o}nnte eine Erkl{\"a}rung darstellen. In Zukunft kann beim VMI-Experiment in W{\"u}rzburg versucht werden, die Aufl{\"o}sung weiter zu verbessern. Dabei erg{\"a}ben sich im Idealfall zwei scharfe Ringe der H-Atome durch die Spin-Bahn-Aufspaltung von Brom, welche eine sehr genaue Kalibrierung erm{\"o}glichen. Neben den Ergebnissen auf dem Gebiet der Photodissoziation, die mit der VMI-Apparatur erzielt wurden, konnten mittels Synchrotronstrahlung und Aufzeichnen der Photoelektronen mittels VMI und der TPEPICO-Technik die folgenden Ergebnisse erhalten werden: • Von Propargylen, einem von drei C3H2 Isomeren, konnte die adiabatische Ionisierungsenergie (IEad) mit 8.99 eV bestimmt werden. Der Vorl{\"a}ufer Diazopropin, eine sehr instabile Substanz, wurde dazu synthetisiert und mit Synchrotronlicht untersucht. Allerdings war es nicht m{\"o}glich, die Schwingungen im Kation oder die dissoziative Photoionisation (DPI) des Carbens zu untersuchen, da Diazopropin seinerseits bereits bei Energien von 9 eV durch DPI zerf{\"a}llt. Allerdings konnte ein Peak im TPES des zyklischen Isomers aus einer fr{\"u}heren Messung eindeutig dem Propargylen zugeordnet werden. Ein Ausweg die DPI zu umgehen stellt die Verwendung eines anderen Vorl{\"a}ufers dar. Beispielsweise wurde dazu Propargylchlorid getestet, welches aber nicht das Propargylen erzeugt, sondern das zyklische Isomer Cyclopropenyliden. Daneben k{\"o}nnen durch ein Doppel-Imaging Experiment, bei dem die Ionen genauso wie die Elektronen mit einem bildgebenden Detektor aufgezeichnet werden, Ionen mit kinetischer Energie aus DPI von Ionen aus der Ionisation ohne kinetischer Energie unterschieden werden. • Von den substituierten Methyl-Radikalen Brommethyl sowie Cyanomethyl konnte die IEad (8.62 bzw. 10.28 eV) und vom Brommethyl die DPI (AE0K = 13.95 eV) bestimmt werden. Daraus konnte der Einfluss der Substituenten auf die IEad im Vergleich zum Methyl-Radikal (IE = 9.84 eV) gezeigt werden. Das zeigt, dass der Brom-Substituent das Kation, der Cyano-Rest dagegen das Radikal stabilisiert. Ebenso konnten aus den Ergebnissen beim Brommethyl thermodynamische Daten wie die Standardbildungsenthalpie des Radikals (ΔH0f= 174.5 kJ/mol) oder Bindungsenergien gewonnen werden. Letztere betragen 334 kJ/mol f{\"u}r die C-Br Bindung im Brommethyl-Radikal sowie 505 kJ/mol im Kation. • Das Fulvenallen (C7H6) wurde aus Phthalid durch Pyrolyse erzeugt und dessen IEad mit 8.22 eV bestimmt. Schwingungen konnten im Kation aufgel{\"o}st und zugeordnet werden. Außerdem konnte erstmals die IEad des Fulvenallenyl-Radikals (C7H5) mit 8.19 eV festgelegt werden. Im Vergleich zu fr{\"u}heren Messungen zeigte sich, dass aus Toluol in der Pyrolyse ebenfalls die beiden C7H5/C7H6 Isomere entstehen. Um verschiedene C7H5/C7H6 Isomere in einem Verbrennungsprozess zu unterscheiden, w{\"a}re es vorteilhaft, experimentell bestimmte Ionisierungsenergien von anderen Isomeren zu kennen.}, subject = {Radikal }, language = {de} } @phdthesis{Stich2012, author = {Stich, Dominik}, title = {Zur Exziton- und Ladungstr{\"a}gerdynamik in einwandigen Kohlenstoffnanor{\"o}hren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Dissertation wurde die Exziton- und Ladungstr{\"a}gerdynamik in halbleitenden und metallischen einwandigen Kohlenstoffnanor{\"o}hren (SWNTs) mittels zeitkorreliertem Einzelphotonenz{\"a}hlen (TCSPC) und transienter Absorptionsspektroskopie untersucht. Die Experimente wurden an Tensid- oder DNA-stabilisierten SWNT-Proben in Suspension durchgef{\"u}hrt, in denen durch Dichtegradientenultrazentrifugation (DGU) halbleitende (6,5)-R{\"o}hren oder metallische (9,9)-R{\"o}hren angereichert wurden. F{\"u}r die Herstellung der metallischen SWNT-Proben wurde das DGU-Verfahren optimiert. Metallische SWNT-Proben wiesen eine Verunreinigung von etwa 3\% halbleitenden SWNTs auf. Von den angereicherten metallischen SWNTs war die (9,9)-R{\"o}hre mit einem relativen Anteil von 40\% die vorherrschende Chiralit{\"a}t. F{\"u}r transiente Absorptionsmessungen wurden die metallischen SWNT-Proben zudem durch Filtration aufkonzentriert. Halbleitende (6,5)-Proben wurden mit einem standardm{\"a}ßig verwendeten Rezept hergestellt. Mit TCSPC-Messungen an (6,5)-Proben wurde erstmals gezeigt, dass halbleitende SWNTs neben der kurzlebigen Fluoreszenz des S1-Exzitons, die auf der ps-Zeitskala abl{\"a}uft, auch eine langlebig Fluoreszenzkomponente aufweisen. Diese klingt mit t^-1 ab und stammt ebenfalls aus dem S1-Exzitonzustand. Das relative Gewicht der langlebigen Komponente an der Quantenausbeute betr{\"a}gt (7 ± 2)\%. Bei der langlebige Fluoreszenzkomponente handelt es sich um verz{\"o}gerte Fluoreszenz. Diese entsteht durch die Wiederbesetzung des S1-Zustands aus einem tiefergelegenen Triplettzustand. Der vorherrschende Zerfall des Tripletts skaliert mit t^-0,5 und ist auf das nicht-Fick'sche Diffusionsverhalten der Tripletts zur{\"u}ckzuf{\"u}hren, die an St{\"o}rstellen gefangen werden und abreagieren. Wird vor dem {\"U}bergang in den Grundzustand ein weiteres Triplett eingefangen, so kommt es zu einer Triplett-Triplett-Annihilation, die eine Wiederbesetzung des S1-Zustandes bewirkt. F{\"u}r die transienten Absorptionsexperimente wurde ein Messaufbau verwirklicht, der Anregung und Abfrage im VIS und NIR Spektralbereich mit einer Zeitaufl{\"o}sung von bis zu 50 fs erm{\"o}glicht. Die Detektion des Abfragelichts erfolgt spektral aufgel{\"o}st mit einer CCD-Kamera. Der Aufbau erm{\"o}glicht Nachweisempfindlichkeiten von bis zu 0,2 mOD bei einer Integrationszeit von einer Sekunde. Durch unterschiedliche Modulation von Anregungs- und Abfragestrahl ist eine Detektion auf der Differenzfrequenz der Modulationen m{\"o}glich, wodurch Einfl{\"u}sse des Anregungslichts im Abfragespektrum effizient unterdr{\"u}ckt werden. In transienten Absorptionsexperimenten wurde die Exziton- und Ladungstr{\"a}gerdynamik der (9,9)-R{\"o}hre untersucht. Die transienten Absorptionsdaten wurden mit einer globalen Fitroutine angepasst, der ein Vierniveausystem zugrunde lag. Aus dem globalen Fit sind die Photoanregungsspektren (PAS) - die Beitr{\"a}ge der drei angeregten Niveaus zu den transienten Absorptionsspektren - sowie die Zerfallszeiten zug{\"a}nglich. Die PAS sind durch die Exzitonresonanz gekennzeichnet. Breite PB-Banden aufgrund der Besetzungs{\"a}nderung der linearen E00-B{\"a}nder sind im Gegensatz zu transienten Absorptionsmessungen an Graphen oder Graphit nicht erkennbar. Die PAS des schnellen und mittleren Zerfalls sind {\"a}hnlich und weisen eine starkes PB-Signal bei der Energie des M1-Exzitons der (9,9)-R{\"o}hre auf, das von PA-Banden bei h{\"o}heren undtieferen Energien begleitet wird. Der langsame Zerfall ist hingegen durch eine blauverschobene PB-Bande gekennzeichnet, die nur auf der niederenergetischen Seite mit einem PA-Signal einhergeht. Die Zerfallszeiten nehmen mit steigender Anregungsleistung zu und liegen im Bereich von 30 fs bis 120 fs, 500 fs bis 1000 fs und 40 ps. Die schnelle Zerfallskomponente wird mit der Dissoziation der Exzitonen sowie der Thermalisierung der freien Ladungstr{\"a}gen in den linearen Leitungsb{\"a}ndern zu einer heißen Ladungstr{\"a}gerverteilung assoziiert. Die mittlere Zerfallskomponente beschreibt die Abk{\"u}hlung und Rekombination der freien Elektronen und L{\"o}cher. Entscheidender Mechanismus ist hierbei die Streuung an hochenergetischen optischen Phononmoden. Die langsame Zerfallskomponente kann durch langlebige, wahrscheinlich an St{\"o}rstellen gefangene Ladungstr{\"a}ger erkl{\"a}rt werden, deren elektrische Felder durch den Stark-Effekt das ableitungs{\"a}hnliche transiente Absorptionsspektrum erzeugen. Mittels transienter Absorptionsmessungen an (6,5)-R{\"o}hren wurde aus dem anregungsleistungsabh{\"a}ngigen maximalen PB-Signal des S1-Exzitons die Gr{\"o}ße des S1-Exzitons zu (7,2 ± 2,5) nm bestimmt. Aus dem Vergleich der leistungsabh{\"a}ngigen maximalen PB-Signale bei Anregung in das S1- und das S2-Exziton ergibt sich, dass die Konversionseffizienz aus dem S2- in den S1-Zustand 1 ± 0,1 betr{\"a}gt und innerhalb der experimentellen Zeitaufl{\"o}sung von 60 fs vollst{\"a}ndig abl{\"a}uft. Die Exzitongr{\"o}ße in metallischen (9,9)-R{\"o}hren wurde bei Exzitonlebensdauern von 15 fs bis 30 fs zu etwa 7 nm bis 12 nm abgesch{\"a}tzt.}, subject = {Kohlenstoff-Nanor{\"o}hre}, language = {de} } @phdthesis{Tuchscherer2012, author = {Tuchscherer, Philip}, title = {A Route to Optical Spectroscopy on the Nanoscale}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72228}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Time-resolved optical spectroscopy has become an important tool to investigate the dynamics of quantum mechanical processes in matter. In typical applications, a first "pump" pulse excites the system under investigation from the thermal equilibrium to an excited state, and a second variable time-delayed "probe" pulse then maps the dynamics of the excited system. Although advanced nonlinear techniques have been developed to investigate, e.g., coherent quantum effects, all of these techniques are limited in their spatial resolution. The laser focus diameter has a lower bound given by Abbe's diffraction limit, which is roughly half the optical excitation wavelength—corresponding to about 400nm in the presented experiments. In the time-resolved experiments that have been suggested so far, averaging over the sample volume within this focus cannot be avoided. In this thesis, two approaches were developed to overcome the diffraction limit in optical spectroscopy and to enable the investigation of coherent processes on the nanoscale. In the first approach, analytic solutions were found to calculate optimal polarizationshaped laser pulses that provide optical near-field pump-probe pulse sequences in the vicinity of a nanostructure. These near-field pulse sequences were designed to allow excitation of a quantum system at one specific position at a certain time and probing at a different position at a later time. In the second approach, the concept of coherent two-dimensional (2D) spectroscopy, which has had great impact on the investigation of coherent quantum effects in recent years, was combined with photoemission electron microscopy, which yields a spatial resolution well below the optical diffraction limit. Using the analytic solutions, optical near fields were investigated in terms of spectroscopic applications. Near fields that are excited with polarization-shaped femtosecond laser pulses in the vicinity of appropriate nanostructures feature two properties that are especially interesting in the view of spectroscopic applications: On the one hand, control of the spatial distribution of the optical fields is achieved on the order of nanometers. On the other hand, the temporal evolution of these fields can be adjusted on the order of femtoseconds. In this thesis, solutions were found to calculate the optimal polarizationshaped laser pulses that control the near field in a general manner. The main idea to achieve this deterministic control was to disentangle the spatial and temporal near-field control. First, the spatial distribution of the optical near field was controlled by assigning the correct state of polarization for each frequency within the polarization-shaped laser pulse independently. The remaining total phase—not employed for spatial control—was then used for temporal near-field compression, which, in experimental applications, would lead to an enhancement of the nonlinear signal at the respective location. In contrast to the use of optical near fields, where pump-probe sequences themselves are localized below the diffraction limit and the detection does not have to provide the spatial resolution, a different approach was suggested in this thesis to gain spectroscopic information on the nanoscale. The new method was termed "Coherent two-dimensional (2D) nanoscopy" and transfers the concept of "conventional" coherent 2D spectroscopy to photoemission electron microscopy. The pulse sequences used for the investigation of quantum systems in this method are still limited by diffraction. However, the new key concept is to detect locally generated photoelectrons instead of optical signals. This yields a spatial resolution that is well below the optical diffraction limit. In "conventional" 2D spectroscopy a triple-pulse sequence initiates a four wave mixing process that creates a coherence. In a quantum mechanical process, this coherence is converted into a population by emission of an electric field, which is measured in the experiment. Contrarily, in the developed 2D nanoscopy, four-wave mixing is initiated by a quadruple-pulse sequence, which leaves the quantum system in an electronic population. This electronic population carries coherent information about the investigated quantum system and can be mapped with a spatial resolution down to a few nanometers given by the spatial resolution of the photoemission electron microscope. Hence, 2D nanoscopy can be considered a generalization of time-resolved photoemission experiments. In the future, it may be of similar beneficial value for the field of photoemission research as "conventional" 2D spectroscopy has proven to be for optical spectroscopy and nuclear magnetic resonance experiments. In a first experimental implementation of coherent 2D nanoscopy coherent processes on a corrugated silver surface were measured and unexpected long coherence lifetimes could be determined.}, subject = {Ultrakurzzeitspektroskopie}, language = {en} }