@article{KochereshkoDurnevBesombesetal.2016, author = {Kochereshko, Vladimir P. and Durnev, Mikhail V. and Besombes, Lucien and Mariette, Henri and Sapega, Victor F. and Askitopoulos, Alexis and Savenko, Ivan G. and Liew, Timothy C. H. and Shelykh, Ivan A. and Platonov, Alexey V. and Tsintzos, Simeon I. and Hatzopoulos, Z. and Savvidis, Pavlos G. and Kalevich, Vladimir K. and Afanasiev, Mikhail M. and Lukoshkin, Vladimir A. and Schneider, Christian and Amthor, Matthias and Metzger, Christian and Kamp, Martin and Hoefling, Sven and Lagoudakis, Pavlos and Kavokin, Alexey}, title = {Lasing in Bose-Fermi mixtures}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {20091}, doi = {10.1038/srep20091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168152}, year = {2016}, abstract = {Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling.}, language = {en} } @article{SongJiaZhangetal.2016, author = {Song, Ning-Ning and Jia, Yun-Fang and Zhang, Lei and Zhang, Qiong and Huang, Ying and Liu, Xiao-Zhen and Hu, Ling and Lan, Wei and Chen, Ling and Lesch, Klaus-Peter and Chen, Xiaoyan and Xu, Lin and Ding, Yu-Qiang}, title = {Reducing central serotonin in adulthood promotes hippocampal neurogenesis}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {20338}, doi = {10.1038/srep20338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168004}, year = {2016}, abstract = {Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreER\(^{T2}\) mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis.}, language = {en} } @article{RitterFanPaulsonetal.2016, author = {Ritter, Cathrin and Fan, Kaiji and Paulson, Kelly G. and Nghiem, Paul and Schrama, David and Becker, J{\"u}rgen C.}, title = {Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma}, series = {Scientific Reports}, journal = {Scientific Reports}, number = {21678}, edition = {6}, doi = {10.1038/srep21678}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167992}, year = {2016}, abstract = {Merkel cell carcinoma (MCC) is a virally associated cancer characterized by its aggressive behavior and strong immunogenicity. Both viral infection and malignant transformation induce expression of MHC class I chain-related protein (MIC) A and B, which signal stress to cells of the immune system via Natural Killer group 2D (NKG2D) resulting in elimination of target cells. However, despite transformation and the continued presence of virally-encoded proteins, MICs are only expressed in a minority of MCC tumors in situ and are completely absent on MCC cell lines in vitro. This lack of MIC expression was due to epigenetic silencing via MIC promoter hypo-acetylation; indeed, MIC expression was re-induced by pharmacological inhibition of histone deacetylases (HDACs) both in vitro and in vivo. This re-induction of MICs rendered MCC cells more sensitive to immune-mediated lysis. Thus, epigenetic silencing of MICs is an important immune escape mechanism of MCCs.}, language = {en} } @article{BiscottiGerdolCanapaetal.2016, author = {Biscotti, Maria Assunta and Gerdol, Marco and Canapa, Adriana and Forconi, Mariko and Olmo, Ettore and Pallavicini, Alberto and Barucca, Marco and Schartl, Manfred}, title = {The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {21571}, doi = {10.1038/srep21571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167753}, year = {2016}, abstract = {Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a "living fossil" status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.}, language = {en} } @article{KurabiPakBernhardtetal.2016, author = {Kurabi, Arwa and Pak, Kwang K. and Bernhardt, Marlen and Baird, Andrew and Ryan, Allen F.}, title = {Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {22663}, doi = {10.1038/srep22663}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167741}, year = {2016}, abstract = {Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of linear phage library displaying 10\(^{10th}\) 12mer peptides were applied on the TM of rats with active bacterial OM. The middle ear (ME) contents were then harvested, amplified and the preparation re-applied for additional rounds. Second, the same na{\"i}ve library was sequentially screened for phage exhibiting TM binding, internalization and then transit. Results revealed a novel set of peptides that transit across the TM to the ME in a time and temperature dependent manner. The peptides with highest transport capacities shared sequence similarities. Historically, the TM was viewed as an impermeable barrier. However, our studies reveal that it is possible to translocate peptide-linked small particles across the TM. This is the first comprehensive biopanning for the isolation of TM transiting peptidic ligands. The identified mechanism offers a new drug delivery platform into the ME.}, language = {en} } @article{LousadaSorokaYagodzinskyyetal.2016, author = {Lousada, Cl{\´a}udio M. and Soroka, Inna L. and Yagodzinskyy, Yuriy and Tarakina, Nadezda V. and Todoshchenko, Olga and H{\"a}nninen, Hannu and Korzhavyi, Pavel A. and Jonsson, Mats}, title = {Gamma radiation induces hydrogen absorption by copper in water}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {24234}, doi = {10.1038/srep24234}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167730}, year = {2016}, abstract = {One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H\(_{2}\)(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.}, language = {en} } @article{AudehmSchmidtBruecketal.2016, author = {Audehm, P. and Schmidt, M. and Br{\"u}ck, S. and Tietze, T. and Gr{\"a}fe, J. and Macke, S. and Sch{\"u}tz, G. and Goering, E.}, title = {Pinned orbital moments - A new contribution to magnetic anisotropy}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {25517}, doi = {10.1038/srep25517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167727}, year = {2016}, abstract = {Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy.}, language = {en} } @article{HorikiriYamaguchiKamideetal.2016, author = {Horikiri, Tomoyuki and Yamaguchi, Makoto and Kamide, Kenji and Matsuo, Yasuhiro and Byrnes, Tim and Ishida, Natsuko and L{\"o}ffler, Andreas and H{\"o}fling, Sven and Shikano, Yutaka and Ogawa, Tetsuo and Forchel, Alfred and Yamamoto, Yoshihisa}, title = {High-energy side-peak emission of exciton-polariton condensates in high density regime}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {25655}, doi = {10.1038/srep25655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167711}, year = {2016}, abstract = {In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates-sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity-have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics.}, language = {en} } @article{GalloWardFotheringhametal.2016, author = {Gallo, Linda A. and Ward, Micheal S. and Fotheringham, Amelia K. and Zhuang, Aowen and Borg, Danielle J. and Flemming, Nicole B. and Harvie, Ben M. and Kinneally, Toni L. and Yeh, Shang-Ming and McCarthy, Domenica A. and Koepsell, Hermann and Vallon, Volker and Pollock, Carol and Panchapakesan, Usha and Forbes, Josephine M.}, title = {Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {26428}, doi = {10.1038/srep26428}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167678}, year = {2016}, abstract = {Blood glucose control is the primary strategy to prevent complications in diabetes. At the onset of kidney disease, therapies that inhibit components of the renin angiotensin system (RAS) are also indicated, but these approaches are not wholly effective. Here, we show that once daily administration of the novel glucose lowering agent, empagliflozin, an SGLT2 inhibitor which targets the kidney to block glucose reabsorption, has the potential to improve kidney disease in type 2 diabetes. In male db/db mice, a 10-week treatment with empagliflozin attenuated the diabetes-induced upregulation of profibrotic gene markers, fibronectin and transforming-growth-factor-beta. Other molecular (collagen IV and connective tissue growth factor) and histological (tubulointerstitial total collagen and glomerular collagen IV accumulation) benefits were seen upon dual therapy with metformin. Albuminuria, urinary markers of tubule damage (kidney injury molecule-1, KIM-1 and neutrophil gelatinase-associated lipocalin, NGAL), kidney growth, and glomerulosclerosis, however, were not improved with empagliflozin or metformin, and plasma and intra-renal renin activity was enhanced with empagliflozin. In this model, blood glucose lowering with empagliflozin attenuated some molecular and histological markers of fibrosis but, as per treatment with metformin, did not provide complete renoprotection. Further research to refine the treatment regimen in type 2 diabetes and nephropathy is warranted.}, language = {en} } @article{PfeifferKruegerMaierhoferetal.2016, author = {Pfeiffer, Susanne and Kr{\"u}ger, Jacqueline and Maierhofer, Anna and B{\"o}ttcher, Yvonne and Kl{\"o}ting, Nora and El Hajj, Nady and Schleinitz, Dorit and Sch{\"o}n, Michael R. and Dietrich, Arne and Fasshauer, Mathias and Lohmann, Tobias and Dreßler, Miriam and Stumvoll, Michael and Haaf, Thomas and Bl{\"u}her, Matthias and Kovacs, Peter}, title = {Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {27969}, doi = {10.1038/srep27969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167662}, year = {2016}, abstract = {Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity.}, language = {en} } @article{RichterMathesFroniusetal.2016, author = {Richter, K. and Mathes, V. and Fronius, M. and Althaus, M. and Hecker, A. and Krasteva-Christ, G. and Padberg, W. and Hone, A. J. and McIntosh, J. M. and Zakrzewicz, A. and Grau, V.}, title = {Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {28660}, doi = {10.1038/srep28660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167655}, year = {2016}, abstract = {We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.}, language = {en} } @article{NukarinenNaegelePedrottietal.2016, author = {Nukarinen, Ella and N{\"a}gele, Thomas and Pedrotti, Lorenzo and Wurzinger, Bernhard and Mair, Andrea and Landgraf, Ramona and B{\"o}rnke, Frederik and Hanson, Johannes and Teige, Markus and Baena-Gonzalez, Elena and Dr{\"o}ge-Laser, Wolfgang and Weckwerth, Wolfram}, title = {Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {31697}, doi = {10.1038/srep31697}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167638}, year = {2016}, abstract = {Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants.}, language = {en} } @article{VermaRaiKaushiketal.2016, author = {Verma, Nidhi and Rai, Amit Kumar and Kaushik, Vibha and Br{\"u}nnert, Daniela and Chahar, Kirti Raj and Pandey, Janmejay and Goyal, Pankaj}, title = {Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {33949}, doi = {10.1038/srep33949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167621}, year = {2016}, abstract = {Gefitinib, an EGFR tyrosine kinase inhibitor, is used as FDA approved drug in breast cancer and non-small cell lung cancer treatment. However, this drug has certain side effects and complications for which the underlying molecular mechanisms are not well understood. By systems biology based in silico analysis, we identified off-targets of gefitinib that might explain side effects of this drugs. The crystal structure of EGFR-gefitinib complex was used for binding pocket similarity searches on a druggable proteome database (Sc-PDB) by using IsoMIF Finder. The top 128 hits of putative off-targets were validated by reverse docking approach. The results showed that identified off-targets have efficient binding with gefitinib. The identified human specific off-targets were confirmed and further analyzed for their links with biological process and clinical disease pathways using retrospective studies and literature mining, respectively. Noticeably, many of the identified off-targets in this study were reported in previous high-throughput screenings. Interestingly, the present study reveals that gefitinib may have positive effects in reducing brain and bone metastasis, and may be useful in defining novel gefitinib based treatment regime. We propose that a system wide approach could be useful during new drug development and to minimize side effect of the prospective drug.}, language = {en} } @article{RahmanKleinKlembtetal.2016, author = {Rahman, SK. Shaid-Ur and Klein, Thorsten and Klembt, Sebastian and Gutowski, J{\"u}rgen and Hommel, Detlef and Sebald, Kathrin}, title = {Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {34392}, doi = {10.1038/srep34392}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167617}, year = {2016}, abstract = {We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons. If the bare Tamm-plasmon mode is tuned, these resonances will exhibit three anticrossings. Experimental results are in good agreement with calculations based on the transfer matrix method as well as on the coupled-oscillators model. The lowest hybrid eigenstate is observed to be red shifted by about 13 meV with respect to the lower cavity polariton state when the Tamm plasmon is resonantly coupled with the cavity polariton. This spectral shift which is caused by the metal layer can be used to create a trapping potential channel for the polaritons. Such channels can guide the polariton propagation similar to one-dimensional polariton wires.}, language = {en} } @article{ShepardChevalPeterlinetal.2016, author = {Shepard, Blythe D. and Cheval, Lydie and Peterlin, Zita and Firestein, Stuart and Koepsell, Hermann and Doucet, Alain and Pluznick, Jennifer L.}, title = {A Renal Olfactory Receptor Aids in Kidney Glucose Handling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35215}, doi = {10.1038/srep35215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167605}, year = {2016}, abstract = {Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway.}, language = {en} } @article{BerntRangrezEdenetal.2016, author = {Bernt, Alexander and Rangrez, Ashraf Y. and Eden, Matthias and Jungmann, Andreas and Katz, Sylvia and Rohr, Claudia and M{\"u}ller, Oliver J. and Katus, Hugo A. and Sossalla, Samuel T. and Williams, Tatjana and Ritter, Oliver and Frank, Derk and Frey, Norbert}, title = {Sumoylation-independent activation of Calcineurin-NFAT-signaling via SUMO2 mediates cardiomyocyte hypertrophy}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35758}, doi = {10.1038/srep35758}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167525}, year = {2016}, abstract = {The objective of this study was to identify unknown modulators of Calcineurin (Cn)-NFAT signaling. Measurement of NFAT reporter driven luciferase activity was therefore utilized to screen a human cardiac cDNA-library (~10\(^{7}\) primary clones) in C2C12 cells through serial dilutions until single clones could be identified. This extensive screening strategy culminated in the identification of SUMO2 as a most efficient Cn-NFAT activator. SUMO2-mediated activation of Cn-NFAT signaling in cardiomyocytes translated into a hypertrophic phenotype. Prohypertrophic effects were also observed in mice expressing SUMO2 in the heart using AAV9 (Adeno-associated virus), complementing the in vitro findings. In addition, increased SUMO2-mediated sumoylation in human cardiomyopathy patients and in mouse models of cardiomyopathy were observed. To decipher the underlying mechanism, we generated a sumoylation-deficient SUMO2 mutant (ΔGG). Surprisingly, ΔGG replicated Cn-NFAT-activation and the prohypertrophic effects of native SUMO2, both in vitro and in vivo, suggesting a sumoylation-independent mechanism. Finally, we discerned a direct interaction between SUMO2 and CnA, which promotes CnA nuclear localization. In conclusion, we identified SUMO2 as a novel activator of Cn-NFAT signaling in cardiomyocytes. In broader terms, these findings reveal an unexpected role for SUMO2 in cardiac hypertrophy and cardiomyopathy, which may open the possibility for therapeutic manipulation of this pathway.}, language = {en} } @article{JahnMarkertRyuetal.2016, author = {Jahn, Martin T. and Markert, Sebastian M. and Ryu, Taewoo and Ravasi, Timothy and Stigloher, Christian and Hentschel, Ute and Moitinho-Silva, Lucas}, title = {Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35860}, doi = {10.1038/srep35860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167513}, year = {2016}, abstract = {Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.}, language = {en} } @article{PlumSteinbachAttemsetal.2016, author = {Plum, Sarah and Steinbach, Simone and Attems, Johannes and Keers, Sharon and Riederer, Peter and Gerlach, Manfred and May, Caroline and Marcus, Katrin}, title = {Proteomic characterization of neuromelanin granules isolated from human substantia nigra by laser-microdissection}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {37139}, doi = {10.1038/srep37139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167507}, year = {2016}, abstract = {Neuromelanin is a complex polymer pigment found primarily in the dopaminergic neurons of human substantia nigra. Neuromelanin pigment is stored in granules including a protein matrix and lipid droplets. Neuromelanin granules are yet only partially characterised regarding their structure and function. To clarify the exact function of neuromelanin granules in humans, their enrichment and in-depth characterization from human substantia nigra is necessary. Previously published global proteome studies of neuromelanin granules in human substantia nigra required high tissue amounts. Due to the limited availability of human brain tissue we established a new method based on laser microdissection combined with mass spectrometry for the isolation and analysis of neuromelanin granules. With this method it is possible for the first time to isolate a sufficient amount of neuromelanin granules for global proteomics analysis from ten 10 μm tissue sections. In total 1,000 proteins were identified associated with neuromelanin granules. More than 68\% of those proteins were also identified in previously performed studies. Our results confirm and further extend previously described findings, supporting the connection of neuromelanin granules to iron homeostasis and lysosomes or endosomes. Hence, this method is suitable for the donor specific enrichment and proteomic analysis of neuromelanin granules.}, language = {en} } @article{EstrechoGaoBrodbecketal.2016, author = {Estrecho, E. and Gao, T. and Brodbeck, S. and Kamp, M. and Schneider, C. and H{\"o}fling, S. and Truscott, A. G. and Ostrovskaya, E. A.}, title = {Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {37653}, doi = {10.1038/srep37653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167496}, year = {2016}, abstract = {Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles—exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities.}, language = {en} } @article{BossertdeBruinGoetzetal.2016, author = {Bossert, Nelli and de Bruin, Donny and G{\"o}tz, Maria and Bouwmeester, Dirk and Heinrich, Doris}, title = {Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {37897}, doi = {10.1038/srep37897}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167482}, year = {2016}, abstract = {DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.}, language = {en} }