@article{RichterMathesFroniusetal.2016, author = {Richter, K. and Mathes, V. and Fronius, M. and Althaus, M. and Hecker, A. and Krasteva-Christ, G. and Padberg, W. and Hone, A. J. and McIntosh, J. M. and Zakrzewicz, A. and Grau, V.}, title = {Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {28660}, doi = {10.1038/srep28660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167655}, year = {2016}, abstract = {We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.}, language = {en} } @article{NukarinenNaegelePedrottietal.2016, author = {Nukarinen, Ella and N{\"a}gele, Thomas and Pedrotti, Lorenzo and Wurzinger, Bernhard and Mair, Andrea and Landgraf, Ramona and B{\"o}rnke, Frederik and Hanson, Johannes and Teige, Markus and Baena-Gonzalez, Elena and Dr{\"o}ge-Laser, Wolfgang and Weckwerth, Wolfram}, title = {Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {31697}, doi = {10.1038/srep31697}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167638}, year = {2016}, abstract = {Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants.}, language = {en} } @article{VermaRaiKaushiketal.2016, author = {Verma, Nidhi and Rai, Amit Kumar and Kaushik, Vibha and Br{\"u}nnert, Daniela and Chahar, Kirti Raj and Pandey, Janmejay and Goyal, Pankaj}, title = {Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {33949}, doi = {10.1038/srep33949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167621}, year = {2016}, abstract = {Gefitinib, an EGFR tyrosine kinase inhibitor, is used as FDA approved drug in breast cancer and non-small cell lung cancer treatment. However, this drug has certain side effects and complications for which the underlying molecular mechanisms are not well understood. By systems biology based in silico analysis, we identified off-targets of gefitinib that might explain side effects of this drugs. The crystal structure of EGFR-gefitinib complex was used for binding pocket similarity searches on a druggable proteome database (Sc-PDB) by using IsoMIF Finder. The top 128 hits of putative off-targets were validated by reverse docking approach. The results showed that identified off-targets have efficient binding with gefitinib. The identified human specific off-targets were confirmed and further analyzed for their links with biological process and clinical disease pathways using retrospective studies and literature mining, respectively. Noticeably, many of the identified off-targets in this study were reported in previous high-throughput screenings. Interestingly, the present study reveals that gefitinib may have positive effects in reducing brain and bone metastasis, and may be useful in defining novel gefitinib based treatment regime. We propose that a system wide approach could be useful during new drug development and to minimize side effect of the prospective drug.}, language = {en} } @article{RahmanKleinKlembtetal.2016, author = {Rahman, SK. Shaid-Ur and Klein, Thorsten and Klembt, Sebastian and Gutowski, J{\"u}rgen and Hommel, Detlef and Sebald, Kathrin}, title = {Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {34392}, doi = {10.1038/srep34392}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167617}, year = {2016}, abstract = {We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons. If the bare Tamm-plasmon mode is tuned, these resonances will exhibit three anticrossings. Experimental results are in good agreement with calculations based on the transfer matrix method as well as on the coupled-oscillators model. The lowest hybrid eigenstate is observed to be red shifted by about 13 meV with respect to the lower cavity polariton state when the Tamm plasmon is resonantly coupled with the cavity polariton. This spectral shift which is caused by the metal layer can be used to create a trapping potential channel for the polaritons. Such channels can guide the polariton propagation similar to one-dimensional polariton wires.}, language = {en} } @article{ShepardChevalPeterlinetal.2016, author = {Shepard, Blythe D. and Cheval, Lydie and Peterlin, Zita and Firestein, Stuart and Koepsell, Hermann and Doucet, Alain and Pluznick, Jennifer L.}, title = {A Renal Olfactory Receptor Aids in Kidney Glucose Handling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35215}, doi = {10.1038/srep35215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167605}, year = {2016}, abstract = {Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway.}, language = {en} } @article{BerntRangrezEdenetal.2016, author = {Bernt, Alexander and Rangrez, Ashraf Y. and Eden, Matthias and Jungmann, Andreas and Katz, Sylvia and Rohr, Claudia and M{\"u}ller, Oliver J. and Katus, Hugo A. and Sossalla, Samuel T. and Williams, Tatjana and Ritter, Oliver and Frank, Derk and Frey, Norbert}, title = {Sumoylation-independent activation of Calcineurin-NFAT-signaling via SUMO2 mediates cardiomyocyte hypertrophy}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35758}, doi = {10.1038/srep35758}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167525}, year = {2016}, abstract = {The objective of this study was to identify unknown modulators of Calcineurin (Cn)-NFAT signaling. Measurement of NFAT reporter driven luciferase activity was therefore utilized to screen a human cardiac cDNA-library (~10\(^{7}\) primary clones) in C2C12 cells through serial dilutions until single clones could be identified. This extensive screening strategy culminated in the identification of SUMO2 as a most efficient Cn-NFAT activator. SUMO2-mediated activation of Cn-NFAT signaling in cardiomyocytes translated into a hypertrophic phenotype. Prohypertrophic effects were also observed in mice expressing SUMO2 in the heart using AAV9 (Adeno-associated virus), complementing the in vitro findings. In addition, increased SUMO2-mediated sumoylation in human cardiomyopathy patients and in mouse models of cardiomyopathy were observed. To decipher the underlying mechanism, we generated a sumoylation-deficient SUMO2 mutant (ΔGG). Surprisingly, ΔGG replicated Cn-NFAT-activation and the prohypertrophic effects of native SUMO2, both in vitro and in vivo, suggesting a sumoylation-independent mechanism. Finally, we discerned a direct interaction between SUMO2 and CnA, which promotes CnA nuclear localization. In conclusion, we identified SUMO2 as a novel activator of Cn-NFAT signaling in cardiomyocytes. In broader terms, these findings reveal an unexpected role for SUMO2 in cardiac hypertrophy and cardiomyopathy, which may open the possibility for therapeutic manipulation of this pathway.}, language = {en} } @article{JahnMarkertRyuetal.2016, author = {Jahn, Martin T. and Markert, Sebastian M. and Ryu, Taewoo and Ravasi, Timothy and Stigloher, Christian and Hentschel, Ute and Moitinho-Silva, Lucas}, title = {Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35860}, doi = {10.1038/srep35860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167513}, year = {2016}, abstract = {Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.}, language = {en} } @article{PlumSteinbachAttemsetal.2016, author = {Plum, Sarah and Steinbach, Simone and Attems, Johannes and Keers, Sharon and Riederer, Peter and Gerlach, Manfred and May, Caroline and Marcus, Katrin}, title = {Proteomic characterization of neuromelanin granules isolated from human substantia nigra by laser-microdissection}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {37139}, doi = {10.1038/srep37139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167507}, year = {2016}, abstract = {Neuromelanin is a complex polymer pigment found primarily in the dopaminergic neurons of human substantia nigra. Neuromelanin pigment is stored in granules including a protein matrix and lipid droplets. Neuromelanin granules are yet only partially characterised regarding their structure and function. To clarify the exact function of neuromelanin granules in humans, their enrichment and in-depth characterization from human substantia nigra is necessary. Previously published global proteome studies of neuromelanin granules in human substantia nigra required high tissue amounts. Due to the limited availability of human brain tissue we established a new method based on laser microdissection combined with mass spectrometry for the isolation and analysis of neuromelanin granules. With this method it is possible for the first time to isolate a sufficient amount of neuromelanin granules for global proteomics analysis from ten 10 μm tissue sections. In total 1,000 proteins were identified associated with neuromelanin granules. More than 68\% of those proteins were also identified in previously performed studies. Our results confirm and further extend previously described findings, supporting the connection of neuromelanin granules to iron homeostasis and lysosomes or endosomes. Hence, this method is suitable for the donor specific enrichment and proteomic analysis of neuromelanin granules.}, language = {en} } @article{EstrechoGaoBrodbecketal.2016, author = {Estrecho, E. and Gao, T. and Brodbeck, S. and Kamp, M. and Schneider, C. and H{\"o}fling, S. and Truscott, A. G. and Ostrovskaya, E. A.}, title = {Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {37653}, doi = {10.1038/srep37653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167496}, year = {2016}, abstract = {Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles—exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities.}, language = {en} } @article{BossertdeBruinGoetzetal.2016, author = {Bossert, Nelli and de Bruin, Donny and G{\"o}tz, Maria and Bouwmeester, Dirk and Heinrich, Doris}, title = {Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {37897}, doi = {10.1038/srep37897}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167482}, year = {2016}, abstract = {DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.}, language = {en} } @article{WildgruberAschenbrennerWendorffetal.2016, author = {Wildgruber, Moritz and Aschenbrenner, Teresa and Wendorff, Heiko and Czubba, Maria and Glinzer, Almut and Haller, Bernhard and Schiemann, Matthias and Zimmermann, Alexander and Berger, Hermann and Eckstein, Hans-Henning and Meier, Reinhard and Wohlgemuth, Walter A. and Libby, Peter and Zernecke, Alma}, title = {The "Intermediate" CD14\(^{++}\)CD16\(^{+}\) monocyte subset increases in severe peripheral artery disease in humans}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {39483}, doi = {10.1038/srep39483}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167476}, year = {2016}, abstract = {Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14\(^{++}\)CD16\(^{-}\) classical monocytes, CD14\(^{+}\)CD16\(^{++}\) non-classical monocytes and CD14\(^{++}\)CD16\(^{+}\) intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14\(^{++}\)CD16\(^{+}\) intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14\(^{++}\)CD16\(^{-}\) classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis.}, language = {en} } @article{RoeschPanjeSterzingetal.2016, author = {Roesch, J. and Panje, C. and Sterzing, F. and Mantel, F. and Nestle, U. and Andratschke, N. and Guckenberger, M.}, title = {SBRT for centrally localized NSCLC - What is too central?}, series = {Radiation Oncology}, volume = {11}, journal = {Radiation Oncology}, number = {157}, doi = {10.1186/s13014-016-0732-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167459}, year = {2016}, abstract = {Purpose Current guidelines recommend stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer (NSCLC) in medically inoperable patients. There are excellent outcome and toxicity data for SBRT of peripheral lung tumors. However, the discussion on SBRT for centrally located tumors is controversial. This study evaluated current clinical practice regarding SBRT of centrally located lung tumors, to identify common fractionation schedules and commonly accepted contraindications for SBRT. Methods A questionnaire consisting of two parts was introduced at the annual meeting of the DEGRO working group on stereotactic radiotherapy, representing centers in Germany and Switzerland. The first part of the questionnaire covered general information about the centers, whereas the second part specifically addressed SBRT of centrally located lung tumors, using case examples of nine primary NSCLC patients. Reconstructions of a contrast enhanced CT, as well as PET-Imaging for each case were demonstrated to the participants. Results Twenty-six centers participated in the meeting. The majority was academic (73\%), participated in interdisciplinary thoracic oncology tumorboards (88\%) and offered SBRT for lung tumors (96\%). Two centers questioned the indication of SBRT for central lung tumors because of lack of evidence. The majority of centers had experience in SBRT for central lung tumors (88\%) and half of the centers reported more than ten cases treated during a median period of five years. Most fractionation schedules used PTV encompassing doses of 48-60 Gy in eight fractions with maximum doses of 125-150\%. A clear indication for SBRT treatment was seen by more than 85\% of centers in three of the nine patients in whom tumors were small and not closer than 2 cm to the main bronchus. Prior pneumonectomy or immediate adjacency to hilar/mediastinal structures were not considered as contraindications for SBRT. In cases where the tumor exceeded 4 cm in diameter or was located closer than 4 cm to the carina 50-80\% of centers saw an indication for SBRT. One case, with a 7 cm tumor reaching to the carina would have been treated with SBRT only by one center. Conclusion Within DEGRO working group on stereotactic radiotherapy, SBRT for small (<4 cm) early stage NSCLC is a common indication, if the minimal distance to the main bronchi is at least 2 cm. The controversy on the treatment of larger and more central tumors will hopefully be solved by ongoing prospective clinical trials.}, language = {en} } @article{HoffmannPfeilAlfonsoetal.2016, author = {Hoffmann, Angelika and Pfeil, Johannes and Alfonso, Julieta and Kurz, Felix T. and Sahm, Felix and Heiland, Sabine and Monyer, Hannah and Bendszus, Martin and Mueller, Ann-Kristin and Helluy, Xavier and Pham, Mirko}, title = {Experimental Cerebral Malaria Spreads along the Rostral Migratory Stream}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {3}, doi = {10.1371/journal.ppat.1005470}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167434}, pages = {e1005470}, year = {2016}, abstract = {It is poorly understood how progressive brain swelling in experimental cerebral malaria (ECM) evolves in space and over time, and whether mechanisms of inflammation or microvascular sequestration/obstruction dominate the underlying pathophysiology. We therefore monitored in the Plasmodium berghei ANKA-C57BL/6 murine ECM model, disease manifestation and progression clinically, assessed by the Rapid-Murine-Coma-and-Behavioral-Scale (RMCBS), and by high-resolution in vivo MRI, including sensitive assessment of early blood-brain-barrier-disruption (BBBD), brain edema and microvascular pathology. For histological correlation HE and immunohistochemical staining for microglia and neuroblasts were obtained. Our results demonstrate that BBBD and edema initiated in the olfactory bulb (OB) and spread along the rostral-migratory-stream (RMS) to the subventricular zone of the lateral ventricles, the dorsal-migratory-stream (DMS), and finally to the external capsule (EC) and brainstem (BS). Before clinical symptoms (mean RMCBS = 18.5±1) became evident, a slight, non-significant increase of quantitative T2 and ADC values was observed in OB+RMS. With clinical manifestation (mean RMCBS = 14.2±0.4), T2 and ADC values significantly increased along the OB+RMS (p = 0.049/p = 0.01). Severe ECM (mean RMCBS = 5±2.9) was defined by further spread into more posterior and deeper brain structures until reaching the BS (significant T2 elevation in DMS+EC+BS (p = 0.034)). Quantitative automated histological analyses confirmed microglial activation in areas of BBBD and edema. Activated microglia were closely associated with the RMS and neuroblasts within the RMS were severely misaligned with respect to their physiological linear migration pattern. Microvascular pathology and ischemic brain injury occurred only secondarily, after vasogenic edema formation and were both associated less with clinical severity and the temporal course of ECM. Altogether, we identified a distinct spatiotemporal pattern of microglial activation in ECM involving primarily the OB+RMS axis, a distinct pathway utilized by neuroblasts and immune cells. Our data suggest significant crosstalk between these two cell populations to be operative in deeper brain infiltration and further imply that the manifestation and progression of cerebral malaria may depend on brain areas otherwise serving neurogenesis.}, language = {en} } @article{MuellerDolowschiakSellinetal.2016, author = {M{\"u}ller, Anna A. and Dolowschiak, Tamas and Sellin, Mikael E. and Felmy, Boas and Verbree, Carolin and Gadient, Sandra and Westermann, Alexander J. and Vogel, J{\"o}rg and LeibundGut-Landmann, Salome and Hardt, Wolf-Dietrich}, title = {An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1005723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167429}, pages = {e1005723}, year = {2016}, abstract = {Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and -injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf\(^{-/-}\) ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens.}, language = {en} } @article{HeiseAmannEnsslenetal.2016, author = {Heise, Ruth and Amann, Philipp M. and Ensslen, Silke and Marquardt, Yvonne and Czaja, Katharina and Joussen, Sylvia and Beer, Daniel and Abele, Rupert and Plewnia, Gabriele and Tamp{\´e}, Robert and Merk, Hans F. and Hermanns, Heike M. and Baron, Jens M.}, title = {Interferon Alpha Signalling and Its Relevance for the Upregulatory Effect of Transporter Proteins Associated with Antigen Processing (TAP) in Patients with Malignant Melanoma}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167409}, pages = {e0146325}, year = {2016}, abstract = {Introduction Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling. Results We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment. Conclusion We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in 'silent' metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic response of IFNα treatment in the future.}, language = {en} } @article{WeisschuhMayerStrometal.2016, author = {Weisschuh, Nicole and Mayer, Anja K. and Strom, Tim M. and Kohl, Susanne and Gl{\"o}ckle, Nicola and Schubach, Max and Andreasson, Sten and Bernd, Antje and Birch, David G. and Hamel, Christian P. and Heckenlively, John R. and Jacobson, Samuel G. and Kamme, Christina and Kellner, Ulrich and Kunstmann, Erdmute and Maffei, Pietro and Reiff, Charlotte M. and Rohrschneider, Klaus and Rosenberg, Thomas and Rudolph, G{\"u}nther and V{\´a}mos, Rita and Vars{\´a}nyi, Bal{\´a}zs and Weleber, Richard G. and Wissinger, Bernd}, title = {Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0145951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167398}, pages = {e0145951}, year = {2016}, abstract = {Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61\% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.}, language = {en} } @article{vanUnenStumpfSchmidetal.2016, author = {van Unen, Jakobus and Stumpf, Anette D. and Schmid, Benedikt and Reinhard, Nathalie R. and Hordijk, Peter L. and Hoffmann, Carsten and Gadella, Theodorus W. J. and Goedhart, Joachim}, title = {A New Generation of FRET Sensors for Robust Measurement of Gα\(_{i1}\), Gα\(_{i2}\) and Gα\(_{i3}\) Activation Kinetics in Single Cells}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167387}, pages = {e0146789}, year = {2016}, abstract = {G-protein coupled receptors (GPCRs) can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on F{\"o}rster resonance energy transfer (FRET) are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gα\(_{i1}\), Gα\(_{i2}\) and Gα\(_{i3}\) activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gα\(_{i}\) subunit, and cp173Venus fused to the Gγ\(_{2}\) subunit as acceptor. The Gα\(_{i}\) FRET biosensors constructs are expressed together with Gβ\(_{1}\) from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gα\(_{i}\) FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gα\(_{i}\) FRET sensor in single cells upon stimulation of several GPCRs, including the LPA\(_{2}\), M\(_{3}\) and BK\(_{2}\) receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gα\(_{i1}\), Gα\(_{i2}\) and Gα\(_{i3}\) activation will be valuable for live-cell measurements that probe Gα\(_{i}\) activation.}, language = {en} } @article{KrupkaMayWeimeretal.2016, author = {Krupka, Jennifer and May, Frauke and Weimer, Thomas and Pragst, Ingo and Kleinschnitz, Christoph and Stoll, Guido and Panousis, Con and Dickneite, Gerhard and Nolte, Marc W.}, title = {The Coagulation Factor XIIa Inhibitor rHA-Infestin-4 Improves Outcome after Cerebral Ischemia/Reperfusion Injury in Rats}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167370}, pages = {e0146783}, year = {2016}, abstract = {Background and Purpose Ischemic stroke provokes severe brain damage and remains a predominant disease in industrialized countries. The coagulation factor XII (FXII)-driven contact activation system plays a central, but not yet fully defined pathogenic role in stroke development. Here, we investigated the efficacy of the FXIIa inhibitor rHA-Infestin-4 in a rat model of ischemic stroke using both a prophylactic and a therapeutic approach. Methods For prophylactic treatment, animals were treated intravenously with 100 mg/kg rHA-Infestin-4 or an equal volume of saline 15 min prior to transient middle cerebral artery occlusion (tMCAO) of 90 min. For therapeutic treatment, 100 mg/kg rHA-Infestin-4, or an equal volume of saline, was administered directly after the start of reperfusion. At 24 h after tMCAO, rats were tested for neurological deficits and blood was drawn for coagulation assays. Finally, brains were removed and analyzed for infarct area and edema formation. Results Within prophylactic rHA-Infestin-4 treatment, infarct areas and brain edema formation were reduced accompanied by better neurological scores and survival compared to controls. Following therapeutic treatment, neurological outcome and survival were still improved although overall effects were less pronounced compared to prophylaxis. Conclusions With regard to the central role of the FXII-driven contact activation system in ischemic stroke, inhibition of FXIIa may represent a new and promising treatment approach to prevent cerebral ischemia/reperfusion injury.}, language = {en} } @article{VolckmarHanPuetteretal.2016, author = {Volckmar, Anna-Lena and Han, Chung Ting and P{\"u}tter, Carolin and Haas, Stefan and Vogel, Carla I. G. and Knoll, Nadja and Struve, Christoph and G{\"o}bel, Maria and Haas, Katharina and Herrfurth, Nikolas and Jarick, Ivonne and Grallert, Harald and Sch{\"u}rmann, Annette and Al-Hasani, Hadi and Hebebrand, Johannes and Sauer, Sascha and Hinney, Anke}, title = {Analysis of Genes Involved in Body Weight Regulation by Targeted Re-Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0147904}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167274}, pages = {e0147904}, year = {2016}, abstract = {Introduction Genes involved in body weight regulation that were previously investigated in genome-wide association studies (GWAS) and in animal models were target-enriched followed by massive parallel next generation sequencing. Methods We enriched and re-sequenced continuous genomic regions comprising FTO, MC4R, TMEM18, SDCCAG8, TKNS, MSRA and TBC1D1 in a screening sample of 196 extremely obese children and adolescents with age and sex specific body mass index (BMI) ≥ 99th percentile and 176 lean adults (BMI ≤ 15th percentile). 22 variants were confirmed by Sanger sequencing. Genotyping was performed in up to 705 independent obesity trios (extremely obese child and both parents), 243 extremely obese cases and 261 lean adults. Results and Conclusion We detected 20 different non-synonymous variants, one frame shift and one nonsense mutation in the 7 continuous genomic regions in study groups of different weight extremes. For SNP Arg695Cys (rs58983546) in TBC1D1 we detected nominal association with obesity (pTDT = 0.03 in 705 trios). Eleven of the variants were rare, thus were only detected heterozygously in up to ten individual(s) of the complete screening sample of 372 individuals. Two of them (in FTO and MSRA) were found in lean individuals, nine in extremely obese. In silico analyses of the 11 variants did not reveal functional implications for the mutations. Concordant with our hypothesis we detected a rare variant that potentially leads to loss of FTO function in a lean individual. For TBC1D1, in contrary to our hypothesis, the loss of function variant (Arg443Stop) was found in an obese individual. Functional in vitro studies are warranted.}, language = {en} } @article{LorenzBhattacharyyaFeileretal.2016, author = {Lorenz, Sonja and Bhattacharyya, Moitrayee and Feiler, Christian and Rape, Michael and Kuriyan, John}, title = {Crystal Structure of a Ube2S-Ubiquitin Conjugate}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0147550}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167265}, pages = {e0147550}, year = {2016}, abstract = {Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a "donor" ubiquitin and a primary amino group of an "acceptor" ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface.}, language = {en} }