@article{OthmanNaseemAwadetal.2016, author = {Othman, Eman M. and Naseem, Muhammed and Awad, Eman and Dandekar, Thomas and Stopper, Helga}, title = {The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0168386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147983}, pages = {e0168386}, year = {2016}, abstract = {Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing.}, language = {en} } @article{AnkenbrandWeberBeckeretal.2016, author = {Ankenbrand, Markus J. and Weber, Lorenz and Becker, Dirk and F{\"o}rster, Frank and Bemm, Felix}, title = {TBro: visualization and management of de novo transcriptomes}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147954}, pages = {baw146}, year = {2016}, abstract = {RNA sequencing (RNA-seq) has become a powerful tool to understand molecular mechanisms and/or developmental programs. It provides a fast, reliable and cost-effective method to access sets of expressed elements in a qualitative and quantitative manner. Especially for non-model organisms and in absence of a reference genome, RNA-seq data is used to reconstruct and quantify transcriptomes at the same time. Even SNPs, InDels, and alternative splicing events are predicted directly from the data without having a reference genome at hand. A key challenge, especially for non-computational personnal, is the management of the resulting datasets, consisting of different data types and formats. Here, we present TBro, a flexible de novo transcriptome browser, tackling this challenge. TBro aggregates sequences, their annotation, expression levels as well as differential testing results. It provides an easy-to-use interface to mine the aggregated data and generate publication-ready visualizations. Additionally, it supports users with an intuitive cart system, that helps collecting and analysing biological meaningful sets of transcripts. TBro's modular architecture allows easy extension of its functionalities in the future. Especially, the integration of new data types such as proteomic quantifications or array-based gene expression data is straightforward. Thus, TBro is a fully featured yet flexible transcriptome browser that supports approaching complex biological questions and enhances collaboration of numerous researchers.}, language = {en} } @article{SommerlandtSpaetheRoessleretal.2016, author = {Sommerlandt, Frank M. J. and Spaethe, Johannes and R{\"o}ssler, Wolfgang and Dyer, Adrian G.}, title = {Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0164386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147932}, pages = {e0164386}, year = {2016}, abstract = {Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-na{\"i}ve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.q}, language = {en} } @article{SerenGrimmFitzetal.2016, author = {Seren, {\"U}mit and Grimm, Dominik and Fitz, Joffrey and Weigel, Detlef and Nordborg, Magnus and Borgwardt, Karsten and Korte, Arthur}, title = {AraPheno: a public database for Arabidopsis thaliana phenotypes}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {D1}, doi = {10.1093/nar/gkw986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147909}, pages = {D1054-D1059}, year = {2016}, abstract = {Natural genetic variation makes it possible to discover evolutionary changes that have been maintained in a population because they are advantageous. To understand genotype-phenotype relationships and to investigate trait architecture, the existence of both high-resolution genotypic and phenotypic data is necessary. Arabidopsis thaliana is a prime model for these purposes. This herb naturally occurs across much of the Eurasian continent and North America. Thus, it is exposed to a wide range of environmental factors and has been subject to natural selection under distinct conditions. Full genome sequencing data for more than 1000 different natural inbred lines are available, and this has encouraged the distributed generation of many types of phenotypic data. To leverage these data for meta analyses, AraPheno (https://arapheno.1001genomes.org) provide a central repository of population-scale phenotypes for A. thaliana inbred lines. AraPheno includes various features to easily access, download and visualize the phenotypic data. This will facilitate a comparative analysis of the many different types of phenotypic data, which is the base to further enhance our understanding of the genotype-phenotype map.}, language = {en} } @article{KrajinovicReimerKudlichetal.2016, author = {Krajinovic, K. and Reimer, S. and Kudlich, T. and Germer, C. T. and Wiegering, A.}, title = {"Rendezvous technique" for intraluminal vacuum therapy of anastomotic leakage of the jejunum}, series = {Surgical Case Reports}, volume = {2}, journal = {Surgical Case Reports}, number = {114}, doi = {10.1186/s40792-016-0243-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147883}, year = {2016}, abstract = {Background Anastomotic leakage (AL) is one of the most common and serious complications following visceral surgery. In recent years, endoluminal vacuum therapy has dramatically changed therapeutic options for AL, but its use has been limited to areas easily accessible by endoscope. Case presentation We describe the first use of endoluminal vacuum therapy in the small intestine employing a combined surgical and endoscopic "rendezvous technique" in which the surgeon assists the endoscopic placement of an endoluminal vacuum therapy sponge in the jejunum by means of a pullback string. This technique led to a completely closed AL after 27 days and 7 changes of the endosponge. Conclusion The combined surgical and endoscopic rendezvous technique can be useful in cases of otherwise difficult endosponge placement.}, language = {en} } @article{AdolfiHerpinRegensburgeretal.2016, author = {Adolfi, Mateus C. and Herpin, Amaury and Regensburger, Martina and Sacquegno, Jacopo and Waxman, Joshua S. and Schartl, Manfred}, title = {Retinoic acid and meiosis induction in adult versus embryonic gonads of medaka}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep34281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147843}, pages = {34281}, year = {2016}, abstract = {In vertebrates, one of the first recognizable sex differences in embryos is the onset of meiosis, known to be regulated by retinoic acid (RA) in mammals. We investigated in medaka a possible meiotic function of RA during the embryonic sex determination (SD) period and in mature gonads. We found RA mediated transcriptional activation in germ cells of both sexes much earlier than the SD stage, however, no such activity during the critical stages of SD. In adults, expression of the RA metabolizing enzymes indicates sexually dimorphic RA levels. In testis, RA acts directly in Sertoli, Leydig and pre-meiotic germ cells. In ovaries, RA transcriptional activity is highest in meiotic oocytes. Our results show that RA plays an important role in meiosis induction and gametogenesis in adult medaka but contrary to common expectations, not for initiating the first meiosis in female germ cells at the SD stage.}, language = {en} } @phdthesis{Maurus2016, author = {Maurus, Katja}, title = {Melanoma Maintenance by the AP1 Transcription Factor FOSL1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142995}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Identifying novel driver genes in cancer remains a crucial step towards development of new therapeutic approaches and the basic understanding of the disease. This work describes the impact of the AP1 transcription activator component FOSL1 on melanoma maintenance. FOSL1 is strongly upregulated during the progression of melanoma and the protein abundance is highest in metastases. I found that the regulation of FOSL1 is strongly dependent on ERK1/2- and PI3K- signaling, two pathways frequently activated in melanoma. Moreover, the involvement of p53 in FOSL1 regulation in melanoma was investigated. Elevated levels of the tumor suppressor led to decreased FOSL1 protein levels in a miR34a/miR34c- dependent manner. The benefit of elevated FOSL1 amounts in human melanoma cell lines was analyzed by overexpression of FOSL1 in cell lines with low endogenous FOSL1 levels. Enhanced levels of FOSL1 had several pro-tumorigenic effects in human melanoma cell lines. Besides increased proliferation and migration rates, FOSL1 overexpression induced the colony forming ability of the cells. Additionally, FOSL1 was necessary for anchorage independent growth in 3D cell cultures. Microarray analyses revealed novel downstream effectors of FOSL1. On the one hand, FOSL1 was able to induce the transcription of different neuron-related genes, such as NEFL, NRP1 and TUBB3. On the other hand, FOSL1 influenced the transcription of DCT, a melanocyte specific gene, in dependence of the differentiation of the melanoma cell line, indicating dedifferentiation. Furthermore, FOSL1 induced the transcription of HMGA1, a chromatin remodeling protein with reprogramming ability, which is characteristic for stem cells. Consequently, the influence of HMGA1 on melanoma maintenance was investigated. In addition to decreased proliferation and reduced anoikis resistance, HMGA1 knockdown reduced melanoma cell survival. Interestingly, the FOSL1 induced pro-tumorigenic effects were demonstrated to be dependent on the HMGA1 level. HMGA1 manipulation reversed FOSL1 induced proliferation and colony forming ability, as well as the anchorage independent growth effect. In conclusion, I could show that additional FOSL1 confers a clear growth benefit to melanoma cells. This benefit is attributed to the induction of stem cell determinants, but can be blocked by the inhibition of the ERK1/2 or PI3K signaling pathways.}, subject = {Melanom}, language = {en} } @phdthesis{Beck2016, author = {Beck, Katherina}, title = {Einfluss von RSK auf die Aktivit{\"a}t von ERK, den axonalen Transport und die synaptische Funktion in Motoneuronen von \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130717}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch mentale Retardierung charakterisiert ist. RSK2 ist haupts{\"a}chlich in Regionen des Gehirns exprimiert, in denen Lernen und Ged{\"a}chtnisbildung stattfinden. In M{\"a}usen und Drosophila, die als Modellorganismen f{\"u}r CLS dienen, konnten auf makroskopischer Ebene keine Ver{\"a}nderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen Verhaltensstudien Defekte im Lernen und der Ged{\"a}chtnisbildung beobachtet. Die synaptische Plastizit{\"a}t und die einhergehenden Ver{\"a}nderungen in den Eigenschaften der Synapse sind fundamental f{\"u}r adaptives Verhalten. Zur Analyse der synaptischen Plastizit{\"a}t eignet sich das neuromuskul{\"a}re System von Drosophila als Modell wegen des stereotypen Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs aus S{\"a}ugern, die wesentlich f{\"u}r die Bildung von LTP im Hippocampus sind. Zun{\"a}chst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der pr{\"a}synaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion aus{\"u}ben k{\"o}nnte. Morphologische Untersuchungen der Struktur der neuromuskul{\"a}ren Synapsen konnten aufzeigen, dass durch den Verlust von RSK die Gr{\"o}ße der neuromuskul{\"a}ren Synapse, der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der neuromuskul{\"a}ren Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die postsynaptische Sensitivit{\"a}t, nicht aber die Freisetzung der Neurotransmitter an der pr{\"a}synaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach an der Regulation der synaptischen Plastizit{\"a}t glutamaterger Synapsen beteiligt. Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes ERK an der pr{\"a}synaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK reguliert wird. Dar{\"u}ber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den Verlust von RSK hyperaktiviertes ERK in den Zellk{\"o}rpern der Motoneurone vorliegt. RSK wird durch den ERK/MAPK-Signalweg aktiviert und {\"u}bernimmt eine Funktion sowohl als Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den Zellk{\"o}rpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Dar{\"u}ber hinaus k{\"o}nnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der Motoneurone regulieren. Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der synaptischen Plastizit{\"a}t beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung der LTP reguliert, sollte in dieser Arbeit aufgekl{\"a}rt werden, ob der Einfluss von RSK auf die synaptische Plastizit{\"a}t durch seine Funktion als Negativregulator von ERK zustande kommt. Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskul{\"a}ren Synapse auf die Funktion von RSK als Negativregulator von ERK zur{\"u}ckzuf{\"u}hren ist. Die Gr{\"o}ße der neuromuskul{\"a}ren Synapse sowie die Gr{\"o}ße der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs. Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen neuropathologischen Erkrankungen beeintr{\"a}chtigt ist. Die durchgef{\"u}hrten Untersuchungen des axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten wurden BRP- und CSP-Agglomerate nachgewiesen. RSK k{\"o}nnte an der Regulation des axonalen Transports von pr{\"a}synaptischem Material beteiligt sein. Durch den Verlust von RSK wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, daf{\"u}r verweilten mehr Mitochondrien in station{\"a}ren Phasen. Diese Ergebnisse zeigen, dass auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeintr{\"a}chtigt ist.}, subject = {Taufliege}, language = {de} } @article{LichthardtKerscherDietzetal.2016, author = {Lichthardt, Sven and Kerscher, Alexander and Dietz, Ulrich A. and Jurowich, Christian and Kunzmann, Volker and von Rahden, Burkhard H. A. and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Original article: role of adjuvant chemotherapy in a perioperative chemotherapy regimen for gastric cancer}, series = {BMC Cancer}, volume = {16}, journal = {BMC Cancer}, number = {650}, doi = {10.1186/s12885-016-2708-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147743}, year = {2016}, abstract = {Background Multimodal treatment strategies - perioperative chemotherapy (CTx) and radical surgery - are currently accepted as treatment standard for locally advanced gastric cancer. However, the role of adjuvant postoperative CTx (postCTx) in addition to neoadjuvant preoperative CTx (preCTx) in this setting remains controversial. Methods Between 4/2006 and 12/2013, 116 patients with locally advanced gastric cancer were treated with preCTx. 72 patients (62 \%), in whom complete tumor resection (R0, subtotal/total gastrectomy with D2-lymphadenectomy) was achieved, were divided into two groups, one of which receiving adjuvant therapy (n = 52) and one without (n = 20). These groups were analyzed with regard to survival and exclusion criteria for adjuvant therapy. Results Postoperative complications, as well as their severity grade, did not correlate with fewer postCTx cycles administered (p = n.s.). Long-term survival was shorter in patients receiving postCTx in comparison to patients without postCTx, but did not show statistical significance. In per protocol analysis by excluding two patients with perioperative death, a shorter 3-year survival rate was observed in patients receiving postCTx compared to patients without postCTx (3-year survival: 71.2 \% postCTx group vs. 90.0 \% non-postCTx group; p = 0.038). Conclusion These results appear contradicting to the anticipated outcome. While speculative, they question the value of post-CTx. Prospectively randomized studies are needed to elucidate the role of postCTx.}, language = {en} } @article{KaltdorfSrivastavaGuptaetal.2016, author = {Kaltdorf, Martin and Srivastava, Mugdha and Gupta, Shishir K. and Liang, Chunguang and Binder, Jasmin and Dietl, Anna-Maria and Meir, Zohar and Haas, Hubertus and Osherov, Nir and Krappmann, Sven and Dandekar, Thomas}, title = {Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach}, series = {Frontiers in Molecular Bioscience}, volume = {3}, journal = {Frontiers in Molecular Bioscience}, doi = {10.3389/fmolb.2016.00022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147396}, pages = {22}, year = {2016}, abstract = {New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.}, language = {en} } @article{KunzLiangNillaetal.2016, author = {Kunz, Meik and Liang, Chunguang and Nilla, Santosh and Cecil, Alexander and Dandekar, Thomas}, title = {The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147369}, pages = {baw041}, year = {2016}, abstract = {The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.}, language = {en} } @article{BeckerKucharskiRoessleretal.2016, author = {Becker, Nils and Kucharski, Robert and R{\"o}ssler, Wolfgang and Maleszka, Ryszard}, title = {Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain}, series = {FEBS Open Bio}, volume = {6}, journal = {FEBS Open Bio}, number = {7}, doi = {10.1002/2211-5463.12084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147080}, pages = {622-639}, year = {2016}, abstract = {Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation.}, language = {en} } @article{BrunetVolffSchartl2016, author = {Brunet, Fr{\´e}d{\´e}ric G. and Volff, Jean-Nicolas and Schartl, Manfred}, title = {Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates}, series = {Genome Biology Evolution}, volume = {8}, journal = {Genome Biology Evolution}, number = {15}, doi = {10.1093/gbe/evw103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146988}, pages = {1600-1613}, year = {2016}, abstract = {The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75\% after 1R/2R, 64.4\% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.}, language = {en} } @phdthesis{Pischimarov2016, author = {Pischimarov, Jordan Ivanov}, title = {Bioinformatische Methoden zur Identifizierung und Klassifizierung somatischer Mutationen in h{\"a}matologischen Erkrankungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147773}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die Sequenzierungstechnologien entwickeln sich stetig weiter, dies erm{\"o}glicht eine zuvor nicht erreichte Ausbeute an experimentellen Daten und auch an Neuentwicklungen von zuvor nicht realisierbaren Experimenten. Zugleich werden spezifische Datenbanken, Algorithmen und Softwareprogramme entwickelt, um die neu entstandenen Daten zu analysieren. W{\"a}hrend der Untersuchung bioinformatischer Methoden f{\"u}r die Identifizierung und Klassifizierung somatischer Mutationen in h{\"a}matologischen Erkrankungen, zeigte sich eine hohe Vielfalt an alternativen Softwaretools die f{\"u}r die jeweiligen Analyseschritte genutzt werden k{\"o}nnen. Derzeit existiert noch kein Standard zur effizienten Analyse von Mutationen aus Next-Generation-Sequencing (NGS)-Daten. Die unterschiedlichen Methoden und Pipelines generieren Kandidaten, die zum gr{\"o}ßten Anteil in allen Ans{\"a}tzen identifiziert werden k{\"o}nnen, jedoch werden Software spezifische Kandidaten nicht einheitlich detektiert. Um eine einheitliche und effiziente Analyse von NGS-Daten durchzuf{\"u}hren war im Rahmen dieser Arbeit die Entwicklung einer benutzerfreundlichen und einheitlichen Pipeline vorgesehen. Hierf{\"u}r wurden zun{\"a}chst die essentiellen Analysen wie die Identifizierung der Basen, die Alignierung und die Identifizierung der Mutationen untersucht. Des Weiteren wurden unter Ber{\"u}cksichtigung von Effizienz und Performance diverse verf{\"u}gbare Softwaretools getestet, ausgewertet und sowohl m{\"o}gliche Verbesserungen als auch Erleichterungen der bisherigen Analysen vorgestellt und diskutiert. Durch Mitwirken in Konsortien wie der klinischen Forschergruppe 216 (KFO 216) und International Cancer Genome Consortium (ICGC) oder auch bei Haus-internen Projekten wurden Datens{\"a}tze zu den Entit{\"a}ten Multiples Myelom (MM), Burkitt Lymphom (BL) und Follikul{\"a}res Lymphom (FL) erstellt und analysiert. Die Selektion geeigneter Softwaretools und die Generierung der Pipeline basieren auf komparativen Analysen dieser Daten, sowie auf geteilte Ergebnisse und Erfahrungen in der Literatur und auch in Foren. Durch die gezielte Entwicklung von Skripten konnten biologische und klinische Fragestellungen bearbeitet werden. Hierzu z{\"a}hlten eine einheitliche Annotation der Gennamen, sowie die Erstellung von Genmutations-Heatmaps mit nicht Variant-Calling-File (VCF)-Syntax konformen Dateien. Des Weiteren konnten nicht abgedeckte Regionen des Genoms in den NGS-Daten identifiziert und analysiert werden. Neue Projekte zur detaillierten Untersuchung der Verteilung von wiederkehrender Mutationen und Funktionsassays zu einzelnen Mutationskandidaten konnten basierend auf den Ergebnissen initiiert werden. Durch eigens erstellte Python-Skripte konnte somit die Funktionalit{\"a}t der Pipeline erweitert werden und zu wichtigen Erkenntnissen bei der biologischen Interpretation der Sequenzierungsdaten f{\"u}hren, wie beispielsweise zu der Detektion von drei neuen molekularen Subgruppen im MM. Die Erweiterungen, der in dieser Arbeit entwickelten Pipeline verbesserte somit die Effizienz der Analyse und die Vergleichbarkeit unserer Daten. Des Weiteren konnte durch die Erstellung eines eigenen Skripts die Analyse von unbeachteten Regionen in den NGS-Daten erfolgen.}, subject = {Pipeline-Rechner}, language = {de} } @article{FalibeneRocesRoessleretal.2016, author = {Falibene, Augustine and Roces, Flavio and R{\"o}ssler, Wolfgang and Groh, Claudia}, title = {Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {73}, doi = {10.3389/fnbeh.2016.00073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146711}, year = {2016}, abstract = {Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies.}, language = {en} } @phdthesis{Ruf2016, author = {Ruf, Franziska}, title = {The circadian regulation of eclosion in \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Eclosion is the emergence of an adult insect from the pupal case at the end of development. In the fruit fly Drosophila melanogaster, eclosion is a circadian clock-gated event and is regulated by various peptides. When studied on the population level, eclosion reveals a clear rhythmicity with a peak at the beginning of the light-phase that persists also under constant conditions. It is a long standing hypothesis that eclosion gating to the morning hours with more humid conditions is an adaption to reduce water loss and increase the survival. Eclosion behavior, including the motor pattern required for the fly to hatch out of the puparium, is orchestrated by a well-characterized cascade of peptides. The main components are ecdysis-triggering hormone (ETH), eclosion hormone (EH) and crustacean cardioactive peptide (CCAP). The molt is initiated by a peak level and pupal ecdysis by a subsequent decline of the ecdysteroid ecdysone. Ecdysteroids are produced by the prothoracic gland (PG), an endocrine tissue that contains a peripheral clock and degenerates shortly after eclosion. Production and release of ecdysteroids are regulated by the prothoracicotropic hormone (PTTH). Although many aspects of the circadian clock and the peptidergic control of the eclosion behavior are known, it still remains unclear how both systems are interconnected. The aim of this dissertation research was to dissect this connection and evaluate the importance of different Zeitgebers on eclosion rhythmicity under natural conditions. Potential interactions between the central clock and the peptides regulating ecdysis motor behavior were evaluated by analyzing the influence of CCAP on eclosion rhythmicity. Ablation and silencing of CCAP neurons, as well as CCAP null-mutation did not affect eclosion rhythmicity under either light or temperature entrainment nor under natural conditions. To dissect the connection between the central and the peripheral clock, PTTH neurons were ablated. Monitoring eclosion under light and temperature entrainment revealed that eclosion became arrhythmic under constant conditions. However, qPCR expression analysis revealed no evidence for cycling of Ptth mRNA in pharate flies. To test for a connection with pigment-dispersing factor (PDF)-expressing neurons, the PDF receptor (PDFR) and short neuropeptide F receptor (sNPFR) were knocked down in the PTTH neurons. Knockdown of sNPFR, but not PDFR, resulted in arrhythmic eclosion under constant darkness conditions. PCR analysis of the PTTH receptor, Torso, revealed its expression in the PG and the gonads, but not in the brain or eyes, of pharate flies. Knockdown of torso in the PG lead to arrhythmicity under constant conditions, which provides strong evidence for the specific effect of PTTH on the PG. These results suggest connections from the PDF positive lateral neurons to the PTTH neurons via sNPF signaling, and to the PG via PTTH and Torso. This interaction presumably couples the period of the peripheral clock in the PG to that of the central clock in the brain. To identify a starting signal for eclosion and possible further candidates in the regulation of eclosion behavior, chemically defined peptidergic and aminergic neurons were optogenetically activated in pharate pupae via ChR2-XXL. This screen approach revealed two candidates for the regulation of eclosion behavior: Dromyosuppressin (DMS) and myo-inhibitory peptides (MIP). However, ablation of DMS neurons did not affect eclosion rhythmicity or success and the exact function of MIP must be evaluated in future studies. To assess the importance of the clock and of possible Zeitgebers in nature, eclosion of the wildtype Canton S and the clock mutant per01 and the PDF signaling mutants pdf01 and han5304 was monitored under natural conditions. For this purpose, the W{\"u}rzburg eclosion monitor (WEclMon) was developed, which is a new open monitoring system that allows direct exposure of pupae to the environment. A general decline of rhythmicity under natural conditions compared to laboratory conditions was observed in all tested strains. While the wildtype and the pdf01 and han5304 mutants stayed weakly rhythmic, the per01 mutant flies eclosed mostly arrhythmic. PDF and its receptor (PDFR encoded by han) are required for the synchronization of the clock network and functional loss can obviously be compensated by a persisting synchronization to external Zeitgebers. The loss of the central clock protein PER, however, lead to a non-functional clock and revealed the absolute importance of the clock for eclosion rhythmicity. To quantitatively analyze the effect of the clock and abiotic factors on eclosion rhythmicity, a statistical model was developed in cooperation with Oliver Mitesser and Thomas Hovestadt. The modelling results confirmed the clock as the most important factor for eclosion rhythmicity. Moreover, temperature was found to have the strongest effect on the actual shape of the daily emergence pattern, while light has only minor effects. Relative humidity could be excluded as Zeitgeber for eclosion and therefore was not further analyzed. Taken together, the present dissertation identified the so far unknown connection between the central and peripheral clock regulating eclosion. Furthermore, a new method for the analysis of eclosion rhythms under natural conditions was established and the necessity of a functional clock for rhythmic eclosion even in the presence of multiple Zeitgebers was shown.}, subject = {Taufliege}, language = {en} } @phdthesis{Blaettner2016, author = {Bl{\"a}ttner, Sebastian}, title = {The role of the non-ribosomal peptide synthetase AusAB and its product phevalin in intracellular virulence of Staphylococcus aureus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Staphylococcus aureus is a prevalent commensal bacterium which represents one of the leading causes in health care-associated bacterial infections worldwide and can cause a variety of different diseases ranging from simple abscesses to severe and life threatening infections including pneumonia, osteomyelitis and sepsis. In recent times multi-resistant strains have emerged, causing severe problems in nosocomial as well as community-acquired (CA) infection settings, especially in the United States (USA). Therefore S. aureus has been termed as a superbug by the WHO, underlining the severe health risk originating from it. Today, infections in the USA are dominated by S. aureus genotypes which are classified as USA300 and USA400, respectively. Strains of genotype USA300 are responsible for about 70\% of the CA infections. The molecular mechanisms which render S. aureus such an effective pathogen are still not understood in its entirety. For decades S. aureus was thought to be a strictly extracellular pathogen relying on pore-forming toxins like α-hemolysin to damage human cells and tissue. Only recently it has been shown that S. aureus can enter non-professional phagocytes, using adhesins like the fibronectin-binding proteins which mediate an endocytotic uptake into the host cells. The bacteria are consequently localized to endosomes, where the degradation of enclosed bacterial cells through phagosome maturation would eventually occur. S. aureus can avoid degradation, and translocate to the cellular cytoplasm, where it can replicate. The ability to cause this so-called phagosomal escape has mainly been attributed to a family of amphiphilic peptides called phenol soluble modulins (PSMs), but as studies have shown, they are not sufficient. In this work I used a transposon mutant library in combination with automated fluorescence microscopy to screen for genes involved in the phagosomal escape process and intracellular survival of S. aureus. I thereby identified a number of genes, including a non-ribosomal peptide synthetase (NRPS). The NRPS, encoded by the genes ausA and ausB, produces two types of small peptides, phevalin and tyrvalin. Mutations in the ausAB genes lead to a drastic decrease in phagosomal escape rates in epithelial cells, which were readily restored by genetic complementation in trans as well as by supplementation of synthetic phevalin. In leukocytes, phevalin interferes with calcium fluxes and activation of neutrophils and promotes cytotoxicity of intracellular bacteria in both, macrophages and neutrophils. Further ausAB is involved in survival and virulence of the bacterium during mouse lung pneumoniae. The here presented data demonstrates the contribution of the bacterial cyclic dipeptide phevalin to S. aureus virulence and suggests, that phevalin directly acts on a host cell target to promote cytotoxicity of intracellular bacteria.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Jung2016, author = {Jung, Lisa Anna}, title = {Targeting MYC Function as a Strategy for Tumor Therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC's mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy.}, subject = {Myc}, language = {en} } @article{RosenbaumSchickWollbornetal.2016, author = {Rosenbaum, Corinna and Schick, Martin Alexander and Wollborn, Jakob and Heider, Andreas and Scholz, Claus-J{\"u}rgen and Cecil, Alexander and Niesler, Beate and Hirrlinger, Johannes and Walles, Heike and Metzger, Marco}, title = {Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0151335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146544}, pages = {e0151335}, year = {2016}, abstract = {Background Enteric glial cells (EGCs) are the main constituent of the enteric nervous system and share similarities with astrocytes from the central nervous system including their reactivity to an inflammatory microenvironment. Previous studies on EGC pathophysiology have specifically focused on mucosal glia activation and its contribution to mucosal inflammatory processes observed in the gut of inflammatory bowel disease (IBD) patients. In contrast knowledge is scarce on intestinal inflammation not locally restricted to the mucosa but systemically affecting the intestine and its effect on the overall EGC network. Methods and Results In this study, we analyzed the biological effects of a systemic LPS-induced hyperinflammatory insult on overall EGCs in a rat model in vivo, mimicking the clinical situation of systemic inflammation response syndrome (SIRS). Tissues from small and large intestine were removed 4 hours after systemic LPS-injection and analyzed on transcript and protein level. Laser capture microdissection was performed to study plexus-specific gene expression alterations. Upon systemic LPS-injection in vivo we observed a rapid and dramatic activation of Glial Fibrillary Acidic Protein (GFAP)-expressing glia on mRNA level, locally restricted to the myenteric plexus. To study the specific role of the GFAP subpopulation, we established flow cytometry-purified primary glial cell cultures from GFAP promotor-driven EGFP reporter mice. After LPS stimulation, we analyzed cytokine secretion and global gene expression profiles, which were finally implemented in a bioinformatic comparative transcriptome analysis. Enriched GFAP+ glial cells cultured as gliospheres secreted increased levels of prominent inflammatory cytokines upon LPS stimulation. Additionally, a shift in myenteric glial gene expression profile was induced that predominantly affected genes associated with immune response. Conclusion and Significance Our findings identify the myenteric GFAP-expressing glial subpopulation as particularly susceptible and responsive to acute systemic inflammation of the gut wall and complement knowledge on glial involvement in mucosal inflammation of the intestine.}, language = {en} } @article{BargulJungMcOdimbaetal.2016, author = {Bargul, Joel L. and Jung, Jamin and McOdimba, Francis A. and Omogo, Collins O. and Adung'a, Vincent O. and Kr{\"u}ger, Timothy and Masiga, Daniel K. and Engstler, Markus}, title = {Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1005448}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146513}, pages = {e1005448}, year = {2016}, abstract = {African trypanosomes thrive in the bloodstream and tissue spaces of a wide range of mammalian hosts. Infections of cattle cause an enormous socio-economic burden in sub-Saharan Africa. A hallmark of the trypanosome lifestyle is the flagellate's incessant motion. This work details the cell motility behavior of the four livestock-parasites Trypanosoma vivax, T. brucei, T. evansi and T. congolense. The trypanosomes feature distinct swimming patterns, speeds and flagellar wave frequencies, although the basic mechanism of flagellar propulsion is conserved, as is shown by extended single flagellar beat analyses. Three-dimensional analyses of the trypanosomes expose a high degree of dynamic pleomorphism, typified by the 'cellular waveform'. This is a product of the flagellar oscillation, the chirality of the flagellum attachment and the stiffness of the trypanosome cell body. The waveforms are characteristic for each trypanosome species and are influenced by changes of the microenvironment, such as differences in viscosity and the presence of confining obstacles. The distinct cellular waveforms may be reflective of the actual anatomical niches the parasites populate within their mammalian host. T. vivax displays waveforms optimally aligned to the topology of the bloodstream, while the two subspecies T. brucei and T. evansi feature distinct cellular waveforms, both additionally adapted to motion in more confined environments such as tissue spaces. T. congolense reveals a small and stiff waveform, which makes these parasites weak swimmers and destined for cell adherence in low flow areas of the circulation. Thus, our experiments show that the differential dissemination and annidation of trypanosomes in their mammalian hosts may depend on the distinct swimming capabilities of the parasites.}, language = {en} }