@article{AndersSchartlBarnekowetal.1985, author = {Anders, F. and Schartl, Manfred and Barnekow, A. and Schmidt, C. R. and Luke, W. and Jaenel-Dess, G. and Anders, A.}, title = {The genes that carcinogens act upon}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72704}, year = {1985}, abstract = {No abstract available.}, subject = {Onkogen}, language = {en} } @phdthesis{Pietsch2005, author = {Pietsch, Christof}, title = {The genetics of species differences within the genus Nasonia ASHMEAD 1904 (Hymenoptera: Pteromalidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14348}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {The genetics of species differences is an outstanding question in evolutionary biology. How do species evolve to become phenotypically distinct and how is the genetic architecture organized that underlie species differences? Phenotypic diverged traits are supposed to be frequently involved in prezygotic isolation, i.e. they prevent the formation of hybrids, whereas postzygotic isolation occurs when hybrids experience a fitness reduction. The parasitic wasp genus Nasonia represents an appropriate model system to investigate the genetics of species differences as well as the genetics of postzygotic isolation. The genus consists of three species N. vitripennis, N. longicornis and N. giraulti that differ particularly in male traits that are assumed to posses an adaptive significance: courtship behaviour and wing size differences. The courtship behaviour consists of cyclically repeated series of head nods that are separated by pauses. The stereotypic performance allowed to split up the display into distinct courtship components. Males of N. vitripennis bear vestigial forewings and are incapable of flight, whereas N. longicornis wear intermediate sized wings and N. giraulti is fully capable of flying. Nasonia species can produce interspecific hybrids after removing Wolbachia bacteria induced hybrid incompatibilities with antibiotics. Postzygotic isolation occurs to different extent and is asymmetric among reciprocal crosses, e.g. inviability is stronger in the N. vitripennis (\&\#9792;) x N. longicornis (\&\#9794;) cross than in the N. longicornis (\&\#9792;) x N. vitripennis (\&\#9794;) cross. The formation of hybrids allow to study the genetic of species differences in QTL (quantitative trait locus) analyses as well as the genetics of postzygotic isolation causing hybrid inviability. The aim of the study was to investigate the genetic architecture of differences in courtship behaviour and wing size between N. vitripennis and N. longicornis and to assess the genetics of postzygotic isolation to gain clues about the evolutionary processes underlying trait divergence and establishment of reproductive isolation between taxa. In a QTL analysis based on 94 F2-hybrid individuals of an LV cross only few QTL for wing size differences have been found with relatively large effects, although a large proportion of the phenotypic variance remained unexplained. The QTL on courtship behaviour analysis based on 94-F2 hybrid males revealed a complex genetic architecture of courtship behaviour with QTL of large phenotypic effects that explained more than 40 \% of the phenotypic variance in one case. Additionally, an epistatic analysis (non-additive interlocus interaction) of courtship QTL revealed frequent genetic interchromsomal relations leading in some instances to hybrid specific effects, e.g. reversion of phenotypic effects or the transgression of phenotypes. A QTL analysis based on a threefold sample size revealed, however, an overestimation of QTL effects in the analysis based on smaller sample size pointing towards a genetic architecture of many loci with small effects governing the phenotypic differences in courtship behaviour. Furthermore, the the study comprised the analysis of postzygotic isolation in the reciprocal crosses N. vitripennis (\&\#9792;) x N. longicornis (\&\#9794;) versus N. longicornis (\&\#9792;) x N. vitripennis (\&\#9794;) located several loci distributed over different chromosomes that are involved in hybrid incompatibility. The mapping of hybrid incompatibility regions reproduced for the first time the observed asymmetries in the strength of postzygotic isolation in reciprocal crosses of between the more distant related taxa within the genus Nasonia. Stronger postzygotic incompatibilities in the VL cross are supposed to result from the superposition of nuclear-nuclear incompatibilities with nuclear-cytoplasmic incompatibilities, whereas the coincidences of these to types of incompatibilities were found to be much weaker in the reciprocal LV cross.}, subject = {Pteromalidae}, language = {en} } @article{DuWuertzAdolfietal.2019, author = {Du, Kang and Wuertz, Sven and Adolfi, Mateus and Kneitz, Susanne and St{\"o}ck, Matthias and Oliveira, Marcos and N{\´o}brega, Rafael and Ormanns, Jenny and Kloas, Werner and Feron, Romain and Klopp, Christophe and Parrinello, Hugues and Journot, Laurent and He, Shunping and Postlethwait, John and Meyer, Axel and Guiguen, Yann and Schartl, Manfred}, title = {The genome of the arapaima (Arapaima gigas) provides insights into gigantism, fast growth and chromosomal sex determination system}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-41457-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201333}, pages = {5293}, year = {2019}, abstract = {We have sequenced the genome of the largest freshwater fish species of the world, the arapaima. Analysis of gene family dynamics and signatures of positive selection identified genes involved in the specific adaptations and unique features of this iconic species, in particular it's large size and fast growth. Genome sequences from both sexes combined with RAD-tag analyses from other males and females led to the isolation of male-specific scaffolds and supports an XY sex determination system in arapaima. Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care.}, language = {en} } @article{KuenstnerHoffmannFraseretal.2016, author = {K{\"u}nstner, Axel and Hoffmann, Margarete and Fraser, Bonnie A. and Kottler, Verena A. and Sharma, Eshita and Weigel, Detlef and Dreyer, Christine}, title = {The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0169087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166755}, pages = {e0169087}, year = {2016}, abstract = {For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95\% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.}, language = {en} } @article{GesslerKoenigBruns1992, author = {Gessler, Manfred and K{\"o}nig, A. and Bruns, G. A. P.}, title = {The genomic organization and expression of the WT1 gene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59195}, year = {1992}, abstract = {The Wilms tumor gene WTl, a proposed tumor suppressor gene, has been identifled based on its location within a homozygous deletion found in tumor tissue. The gene encodes a putative transcription factor containing a Cys/His zinc finger domain. The critical homozygous deletions, however, are rarely seen, suggesting that in many cases the gene may be inactivated by more subtle alterations. To facilitate the seareh for smaller deletions and point mutations we have established the genomic organization of the WTl gene and have determined the sequence of all 10 exons and flanking intron DNA. The pattern of alternative splicing in two regions has been characterized in detail. These results will form the basis for future studies of mutant alleles at this locus.}, subject = {Biochemie}, language = {en} } @article{SchwarzLukassenBhandareetal.2022, author = {Schwarz, Jessica Denise and Lukassen, S{\"o}ren and Bhandare, Pranjali and Eing, Lorenz and Snaebj{\"o}rnsson, Marteinn Thor and Garc{\´i}a, Yiliam Cruz and Kisker, Jan Philipp and Schulze, Almut and Wolf, Elmar}, title = {The glycolytic enzyme ALDOA and the exon junction complex protein RBM8A are regulators of ribosomal biogenesis}, series = {Frontiers in Cell and Developmental Biology}, volume = {10}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2022.954358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290875}, year = {2022}, abstract = {Cellular growth is a fundamental process of life and must be precisely controlled in multicellular organisms. Growth is crucially controlled by the number of functional ribosomes available in cells. The production of new ribosomes depends critically on the activity of RNA polymerase (RNAP) II in addition to the activity of RNAP I and III, which produce ribosomal RNAs. Indeed, the expression of both, ribosomal proteins and proteins required for ribosome assembly (ribosomal biogenesis factors), is considered rate-limiting for ribosome synthesis. Here, we used genetic screening to identify novel transcriptional regulators of cell growth genes by fusing promoters from a ribosomal protein gene (Rpl18) and from a ribosomal biogenesis factor (Fbl) with fluorescent protein genes (RFP, GFP) as reporters. Subsequently, both reporters were stably integrated into immortalized mouse fibroblasts, which were then transduced with a genome-wide sgRNA-CRISPR knockout library. Subsequently, cells with altered reporter activity were isolated by FACS and the causative sgRNAs were identified. Interestingly, we identified two novel regulators of growth genes. Firstly, the exon junction complex protein RBM8A controls transcript levels of the intronless reporters used here. By acute depletion of RBM8A protein using the auxin degron system combined with the genome-wide analysis of nascent transcription, we showed that RBM8A is an important global regulator of ribosomal protein transcripts. Secondly, we unexpectedly observed that the glycolytic enzyme aldolase A (ALDOA) regulates the expression of ribosomal biogenesis factors. Consistent with published observations that a fraction of this protein is located in the nucleus, this may be a mechanism linking transcription of growth genes to metabolic processes and possibly to metabolite availability.}, language = {en} } @article{BorgesLinkEngstleretal.2021, author = {Borges, Alyssa R. and Link, Fabian and Engstler, Markus and Jones, Nicola G.}, title = {The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.720536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249253}, year = {2021}, abstract = {The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein's attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.}, language = {en} } @article{JonesHuangHedrichetal.2022, author = {Jones, Jeffrey J. and Huang, Shouguang and Hedrich, Rainer and Geilfus, Christoph-Martin and Roelfsema, M. Rob G.}, title = {The green light gap: a window of opportunity for optogenetic control of stomatal movement}, series = {New Phytologist}, volume = {236}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.18451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293724}, pages = {1237 -- 1244}, year = {2022}, abstract = {Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.}, language = {en} } @article{DjakovicHennigReinischetal.2023, author = {Djakovic, Lara and Hennig, Thomas and Reinisch, Katharina and Milić, Andrea and Whisnant, Adam W. and Wolf, Katharina and Weiß, Elena and Haas, Tobias and Grothey, Arnhild and J{\"u}rges, Christopher S. and Kluge, Michael and Wolf, Elmar and Erhard, Florian and Friedel, Caroline C. and D{\"o}lken, Lars}, title = {The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-40217-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358161}, year = {2023}, abstract = {Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection.}, language = {en} } @article{GesslerHameisterHenryetal.1990, author = {Gessler, Manfred and Hameister, H. and Henry, I. and Junien, C. and Braun, T. and Arnold, H. H.}, title = {The human MyoD1 (MYF3) gene maps on the short arm of chromosome 11 but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59221}, year = {1990}, abstract = {The human gene encoding the myogenic determination factor myf3 (mouse MyoD1) has been mapped to the short arm of chromosome 11. Analysis of several somatic cell hybrids containing various derivatives with deletions or translocations revealed that the human MyoD (MYF3) gene is not associated with the WAGR locus at chromosomal band 11pl3 nor with the loss of the heterozygosity region at 11p15.5 related to the Beckwith-Wiedemann syndrome. Subregional mapping by in situ hybridization with an myf3 specific probe shows that the gene resides at the chromosomal band llp14, possibly at llp14.3.}, subject = {Biochemie}, language = {en} } @article{WeichSebaldSchaireretal.1986, author = {Weich, H. A. and Sebald, Walter and Schairer, H. U. and Hoppe, J.}, title = {The human osteosarcoma cell line U-2 OS expresses a 3.8 kilobase mRNA which codes for the sequence of the PDGF-B chain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62588}, year = {1986}, abstract = {A cDNA clone of about 2500 basepairswas prepared from the human osteosarcoma cellline U-2 OS by hybridizing with a v-sis probe. Sequence analysis showed that this cDNA contains the coding region for the PDGF-B chain. Here we report that the mitogen secreted by these osteosarcoma cells contains the PDGF-B chain and is probably a homodimer of two B-chains.}, subject = {Biochemie}, language = {en} } @phdthesis{Pinkert2008, author = {Pinkert, Stefan}, title = {The human proteome is shaped by evolution and interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35566}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Das menschliche Genom ist seit 2001 komplett sequenziert. Ein Großteil der Proteine wurde mittlerweile beschrieben und t{\"a}glich werden bioinformatische Vorhersagen praktisch best{\"a}tigt. Als weiteres Großprojekt wurde k{\"u}rzlich die Sequenzierung des Genoms von 1000 Menschen gestartet. Trotzdem ist immer noch wenig {\"u}ber die Evolution des gesamten menschlichen Proteoms bekannt. Proteindom{\"a}nen und ihre Kombinationen sind teilweise sehr detailliert erforscht, aber es wurden noch nicht alle Dom{\"a}nenarchitekturen des Menschen in ihrer Gesamtheit miteinander verglichen. Der verwendete große hochqualitative Datensatz von Protein-Protein-Interaktionen und Komplexen stammt aus dem Jahr 2006 und erm{\"o}glicht es erstmals das menschliche Proteom mit einer vorher nicht m{\"o}glichen Genauigkeit analysieren zu k{\"o}nnen. Hochentwickelte Cluster Algorithmen und die Verf{\"u}gbarkeit von großer Rechenkapazit{\"a}t bef{\"a}higen uns neue Information {\"u}ber Proteinnetzwerke ohne weitere Laborarbeit zu gewinnen. Die vorliegende Arbeit analysiert das menschliche Proteom auf drei verschiedenen Ebenen. Zuerst wurde der Ursprung von Proteinen basierend auf ihrer Dom{\"a}nenarchitektur analysiert, danach wurden Protein-Protein-Interaktionen untersucht und schließlich erfolgte Einteilung der Proteine nach ihren vorhandenen und fehlenden Interaktionen. Die meisten bekannten Proteine enthalten mindestens eine Dom{\"a}ne und die Proteinfunktion ergibt sich aus der Summe der Funktionen der einzelnen enthaltenen Dom{\"a}nen. Proteine, die auf der gleichen Dom{\"a}nenarchitektur basieren, das heißt die die gleichen Dom{\"a}nen in derselben Reihenfolge besitzen, sind homolog und daher aus einem gemeinsamen urspr{\"u}nglichen Protein entstanden. Die Dom{\"a}nenarchitekturen der urspr{\"u}nglichen Proteine wurden f{\"u}r 750000 Proteine aus 1313 Spezies bestimmt. Die Gruppierung von Spezies und ihrer Proteine ergibt sich aus taxonomischen Daten von NCBI-Taxonomy, welche mit zus{\"a}tzlichen Informationen basierend auf molekularen Markern erg{\"a}nzt wurden. Der resultierende Datensatz, bestehend aus 5817 Dom{\"a}nen und 32868 Dom{\"a}nenarchitekturen, war die Grundlage f{\"u}r die Bestimmung des Ursprungs der Proteine aufgrund ihrer Dom{\"a}nenarchitekturen. Es wurde festgestellt, dass nur ein kleiner Teil der neu evolvierten Dom{\"a}nenarchitekturen eines Taxons gleichzeitig auch im selben Taxon neu entstandene Proteindom{\"a}nen enth{\"a}lt. Ein weiteres Ergebnis war, dass Dom{\"a}nenarchitekturen im Verlauf der Evolution l{\"a}nger und komplexer werden, und dass so verschiedene Organismen wie der Fadenwurm, die Fruchtfliege und der Mensch die gleiche Menge an unterschiedlichen Proteinen haben, aber deutliche Unterschiede in der Anzahl ihrer Dom{\"a}nenarchitekturen aufweisen. Der zweite Teil besch{\"a}ftigt sich mit der Frage wie neu entstandene Proteine Bindungen mit dem schon bestehenden Proteinnetzwerk eingehen. In fr{\"u}heren Arbeiten wurde gezeigt, dass das Protein-Interaktions-Netzwerk ein skalenfreies Netz ist. Skalenfreie Netze, wie zum Beispiel das Internet, bestehen aus wenigen Knoten mit vielen Interaktionen, genannt Hubs, und andererseits aus vielen Knoten mit wenigen Interaktionen. Man vermutet, dass zwei Mechanismen zur Entstehung solcher Netzwerke f{\"u}hren. Erstens m{\"u}ssen neue Proteine um auch Teil des Proteinnetzwerkes zu werden mit Proteinen interagieren, die bereits Teil des Netzwerkes sind. Zweitens interagieren die neuen Proteine, gem{\"a}ß der Theorie der bevorzugten Bindung, mit h{\"o}herer Wahrscheinlichkeit mit solchen Proteinen im Netzwerk, die schon an zahlreichen weiteren Protein-Interaktionen beteiligt sind. Die Human Protein Reference Database stellt ein auf Informationen aus in-vivo Experimenten beruhendes Proteinnetzwerk f{\"u}r menschliche Proteine zur Verf{\"u}gung. Basierend auf den in Kapitel I gewonnenen Informationen wurden die Proteine mit dem Ursprungstaxon ihrer Dom{\"a}nenarchitekturen versehen. Dadurch wurde gezeigt, dass ein Protein h{\"a}ufiger mit Proteinen, die im selben Taxon entstanden sind, interagiert, als mit Proteinen, die in anderen Taxa neu aufgetreten sind. Es stellte sich heraus, dass diese Interaktionsraten f{\"u}r alle Taxa deutlich h{\"o}her waren, als durch das Zufallsmodel vorhergesagt wurden. Alle Taxa enthalten den gleichen Anteil an Proteinen mit vielen Interaktionen. Diese zwei Ergebnisse sprechen dagegen, dass die bevorzugte Bindung der alleinige Mechanismus ist, der zum heutigen Aufbau des menschlichen Proteininteraktion-Netzwerks beigetragen hat. Im dritten Teil wurden Proteine basierend auf dem Vorhandensein und der Abwesenheit von Interaktionen in Gruppen eingeteilt. Proteinnetzwerke k{\"o}nnen in kleine hoch vernetzte Teile zerlegt werden, die eine spezifische Funktion aus{\"u}ben. Diese Gruppen k{\"o}nnen mit hoher statistischer Signifikanz berechnet werden, haben meistens jedoch keine biologische Relevanz. Mit einem neuen Algorithmus, welcher zus{\"a}tzlich zu Interaktionen auch Nicht-Interaktionen ber{\"u}cksichtigt, wurde ein Datensatz bestehend aus 8,756 Proteinen und 32,331 Interaktionen neu unterteilt. Eine Einteilung in elf Gruppen zeigte hohe auf Gene Ontology basierte Werte und die Gruppen konnten signifikant einzelnen Zellteilen zugeordnet werden. Eine Gruppe besteht aus Proteinen, welche wenige Interaktionen miteinander aber viele Interaktionen zu zwei benachbarten Gruppen besitzen. Diese Gruppe enth{\"a}lt eine signifikant erh{\"o}hte Anzahl an Transportproteinen und die zwei benachbarten Gruppen haben eine erh{\"o}hte Anzahl an einerseits extrazellul{\"a}ren und andererseits im Zytoplasma und an der Membran lokalisierten Proteinen. Der Algorithmus hat damit unter Beweis gestellt das die Ergebnisse nicht bloß statistisch sondern auch biologisch relevant sind. Wenn wir auch noch weit vom Verst{\"a}ndnis des Ursprungs der Spezies entfernt sind, so hat diese Arbeit doch einen Beitrag zum besseren Verst{\"a}ndnis der Evolution auf dem Level der Proteine geleistet. Im Speziellen wurden neue Erkenntnisse {\"u}ber die Beziehung von Proteindom{\"a}nen und Dom{\"a}nenarchitekturen, sowie ihre Pr{\"a}ferenzen f{\"u}r Interaktionspartner im Interaktionsnetzwerk gewonnen.}, subject = {Evolution}, language = {en} } @phdthesis{Jordan2001, author = {Jordan, Bruce}, title = {The identification of NRAGE}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180090}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The inhibitor of apoptosis proteins (IAPs) have been shown to interact with a growing number of intracellular proteins and signalling pathways in order to fulfil their anti-apoptotic role. In order to investigate in detail how the avian homologue ITA interfered with both TNF induced apoptosis and the NGF mediated differentiation in PC12 cells, a two hybrid screen was performed with a PC12 library using ITA as a bait. The screen resulted in the identification of several overlapping fragments of a previously unknown gene. The complete cDNA for this gene was isolated, the analysis of which revealed a high homology with a large family of tumour antigens known as MAGE (melanoma associated antigens). This newly identified member of the MAGE family, which was later named NRAGE, exhibited some unique characteristics that suggested for the first time a role in normal cellular physiology for this protein family. MAGE proteins are usually restricted in their expression to malignant or tumour cells, however NRAGE was also expressed in terminally differentiated adult tissue. NRAGE also interacted with the human XIAP in direct two-hybrid tests. The interactions observed in yeast cells were confirmed in mammalian cell culture, employing both coimmunoprecipitation and mammalian two-hybrid methods. Moreover, the results of the coimmunoprecipitation experiments indicated that this interaction requires the RING domain. The widely studied 32D cell system was chosen to investigate the effect of NRAGE on apoptosis. NRAGE was stably transduced in 32D cells, and found to augment cell death induced by the withdrawal of Interleukin-3. One reason for this reduced cell viability in NRAGE expressing cells could be the binding of endogenous XIAP, which occurred inducibly after growth factor withdrawal. Interestingly, NRAGE was able to overcome the protection afforded to 32D cells by the exogenous expression of human Bcl-2. Thus NRAGE was identified during this research doctorate as a novel pro-apoptotic, IAP-interacting protein, able to accelerate apoptosis in a pathway independent of Bcl-2 cell protection.}, subject = {Apoptosis}, language = {en} } @article{HoehneProkopovKuhletal.2021, author = {H{\"o}hne, Christin and Prokopov, Dmitry and Kuhl, Heiner and Du, Kang and Klopp, Christophe and Wuertz, Sven and Trifonov, Vladimir and St{\"o}ck, Matthias}, title = {The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome-scale sturgeon genome}, series = {Reviews in Aquaculture}, volume = {13}, journal = {Reviews in Aquaculture}, number = {3}, doi = {10.1111/raq.12542}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239865}, pages = {1709 -- 1729}, year = {2021}, abstract = {Sturgeon immunity is relevant for basic evolutionary and applied research, including caviar- and meat-producing aquaculture, protection of wild sturgeons and their re-introduction through conservation aquaculture. Starting from a comprehensive overview of immune organs, we discuss pathways of innate and adaptive immune systems in a vertebrate phylogenetic and genomic context. The thymus as a key organ of adaptive immunity in sturgeons requires future molecular studies. Likewise, data on immune functions of sturgeon-specific pericardial and meningeal tissues are largely missing. Integrating immunological and endocrine functions, the sturgeon head kidney resembles that of teleosts. Recently identified pattern recognition receptors in sturgeon require research on downstream regulation. We review first acipenseriform data on Toll-like receptors (TLRs), type I transmembrane glycoproteins expressed in membranes and endosomes, initiating inflammation and host defence by molecular pattern-induced activation. Retinoic acid-inducible gene-I-like (RIG-like) receptors of sturgeons present RNA and key sensors of virus infections in most cell types. Sturgeons and teleosts share major components of the adaptive immune system, including B cells, immunoglobulins, major histocompatibility complex and the adaptive cellular response by T cells. The ontogeny of the sturgeon innate and onset of adaptive immune genes in different organs remain understudied. In a genomics perspective, our new data on 100 key immune genes exemplify a multitude of evolutionary trajectories after the sturgeon-specific genome duplication, where some single-copy genes contrast with many duplications, allowing tissue specialization, sub-functionalization or both. Our preliminary conclusion should be tested by future evolutionary bioinformatics, involving all >1000 immunity genes. This knowledge update about the acipenseriform immune system identifies several important research gaps and presents a basis for future applications.}, language = {en} } @phdthesis{Kupper2016, author = {Kupper, Maria}, title = {The immune transcriptome and proteome of the ant Camponotus floridanus and vertical transmission of its bacterial endosymbiont Blochmannia floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The evolutionary success of insects is believed to be at least partially facilitated by symbioses between insects and prokaryotes. Bacterial endosymbionts confer various fitness advantages to their hosts, for example by providing nutrients lacking from the insects' diet thereby enabling the inhabitation of new ecological niches. The Florida carpenter ant Camponotus floridanus harbours endosymbiotic bacteria of the genus Blochmannia. These primary endosymbionts mainly reside in the cytoplasm of bacteriocytes, specialised cells interspersed into the midgut tissue, but they were also found in oocytes which allows their vertical transmission. The social lifestyle of C. floridanus may facilitate the rapid spread of infections amongst genetically closely related animals living in huge colonies. Therefore, the ants require an immune system to efficiently combat infections while maintaining a "chronic" infection with their endosymbionts. In order to investigate the immune repertoire of the ants, the Illumina sequencing method was used. The previously published genome sequence of C. floridanus was functionally re-annotated and 0.53\% of C. floridanus proteins were assigned to the gene ontology (GO) term subcategory "immune system process". Based on homology analyses, genes encoding 510 proteins with possible immune function were identified. These genes are involved in microbial recognition and immune signalling pathways but also in cellular defence mechanisms, such as phagocytosis and melanisation. The components of the major signalling pathways appear to be highly conserved and the analysis revealed an overall broad immune repertoire of the ants though the number of identified genes encoding pattern recognition receptors (PRRs) and antimicrobial peptides (AMPs) is comparatively low. Besides three genes coding for homologs of thioester-containing proteins (TEPs), which have been shown to act as opsonins promoting phagocytosis in other insects, six genes encoding the AMPs defesin-1 and defensin-2, hymenoptaecin, two tachystatin-like peptides and one crustin-like peptide are present in the ant genome. Although the low number of known AMPs in comparison to 13 AMPs in the honey bee Apis mellifera and 46 AMPs in the wasp Nasonia vitripennis may indicate a less potent immune system, measures summarised as external or social immunity may enhance the immune repertoire of C. floridanus, as it was discussed for other social insects. Also, the hymenoptaecin multipeptide precursor protein may be processed to yield seven possibly bioactive peptides. In this work, two hymenoptaecin derived peptides were heterologously expressed and purified. The preliminary antimicrobial activity assays indicate varying bacteriostatic effects of different hymenoptaecin derived peptides against Escherichia coli D31 and Staphylococcus aureus which suggests a functional amplification of the immune response further increasing the antimicrobial potency of the ants. Furthermore, 257 genes were differentially expressed upon immune challenge of C. floridanus and most of the immune genes showing differential expression are involved in recognition of microbes or encode immune effectors rather than signalling components. Additionally, genes coding for proteins involved in storage and metabolism were downregulated upon immune challenge suggesting a trade-off between two energy-intensive processes in order to enhance effectiveness of the immune response. The analysis of gene expression via qRT-PCR was used for validation of the transcriptome data and revealed stage-specific immune gene regulation. Though the same tendencies of regulation were observed in larvae and adults, expression of several immune-related genes was generally more strongly induced in larvae. Immune gene expression levels depending on the developmental stage of C. floridanus are in agreement with observations in other insects and might suggest that animals from different stages revert to individual combinations of external and internal immunity upon infection. The haemolymph proteome of immune-challenged ants further established the immune-relevance of several proteins involved in classical immune signalling pathways, e.g. PRRs, extracellularly active proteases of the Toll signalling pathway and effector molecules such as AMPs, lysozymes and TEPs. Additionally, non-canonical proteins with putative immune function were enriched in immune-challenged haemolymph, e.g. Vitellogenins, NPC2-like proteins and Hemocytin. As known from previous studies, septic wounding also leads to the upregulation of genes involved in stress responses. In the haemolymph, proteins implicated in protein stabilisation and in the protection against oxidative stress and insecticides were enriched upon immune challenge. In order to identify additional putative immune effectors, haemolymph peptide samples from immune-challenged larvae and adults were analysed. The analysis in this work focussed on the identification of putative peptides produced via the secretory pathway as previously described for neuropeptides of C. floridanus. 567 regulated peptides derived from 39 proteins were identified in the larval haemolymph, whereas 342 regulated peptides derived from 13 proteins were found in the adult haemolymph. Most of the peptides are derived from hymenoptaecin or from putative uncharacterised proteins. One haemolymph peptide of immune-challenged larvae comprises the complete amino acid sequence of a predicted peptide derived from a Vitellogenin. Though the identified peptide lacks similarities to any known immune-related peptide, it is a suitable candidate for further functional analysis. To establish a stable infection with the endosymbionts, the bacteria have to be transmitted to the next generation of the ants. The vertical transmission of B. floridanus is guaranteed by bacterial infestation of oocytes. This work presents the first comprehensive and detailed description of the localisation of the bacterial endosymbionts in C. floridanus ovaries during oogenesis. Whereas the most apical part of the germarium, which contains the germ-line stem cells, is not infected by the bacteria, small somatic cells in the outer layers of each ovariole were found to be infected in the lower germarium. Only with the beginning of cystocyte differentiation, endosymbionts are exclusively transported from follicle cells into the growing oocytes, while nurse cells were never infected with B. floridanus. This infestation of the oocytes by bacteria very likely involves exocytosis-endocytosis processes between follicle cells and the oocytes. A previous study suggested a down-modulation of the immune response in the midgut tissue which may promote endosymbiont tolerance. Therefore, the expression of several potentially relevant immune genes was analysed in the ovarial tissue by qRT-PCR. The relatively low expression of genes involved in Toll and IMD signalling, and the high expression of genes encoding negative immune regulators, such as PGRP-LB, PGRP-SC2, and tollip, strongly suggest that a down-modulation of the immune response may also facilitate endosymbiont tolerance in the ovaries and thereby contribute to their vertical transmission. Overall, the present thesis improves the knowledge about the immune repertoire of C. floridanus and provides new candidates for further functional analyses. Moreover, the involvement of the host immune system in maintaining a "chronic" infection with symbiotic bacteria was confirmed and extended to the ovaries.}, subject = {Camponotus floridanus}, language = {en} } @phdthesis{Seida2012, author = {Seida, Ahmed Adel}, title = {The Immunomodulatory Role of Endogenous Glucocorticoids in Ovarian Cancer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73901}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Ovarian cancer currently causes ~6,000 deaths per year in Germany alone. Since only palliative treatment is available for ovarian carcinomas that have developed resistance against platinum-based chemotherapy and paclitaxel, there is a pressing medical need for the development of new therapeutic approaches. As survival is strongly influenced by immunological parameters, immunotherapeutic strategies appear promising. The research of our group thus aims at overcoming tumour immune escape by counteracting immunosuppressive mechanisms in the tumour microenvironment. In this context, we found that tumour-infiltrating myeloid-derived suppressor cells (MDSC) or tumour associated macrophages (TAM) which are abundant in ovarian cancer express high levels of the enzyme 11β-hydroxysteroid dehydrogenase1 (11-HSD1). This oxido-reductase enzyme is essential for the conversion of biologically inactive cortisone into active cortisol. In line with this observation, high endogenous cortisol levels could be detected in serum, ascitic fluid and tumour exudates from ovarian cancer patients. Considering that cortisol exerts strong anti-inflammatory and immunosuppressive effects on immune cells, it appears likely that high endogenous cortisol levels contribute to immune escape in ovarian cancer. We thus hypothesised that local activation of endogenous glucocorticoids could suppress beneficial immune responses in the tumour microenvironment and thereby prevent a successful immunotherapy. To investigate the in vivo relevance of this postulated immune escape mechanism, irradiated PTENloxP/loxP loxP-Stop-loxP-krasG12D mice were reconstituted with hematopoietic stem cells from either glucocorticoid receptor (GR) expressing mice (GRloxP/loxP) or from mice with a T cell-specific glucocorticoid receptor knock-out (lck-Cre GRloxP/loxP) mice. In the host mice, the combination of a conditional PTEN knock-out with a latent oncogenic kras leads to tumour development when a Cre-encoding adenovirus is injected into the ovarian bursa. Using this model, mice that had been reconstituted with GC-insensitive T cells showed better intratumoural T cell infiltration than control mice that had received functionally unaltered GRloxP/loxP cells via adoptive transfer. However, tumour-infiltrating T cells mostly assumed a Foxp3+ (regulatory) phenotype and survival was even shortened in mice with cortisol-insensitive T cells. Thus, endogenous cortisol seems to inhibit immune cell infiltration in ovarian cancer, but productive anti-tumour immune responses might still be prevented by further factors from the tumour microenvironment. Thus, our data did not provide a sufficiently strong rationale to further pursue the antagonisation of glucocorticoid signalling in ovarian cancer patients, Moreover, glucocorticoids are frequently administered to cancer patients to reduce inflammation and swelling and to prevent chemotherapy-related toxic side effects like nausea or hypersensitivity reactions associated with paclitaxel therapy. Thus, we decided to address the question whether specific signalling pathways in innate immune cells, preferentially in NK cells, could still be activated even in the presence of GC. A careful investigation of the various activating NK cell receptors (i.e. NKp30, NKp44, NKp46), DNAM-1 and NKG2D) was thus performed which revealed that NKp30, NKp44 and NKG2D are all down-regulated by cortisol whereas NKp46 is actually induced by cortisol. Interestingly, NKp46 is the only known receptor that is strictly confined to NK cells. Its activation via crosslinking leads to cytokine release and activation of cytotoxic activity. Stimulation of NK cells via NKp46 may contribute to immune-mediated tumour destruction by triggering the lysis of tumour cells and by altering the cytokine pattern in the tumour microenvironment, thereby generating more favourable conditions for the recruitment of antigen-specific immune cells. Accordingly, our observation that even cortisol-treated NK cells can still be activated via NKp46 and CD2 might become valuable for the design of immunotherapies that can still be applied in the presence of endogenous or therapeutically administered glucocorticoids.}, subject = {Cortison}, language = {en} } @phdthesis{HornneeBunz2020, author = {Horn [n{\´e}e Bunz], Melanie}, title = {The impact of Drosophila melanogaster`s endogenous clock on fitness: Influence of day length, humidity and food composition}, doi = {10.25972/OPUS-21141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211415}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {We are living in a system that underlies permanent environmental changes due to the rotation of our planet. These changes are rhythmic with the most prominent one having a period of about 24 hours, but also shorter and longer rhythms characterize our environment. To cope with the ever-changing environmental conditions, it is thought to be beneficial if an organism can track and anticipate these changes. The so called endogenous clocks enable this and might provide a fitness advantage. To investigate and unravel the mechanism of endogenous clocks Chronobiologists have used different model organisms. In this thesis Drosophila melanogaster was used as model organism with its about 150 clock neurons representing the main endogenous clock of the fly in the central brain. The molecular mechanisms and the interlocked feedback loops with the main circadian key players like period, timeless, clock or cycle are under investigation since the 1970s and are characterized quite well so far. But the impact of a functional endogenous clock in combination with diverse factors and the resulting fitness advantages were analysed in only a few studies and remains for the most part unknown. Therefore the aim of this thesis was to unravel the impact of Drosophila melanogaster`s endogenous clock on the fitness of the fly. To achieve this goal different factors - like day length, humidity and food composition - were analyzed in wild type CS and three different period mutants, namely perL, perS and per01, that carry a point mutation altering or abolishing the free-running period of the fruit fly as well as a second arrhythmic strain, clkAR. In competition assay experiments wild type and clock mutant flies competed for up to 63 generations under a normal 24 hour rhythm with 12 hours light/day and 12 hours darkness/night (LD12:12) or T-cycles with 19 or 29 hours, according to the mutants free-running period, or constant light (LL) in case of the arrhythmic mutant as well as under natural-like outdoor conditions in two consecutive years. Overall the wild type CS strain was outcompeting the clock mutant strains independent of the environmental conditions. As the perL fly strain elongated their free-running period, the competition experiments were repeated with naturally cantonized new fly strains. With these experiments it could be shown that the genetic background of the fly strains - which are kept for decades in the lab, with backcrosses every few years - is very important and influences the fitness of flies. But also the day length impacts the fitness of the flies, enabling them to persist in higher percentage in a population under competition. Further factors that might influence the survival in a competing population were investigated, like e.g. mating preferences and locomotor activity of homo- and heterozygous females or sperm number of males transferred per mating. But these factors can still not explain the results in total and play no or only minor roles and show the complexity of the whole system with still unknown characteristics. Furthermore populations of flies were recorded to see if the flies exhibit a common locomotor activity pattern or not and indeed a population activity pattern could be recorded for the first time and social contact as a Zeitgeber could be verified for Drosophila melanogaster. In addition humidity and its impact on the flies´ fitness as well as a potential Zeitgeber was examined in this thesis. The flies experienced different relative humidities for eclosion and wing expansion and humidity cycle phase shifting experiments were performed to address these two different questions of fitness impact and potential Zeitgeber. The fruit fly usually ecloses in the morning hours when the relative humidity is quite high and the general assumption was that they do so to prevent desiccation. The results of this thesis were quite clear and demonstrate that the relative humidity has no great effect on the fitness of the flies according to successful eclosion or wing expansion and that temperature might be the more important factor. In the humidity cycle phase shifting experiments it could be revealed that relative humidity cannot act as a Zeitgeber for Drosophila melanogaster, but it influences and therefore masks the activity of flies by allowing or surpressing activity at specific relative humidity values. As final experiments the lifespan of wild type and clock mutant flies was investigated under different day length and with different food qualities to unravel the impact of these factors on the fitness and therefore survival of the flies on the long run. As expected the flies with nutrient-poor minimum medium died earlier than on the nutrient-rich maximum medium, but a small effect of day length could also be seen with flies living slightly longer when they experience environmental day length conditions resembling their free-running period. The experiments also showed a fitness advantage of the wild type fly strain against the clock mutant strains for long term, but not short term (about the first 2-3 weeks). As a conclusion it can be said that genetic variation is important to be able to adapt to changing environmental conditions and to optimize fitness and therefore survival. Having a functional endogenous clock with a free-running period of about 24 hours provides fitness advantages for the fruit fly, at least under competition. The whole system is very complex and many factors - known and unknown ones - play a role in this system by interacting on different levels, e.g. physiology, metabolism and/or behavior.}, subject = {Taufliege}, language = {en} } @article{FlorenHorchlerMueller2022, author = {Floren, Andreas and Horchler, Peter J. and M{\"u}ller, Tobias}, title = {The impact of the neophyte tree Fraxinus pennsylvanica [Marshall] on beetle diversity under climate change}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {3}, issn = {2071-1050}, doi = {10.3390/su14031914}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262223}, year = {2022}, abstract = {We studied the impact of the neophyte tree Fraxinus pennsylvanica on the diversity of beetles in floodplain forests along the river Elbe in Germany in 2016, 2017 and in 2020, where 80\% of all Fraxinus excelsior trees had died following severe droughts. Beetles were collected by insecticidal knock-down from 121 trees (64 F. excelsior and 57 F. pennsylvanica) and identified to 547 species in 15,214 specimens. The trees sampled in 2016 and 2017 showed no signs of drought stress or ash dieback and serve as a reference for the comparison with the 2020 fauna. The data proved that F. excelsior harbours the most diverse beetle community, which differed also significantly in guild composition from F. pennsylvanica. Triggered by extremely dry and long summer seasons, the 2020 ash dieback had profound and forest-wide impacts. Several endangered, red-listed beetle species of Saxonia Anhalt had increased in numbers and became secondary pests on F. excelsior. Diversity decreased whilst numbers of xylobionts increased on all trees, reaching 78\% on F. excelsior. Proportions of xylobionts remained constant on F. pennsylvanica. Phytophages were almost absent from all trees, but mycetophages increased on F. pennsylvanica. Our data suggest that as a result of the dieback of F. excelsior the neophyte F. pennsylvanica might become a rescue species for the European Ash fauna, as it provides the second-best habitat. We show how difficult it is to assess the dynamics and the ecological impact of neophytes, especially under conditions similar to those projected by climate change models. The diversity and abundance of canopy arthropods demonstrates their importance in understanding forest functions and maintenance of ecosystem services, illustrating that their consideration is essential for forest adaptation to climate change.}, language = {en} } @phdthesis{Eck2016, author = {Eck, Saskia}, title = {The impact of thermogenetic depolarizations of specific clock neurons on Drosophila melanogaster's circadian clock}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137118}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The rotation of the earth around its own axis determines periodically changing environmental conditions, like alterations in light and temperature. For the purpose of adapting all organisms' behavior, physiology and metabolism to recurring changes, endogenous clocks have evolved, which allow the organisms to anticipate environmental changes. In chronobiology, the scientific field dealing with the investigation of the underlying mechanisms of the endogenous clock, the fruit fly Drosophila melanogaster serves as a beneficial model organism. The fruit fly's circadian clock exhibits a rather simple anatomical organization, but nevertheless constitutes homologies to the mammalian system. Thus also in this PhD-thesis the fruit fly was used to decipher general features of the circadian clock's interneuronal communication. Drosophila melanogaster's circadian clock consists of about 150 clock neurons, which are located in the central nervous system of the fly. These clock neurons can be subdivided regarding to their anatomical position in the brain into the dorsal neurons (DN1s, DN2s, DN3s), as well as into the lateral neurons (LPNs, LNds, s-LNvs, l-LNvs). Functionally these clock neuron clusters can be classified as Morning- and Evening oscillators (M- and E- oscillators), driving different parts of the fly's locomotor activity in light-dark conditions (LD). The Morning-oscillators are represented by the s-LNvs and are known to be the main pacemakers, driving the pace of the clock in constant conditions (constant darkness; DD). The group of Evening-oscillators consists of the LNds, the DN1s and the 5th s-LNv and is important for the proper timing of the evening activity in LD. All of these clock neurons are not functionally independent, but form complex neuronal connections, which are highly plastic in their response to different environmental stimuli (Zeitgebers), like light or temperature. Even though a lot is known about the function and the importance of some clock neuron clusters, the exact interplay between the neurons is not fully known yet. To investigate the mechanisms, which are involved in communication processes among different clock neurons, we depolarized specific clock cells in a temporally and cell-type restricted manner using dTrpA1, a thermosensitive cation channel, which allows the depolarization of neurons by application of temperature pulses (TP) above 29°C to the intact and freely moving fly. Using different clock specific GAL4-driver lines and applying TPs at different time points within the circadian cycle in DD enabled us with the help of phase shift experiments to draw conclusions on the properties of the endogenous clock. The obtained phase shifts in locomotor behavior elicited by specific clock neuronal activation were plotted as phase response curves (PRCs). The depolarization of all clock neurons shifted the phase of activity the strongest, especially in the delay zone of the PRC. The exclusive depolarization of the M oscillators together with the l-LNvs (PDF+ neurons: s-LNvs \& l-LNvs) caused shifts in the delay and in the advance zone as well, however the advances were severely enhanced in their temporal occurrence ranging into the subjective day. We concluded that light might have inhibitory effects on the PDF+ cells in that particular part of the PRC, as typical light PRCs do not exhibit that kind of distinctive advances. By completely excluding light in the PRC-experiments of this PhD-thesis, this photic inhibitory input to the PDF+ neurons is missing, probably causing the broadened advance zone. These findings suggest the existence of an inhibitory light-input pathway to the PDF+ cells from the photoreceptive organs (Hofbauer-Buchner eyelet, photoreceptor cells of compound eyes, ocelli) or from other clock neurons, which might inhibit phase advances during the subjective day. To get an impression of the molecular state of the clock in the delay and advance zone, staining experiments against Period (PER), one of the most important core clock components, and against the neuropeptide Pigment Dispersing Factor (PDF) were performed. The cycling of PER levels mirrored the behavioral phase shifts in experimental flies, whereas the controls were widely unaffected. As just those neurons, which had been depolarized, exhibited immediate shifted PER oscillations, this effect has to be rapidly regulated in a cell-autonomous manner. However, the molecular link between clock neuron depolarization and shifts in the molecular clock's cycling is still missing. This issue was addressed by CREB (cAMP responsive element binding protein) quantification in the large ventrolateral neurons (l-LNvs), as these neurons responded unexpectedly and strongest to the artificial depolarization exhibiting a huge increase in PER levels. It had been previously suggested that CREB is involved in circadian rhythms by binding to regulatory sequences of the period gene (Belvin et al., 1999), thus activating its transcription. We were able to show, that CREB levels in the l-LNvs are under circadian regulation, as they exhibit higher CREB levels at the end of the subjective night relative to the end of the subjective day. That effect was further reinforced by artificial depolarization, independently of the time point of depolarization. Furthermore the data indicate that rises in CREB levels are coinciding with the time point of increases of PER levels in the l-LNvs, suggesting CREB being the molecular link between the neuronal electrical state and the molecular clock. Taking together, the results indicate that a temporal depolarization using dTrpA1 is able to significantly phase shift the clock on the behavioral and protein level. An artificial depolarization at the beginning of the subjective night caused phase delays, whereas a depolarization at the end of the subjective night resulted in advances. The activation of all clock neurons caused a PRC that roughly resembled a light-PRC. However, the depolarization of the PDF+ neurons led to a PRC exhibiting a shape that did not resemble that of a light-mediated PRC, indicating the complex processing ability of excitatory and inhibitory input by the circadian clock. Even though this experimental approach is highly artificial, just the exclusion of light-inputs enabled us to draw novel conclusions on the network communication and its light input pathways.}, subject = {Chronobiologie}, language = {en} } @article{ViebrockPerzSebald1982, author = {Viebrock, A. and Perz, A. and Sebald, Walter}, title = {The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa. Molecular cloning and sequencing of the mRNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62742}, year = {1982}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @phdthesis{Boetzl2022, author = {B{\"o}tzl, Fabian Alexander}, title = {The influence of crop management and adjacent agri-environmental scheme type on natural pest control in differently structured landscapes}, doi = {10.25972/OPUS-24140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241400}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Summary Chapters I \& II: General Introduction \& General Methods Agriculture is confronted with a rampant loss of biodiversity potentially eroding ecosystem service potentials and adding up to other stressors like climate change or the consequences of land-use change and intensive management. To counter this 'biodiversity crisis', agri-environment schemes (AES) have been introduced as part of ecological intensification efforts. These AES combine special management regimes with the establishment of tailored habitats to create refuges for biodiversity in agricultural landscapes and thus ensure biodiversity mediated ecosystem services such as pest control. However, little is known about how well different AES habitats fulfil this purpose and whether they benefit ecosystem services in adjacent crop fields. Here I investigated how effective different AES habitats are for restoring biodiversity in different agricultural landscapes (Chapter V) and whether they benefit natural pest control in adjacent oilseed rape (Chapter VI) and winter cereal fields (Chapter VII). I recorded biodiversity and pest control potentials using a variety of different methods (Chapters II, V, VI \& VII). Moreover, I validated the methodology I used to assess predator assemblages and predation rates (Chapters III \& IV). Chapter III: How to record ground dwelling predators? Testing methodology is critical as it ensures scientific standards and trustworthy results. Pitfall traps are widely used to record ground dwelling predators, but little is known about how different trap types affect catches. I compared different types of pitfall traps that had been used in previous studies in respect to resulting carabid beetle assemblages. While barrier traps collected more species and deliver more complete species inventories, conventional simple pitfall traps provide reliable results with comparatively little handling effort. Placing several simple pitfall traps in the field can compensate the difference while still saving handling effort.   Chapter IV: How to record predation rates? A plethora of methods has been proposed and used for recording predation rates, but these have rarely been validated before use. I assessed whether a novel approach to record predation, the use of sentinel prey cards with glued on aphids, delivers realistic results. I compared different sampling efforts and showed that obtained predation rates were similar and could be linked to predator (carabid beetle) densities and body-sizes (a proxy often used for food intake rates). Thus, the method delivers reliable and meaningful predation rates. Chapter V: Do AES habitats benefit multi-taxa biodiversity? The main goal of AES is the conservation of biodiversity in agricultural landscapes. I investigated how effectively AES habitats with different temporal continuity fulfil this goal in differently structured landscapes. The different AES habitats investigated had variable effects on local biodiversity. Temporal continuity of AES habitats was the most important predictor with older, more temporally continuous habitats harbouring higher overall biodiversity and different species assemblages in most taxonomic groups than younger AES habitats. Results however varied among taxonomic groups and natural enemies were equally supported by younger habitats. Semi-natural habitats in the surrounding landscape and AES habitat size were of minor importance for local biodiversity and had limited effects. This stresses that newly established AES habitats alone cannot restore farmland biodiversity. Both AES habitats as well as more continuous semi-natural habitats synergistically increase overall biodiversity in agricultural landscapes. Chapter VI: The effects of AES habitats on predators in adjacent oilseed rape fields Apart from biodiversity conservation, ensuring ecosystem service delivery in agricultural landscapes is a crucial goal of AES. I therefore investigated the effects of adjacent AES habitats on ground dwelling predator assemblages in oilseed rape fields. I found clear distance decay effects from the field edges into the field centres on both richness and densities of ground dwelling predators. Direct effects of adjacent AES habitats on assemblages in oilseed rape fields however were limited and only visible in functional traits of carabid beetle assemblages. Adjacent AES habitats doubled the proportion of predatory carabid beetles indicating a beneficial role for pest control. My results show that pest control potentials are largest close to the field edges and beneficial effects are comparably short ranged. Chapter VII: The effects of AES habitats on pest control in adjacent cereal fields Whether distance functions and potential effects of AES habitats are universal across crops is unknown. Therefore, I assessed distance functions of predators, pests, predation rates and yields after crop rotation in winter cereals using the same study design as in the previous year. Resulting distance functions were not uniform and differed from those found in oilseed rape in the previous year, indicating that the interactions between certain adjacent habitats vary with habitat and crop types. Distance functions of cereal-leaf beetles (important cereal pests) and parasitoid wasps were moreover modulated by semi-natural habitat proportion in the surrounding landscapes. Field edges buffered assemblage changes in carabid beetle assemblages over crop rotation confirming their important function as refuges for natural enemies. My results emphasize the beneficial role of field edges for pest control potentials. These findings back the calls for smaller field sizes and more diverse, more heterogeneously structured agricultural landscapes. Chapter VIII: General Discussion Countering biodiversity loss and ensuring ecosystem service provision in agricultural landscapes is intricate and requires strategic planning and restructuring of these landscapes. I showed that agricultural landscapes could benefit maximally from (i) a mixture of AES habitats and semi-natural habitats to support high levels of overall biodiversity and from (ii) smaller continuously managed agricultural areas (i.e. smaller field sizes or the insertion of AES elements within large fields) to maximize natural pest control potentials in crop fields. I propose a mosaic of younger AES habitats and semi-natural habitats to support ecosystem service providers and increase edge density for ecosystem service spillover into adjacent crops. The optimal extent and density of this network as well as the location in which AES and semi-natural habitats interact most beneficially with adjacent crops need further investigation. My results provide a further step towards more sustainable agricultural landscapes that simultaneously allow biodiversity to persist and maintain agricultural production under the framework of ecological intensification.}, subject = {{\"O}kologie}, language = {en} } @article{BoschertKlenkAbtetal.2020, author = {Boschert, Verena and Klenk, Nicola and Abt, Alexander and Raman, Sudha Janaki and Fischer, Markus and Brands, Roman C. and Seher, Axel and Linz, Christian and M{\"u}ller-Richter, Urs D. A. and Bischler, Thorsten and Hartmann, Stefan}, title = {The influence of Met receptor level on HGF-induced glycolytic reprogramming in head and neck squamous cell carcinoma}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms21020471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235995}, year = {2020}, abstract = {Head and neck squamous cell carcinoma (HNSCC) is known to overexpress a variety of receptor tyrosine kinases, such as the HGF receptor Met. Like other malignancies, HNSCC involves a mutual interaction between the tumor cells and surrounding tissues and cells. We hypothesized that activation of HGF/Met signaling in HNSCC influences glucose metabolism and therefore substantially changes the tumor microenvironment. To determine the effect of HGF, we submitted three established HNSCC cell lines to mRNA sequencing. Dynamic changes in glucose metabolism were measured in real time by an extracellular flux analyzer. As expected, the cell lines exhibited different levels of Met and responded differently to HGF stimulation. As confirmed by mRNA sequencing, the level of Met expression was associated with the number of upregulated HGF-dependent genes. Overall, Met stimulation by HGF leads to increased glycolysis, presumably mediated by higher expression of three key enzymes of glycolysis. These effects appear to be stronger in Met\(^{high}\)-expressing HNSCC cells. Collectively, our data support the hypothesized role of HGF/Met signaling in metabolic reprogramming of HNSCC.}, language = {en} } @phdthesis{Saverschek2010, author = {Saverschek, Nicole}, title = {The influence of the symbiotic fungus on foraging decisions in leaf-cutting ants - Individual behavior and collective patterns}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52087}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Foraging behavior is a particularly fascinating topic within the studies of social insects. Decisions made by individuals have effects not only on the individual level, but on the colony level as well. Social information available through foraging in a group modulates individual preferences and shapes the foraging pattern of a colony. Identifying parameters influencing foraging behavior in leaf-cutting ants is especially intriguing because they do not harvest for themselves, but for their symbiotic fungus which in turn influences their plant preferences after the incorporation of the substrate. To learn about the substrates' unsuitability for the fungus, ants need to be able to identify the incorporated substrate and associate it with detrimental effects on the fungus. Odor is an important plant characteristic known to be used as recognition key outside the nest in the context of foraging. Chapter 1 shows that foragers are able to recall information about the unsuitability of a substrate through odor alone and consequently reject the substrate, which leads to the conclusion that inside the nest, odor might be enough to indentify incorporated substrate. Identification of plant species is a key factor in the foraging success of leaf-cutting ants as they harvest a multitude of different plant species in a diverse environment and host plant availability and suitability changes throughout the year. Fixed plant preferences of individuals through innate tendencies are therefore only one factor influencing foraging decisions. On the individual as well as the colony level, foraging patterns are flexible and a result of an intricate interplay between the different members involved in the harvesting process: foragers, gardeners and the symbiotic fungus. In chapter 2 I identified several conditions necessary for na{\"i}ve foragers to learn about the unsuitability of substrate inside the nest. In order to exchange of information about the unsuitability of a substrate, the plant in question must be present in the fungus garden. Foragers can learn without own foraging experience and even without experiencing the effects of the substrate on the fungus, solely through the presence of experienced gardeners. The presence of experienced foragers alone on the other hand is not enough to lower the acceptance of substrate by na{\"i}ve foragers in the presence of na{\"i}ve gardeners, even if experienced foragers make up the majority of the workforce inside the nest. Experienced foragers are also able to reverse their previous negative experience and start accepting the substrate again. The individual behavior of foragers and gardeners with different experiential backgrounds in the presence of suitable or unsuitable substrate inside the fungus chamber was investigated in chapter 3 to shed some light on possible mechanisms involved in the flow of information about substrate suitability from the fungus to the ants. Gardeners as well as foragers are involved in the leaf processing and treatment of the applied leaf patches on the fungus. If the plant material is unsuitable, significantly more ants treat the plant patches, but foragers are less active overall. Contacts between workers initiated by either gardeners or foragers occur significantly more frequent and last longer if the substrate is unsuitable. Even though experienced gardeners increase na{\"i}ve foragers' contact rates and duration with other workers in the presence of suitable plant patches, na{\"i}ve foragers show no differences in the handling of the plant patches. This suggests that foragers gain information about plant suitability not only indirectly through the gardening workers, but might also be able to directly evaluate the effects of the substrate on the fungus themselves. Outside the nest, foragers influence each other the trail (chapter 4). Foraging in a group and the presence of social information is a decisive factor in the substrate choice of the individual and leads to a distinct and consentaneous colony response when encountering unfamiliar or unsuitable substrates. As leaf-cutting ants harvest different plant species simultaneously on several trails, foragers gain individual experiences concerning potential host plants. Preferences might vary among individuals of the same colony to the degree that foragers on the same trail perceive a certain substrate as either suitable or unsuitable. If the majority of foragers on the trail perceives one of the currently harvested substrates as unsuitable, na{\"i}ve foragers lower their acceptance within 4 hours. In the absence of a cue in the fungus, na{\"i}ve foragers harvesting by themselves still eventually (within 6 hours) reject the substrate as they encounter experienced gardeners during visits to the nest within foraging bouts. As foraging trails can be up to 100 m long and foragers spend a considerable amount of time away from the nest, learning indirectly from experienced foragers on the trail accelerates the distribution of information about substrate suitability. The level of rejection of a formerly unsuitable substrate after eight hours of foraging by na{\"i}ve foragers correlates with the average percentage of unladen experienced foragers active on the trail. This suggests that unladen experienced foragers might actively contact laden na{\"i}ve workers transmitting information about the unsuitability of the load they carry. Results from experiments were I observed individual laden foragers on their way back to the nest backed up this assumption as individuals were antennated and received bites into the leaf disk they carried. Individuals were contacted significantly more often by nestmates that perceived the carried leaf disk as unsuitable due to previous experience than by nestmates without this experience (chapter 6). Leaf-cutting ants constantly evaluate, learn and re-evaluate the suitability of harvested substrate and adjust their foraging activity accordingly. The importance of the different sources of information within the colony and their effect on the foraging pattern of the colony depend on the presence or absence of each of them as e.g. experienced foragers have a bigger influence on the plant preferences of na{\"i}ve foragers in the absence of a cue in the fungus garden.}, subject = {Blattschneiderameisen}, language = {en} } @article{KressJessenHufnageletal.2023, author = {Kreß, Julia Katharina Charlotte and Jessen, Christina and Hufnagel, Anita and Schmitz, Werner and Da Xavier Silva, Thamara Nishida and Ferreira Dos Santos, Anc{\´e}ly and Mosteo, Laura and Goding, Colin R. and Friedmann Angeli, Jos{\´e} Pedro and Meierjohann, Svenja}, title = {The integrated stress response effector ATF4 is an obligatory metabolic activator of NRF2}, series = {Cell Reports}, volume = {42}, journal = {Cell Reports}, number = {7}, doi = {10.1016/j.celrep.2023.112724}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350312}, year = {2023}, abstract = {Highlights • The integrated stress response leads to a general ATF4-dependent activation of NRF2 • ATF4 causes a CHAC1-dependent GSH depletion, resulting in NRF2 stabilization • An elevation of NRF2 transcript levels fosters this effect • NRF2 supports the ISR/ATF4 pathway by improving cystine and antioxidant supply Summary The redox regulator NRF2 becomes activated upon oxidative and electrophilic stress and orchestrates a response program associated with redox regulation, metabolism, tumor therapy resistance, and immune suppression. Here, we describe an unrecognized link between the integrated stress response (ISR) and NRF2 mediated by the ISR effector ATF4. The ISR is commonly activated after starvation or ER stress and plays a central role in tissue homeostasis and cancer plasticity. ATF4 increases NRF2 transcription and induces the glutathione-degrading enzyme CHAC1, which we now show to be critically important for maintaining NRF2 activation. In-depth analyses reveal that NRF2 supports ATF4-induced cells by increasing cystine uptake via the glutamate-cystine antiporter xCT. In addition, NRF2 upregulates genes mediating thioredoxin usage and regeneration, thus balancing the glutathione decrease. In conclusion, we demonstrate that the NRF2 response serves as second layer of the ISR, an observation highly relevant for the understanding of cellular resilience in health and disease.}, language = {en} } @article{VainshteinSanchezBrazmaetal.2010, author = {Vainshtein, Yevhen and Sanchez, Mayka and Brazma, Alvis and Hentze, Matthias W. and Dandekar, Thomas and Muckenthaler, Martina U.}, title = {The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67869}, year = {2010}, abstract = {Background: Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Results: The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls. Conclusions: ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see "Additional Files" section) and at: http://www.alice-dsl.net/evgeniy. vainshtein/ICEP/}, subject = {Microarray}, language = {en} } @article{MergetKoetschanHackletal.2012, author = {Merget, Benjamin and Koetschan, Christian and Hackl, Thomas and F{\"o}rster, Frank and Dandekar, Thomas and M{\"u}ller, Tobias and Schultz, J{\"o}rg and Wolf, Matthias}, title = {The ITS2 Database}, series = {Journal of Visual Expression}, volume = {61}, journal = {Journal of Visual Expression}, number = {e3806}, doi = {10.3791/3806}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124600}, year = {2012}, abstract = {The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.}, language = {en} } @misc{Selig2007, type = {Master Thesis}, author = {Selig, Christian}, title = {The ITS2 Database - Application and Extension}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23895}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Der internal transcribed spacer 2 (ITS2) des ribosomalen Genrepeats ist ein zunehmend wichtiger phylogenetischer Marker, dessen RNA-Sekund{\"a}rstruktur innerhalb vieler eukaryontischer Organismen konserviert ist. Die ITS2-Datenbank hat zum Ziel, eine umfangreiche Ressource f{\"u}r ITS2-Sequenzen und -Sekund{\"a}rstrukturen auf Basis direkter thermodynamischer als auch homologiemodellierter RNA-Faltung zu sein. Ergebnisse: (a) Eine komplette Neufassung der urspr{\"u}nglichen die ITS2-Datenbank generierenden Skripte, angewandt auf einen aktuellen NCBI-Datensatz, deckte mehr als 65.000 ITS2-Strukturen auf. Dies verdoppelt den Inhalt der urspr{\"u}nglichen Datenbank und verdreifacht ihn, wenn partielle Strukturen mit einbezogen werden. (b) Die Endbenutzer-Schnittstelle wurde neu geschrieben, erweitert und ist jetzt in der Lage, benutzerdefinierte Homologiemodellierungen durchzuf{\"u}hren. (c) Andere m{\"o}glichen RNA-Strukturaufkl{\"a}rungsmethoden (suboptimales und formenbasiertes Falten) sind hilfreich, k{\"o}nnen aber Homologiemodellierung nicht ersetzen. (d) Ein Anwendungsfall der ITS2-Datenbank in Zusammenhang mit anderen am Lehrstuhl entwickelten Werkzeugen gab Einblick in die Verwendung von ITS2 f{\"u}r molekulare Phylogenie.}, subject = {Phylogenie}, language = {en} } @article{KoetschanFoersterKelleretal.2010, author = {Koetschan, Christian and Foerster, Frank and Keller, Alexander and Schleicher, Tina and Ruderisch, Benjamin and Schwarz, Roland and Mueller, Tobias and Wolf, Matthias and Schultz, Joerg}, title = {The ITS2 Database III-sequences and structures for phylogeny}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68390}, year = {2010}, abstract = {The internal transcribed spacer 2 (ITS2) is a widely used phylogenetic marker. In the past, it has mainly been used for species level classifications. Nowadays, a wider applicability becomes apparent. Here, the conserved structure of the RNA molecule plays a vital role. We have developed the ITS2 Database (http://its2.bioapps .biozentrum.uni-wuerzburg.de) which holds information about sequence, structure and taxonomic classification of all ITS2 in GenBank. In the new version, we use Hidden Markov models (HMMs) for the identification and delineation of the ITS2 resulting in a major redesign of the annotation pipeline. This allowed the identification of more than 160 000 correct full ength and more than 50 000 partial structures. In the web interface, these can now be searched with a modified BLAST considering both sequence and structure, enabling rapid taxon sampling. Novel sequences can be annotated using the HMM based approach and modelled according to multiple template structures. Sequences can be searched for known and newly identified motifs. Together, the database and the web server build an exhaustive resource for ITS2 based phylogenetic analyses.}, subject = {Biologie}, language = {en} } @article{MayerLoefflerLozaValdesetal.2019, author = {Mayer, Alexander E. and L{\"o}ffler, Mona C. and Loza Vald{\´e}s, Angel E. and Schmitz, Werner and El-Merahbi, Rabih and Trujillo-Viera, Jonathan and Erk, Manuela and Zhang, Thianzhou and Braun, Ursula and Heikenwalder, Mathias and Leitges, Michael and Schulze, Almut and Sumara, Grzegorz}, title = {The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling}, series = {Science Signaling}, journal = {Science Signaling}, edition = {accepted manuscript}, doi = {10.1126/scisignal.aav9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250025}, year = {2019}, abstract = {Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.}, language = {en} } @article{GroebnerWorstWeischenfeldtetal.2018, author = {Gr{\"o}bner, Susanne N. and Worst, Barbara C. and Weischenfeldt, Joachim and Buchhalter, Ivo and Kleinheinz, Kortine and Rudneva, Vasilisa A. and Johann, Pascal D. and Balasubramanian, Gnana Prakash and Segura-Wang, Maia and Brabetz, Sebastian and Bender, Sebastian and Hutter, Barbara and Sturm, Dominik and Pfaff, Elke and H{\"u}bschmann, Daniel and Zipprich, Gideon and Heinold, Michael and Eils, J{\"u}rgen and Lawerenz, Christian and Erkek, Serap and Lambo, Sander and Waszak, Sebastian and Blattmann, Claudia and Borkhardt, Arndt and Kuhlen, Michaela and Eggert, Angelika and Fulda, Simone and Gessler, Manfred and Wegert, Jenny and Kappler, Roland and Baumhoer, Daniel and Stefan, Burdach and Kirschner-Schwabe, Renate and Kontny, Udo and Kulozik, Andreas E. and Lohmann, Dietmar and Hettmer, Simone and Eckert, Cornelia and Bielack, Stefan and Nathrath, Michaela and Niemeyer, Charlotte and Richter, G{\"u}nther H. and Schulte, Johannes and Siebert, Reiner and Westermann, Frank and Molenaar, Jan J. and Vassal, Gilles and Witt, Hendrik and Burkhardt, Birgit and Kratz, Christian P. and Witt, Olaf and van Tilburg, Cornelis M. and Kramm, Christof M. and Fleischhack, Gudrun and Dirksen, Uta and Rutkowski, Stefan and Fr{\"u}hwald, Michael and Hoff, Katja von and Wolf, Stephan and Klingebeil, Thomas and Koscielniak, Ewa and Landgraf, Pablo and Koster, Jan and Resnick, Adam C. and Zhang, Jinghui and Liu, Yanling and Zhou, Xin and Waanders, Angela J. and Zwijnenburg, Danny A. and Raman, Pichai and Brors, Benedikt and Weber, Ursula D. and Northcott, Paul A. and Pajtler, Kristian W. and Kool, Marcel and Piro, Rosario M. and Korbel, Jan O. and Schlesner, Matthias and Eils, Roland and Jones, David T. W. and Lichter, Peter and Chavez, Lukas and Zapatka, Marc and Pfister, Stefan M.}, title = {The landscape of genomic alterations across childhood cancers}, series = {Nature}, volume = {555}, journal = {Nature}, organization = {ICGC PedBrain-Seq Project, ICGC MMML-Seq Project,}, doi = {10.1038/nature25480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229579}, pages = {321-327}, year = {2018}, abstract = {Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8\% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50\% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.}, language = {en} } @article{ReinhardBertoliniSaitoetal.2022, author = {Reinhard, Nils and Bertolini, Enrico and Saito, Aika and Sekiguchi, Manabu and Yoshii, Taishi and Rieger, Dirk and Helfrich-F{\"o}rster, Charlotte}, title = {The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond}, series = {Journal of Comparative Neurology}, volume = {530}, journal = {Journal of Comparative Neurology}, number = {9}, doi = {10.1002/cne.25294}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276456}, pages = {1507 -- 1529}, year = {2022}, abstract = {Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN.}, language = {en} } @article{PaschLinkBecketal.2015, author = {Pasch, Elisabeth and Link, Jana and Beck, Carolin and Scheuerle, Stefanie and Alsheimer, Manfred}, title = {The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility}, series = {Biology Open}, volume = {4}, journal = {Biology Open}, doi = {10.1242/bio.015768}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125212}, pages = {1792-1802}, year = {2015}, abstract = {LINC complexes are evolutionarily conserved nuclear envelope bridges, physically connecting the nucleus to the peripheral cytoskeleton. They are pivotal for dynamic cellular and developmental processes, like nuclear migration, anchoring and positioning, meiotic chromosome movements and maintenance of cell polarity and nuclear shape. Active nuclear reshaping is a hallmark of mammalian sperm development and, by transducing cytoskeletal forces to the nuclear envelope, LINC complexes could be vital for sperm head formation as well. We here analyzed in detail the behavior and function of Sun4, a bona fide testis-specific LINC component. We demonstrate that Sun4 is solely expressed in spermatids and there localizes to the posterior nuclear envelope, likely interacting with Sun3/Nesprin1 LINC components. Our study revealed that Sun4 deficiency severely impacts the nucleocytoplasmic junction, leads to mislocalization of other LINC components and interferes with the formation of the microtubule manchette, which finally culminates in a globozoospermia-like phenotype. Together, our study provides direct evidence for a critical role of LINC complexes in mammalian sperm head formation and male fertility.}, language = {en} } @article{ThornSeiboldLeverkusetal.2020, author = {Thorn, Simon and Seibold, Sebastian and Leverkus, Alexandro B and Michler, Thomas and M{\"u}ller, J{\"o}rg and Noss, Reed F and Stork, Nigel and Vogel, Sebastian and Lindenmayer, David B}, title = {The living dead: acknowledging life after tree death to stop forest degradation}, series = {Frontiers in Ecology and the Environment}, volume = {18}, journal = {Frontiers in Ecology and the Environment}, number = {9}, doi = {10.1002/fee.2252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218575}, pages = {505 -- 512}, year = {2020}, abstract = {Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures.}, language = {en} } @article{BiscottiGerdolCanapaetal.2016, author = {Biscotti, Maria Assunta and Gerdol, Marco and Canapa, Adriana and Forconi, Mariko and Olmo, Ettore and Pallavicini, Alberto and Barucca, Marco and Schartl, Manfred}, title = {The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {21571}, doi = {10.1038/srep21571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167753}, year = {2016}, abstract = {Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a "living fossil" status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.}, language = {en} } @phdthesis{Beck2005, author = {Beck, Jan}, title = {The macroecology of Southeast-Asian hawkmoths (Lepidoptera: Sphingidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13001}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {This study investigates the abundance and geographic distribution of the hawkmoth species (Lepidoptera: Sphingidae) of Southeast-Asia and analyses the resulting patterns of biodiversity, biogeography and macroecology. Data on the distribution of species were retrieved from published and unpublished faunal lists and museum collections (in close cooperation with the Natural History Museum, London). Over 34,500 records of the global distribution of the 380 species that occur in Southeast-Asia (including New Guinea and the Solomon Islands) were used for a GIS-supported estimate of distributional ranges, which can be accessed at http://www.sphingidae-sea.biozentrum.uni-wuerzburg.de, an Internet site that also provides pictures of the species and checklists for 114 islands of the Malesian region. The abundance of species in local assemblages was assessed from nightly collections at artificial light sources. Using a compilation of own samples as well as published and unpublished data from other sources, local abundance data on 93 sites were used for analysis, covering 159 species or 17,676 specimens.}, language = {en} } @article{KrohneFrankeScheer1978, author = {Krohne, Georg and Franke, Werner W. and Scheer, Ulrich}, title = {The major polypeptides of the nuclear pore complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33078}, year = {1978}, abstract = {Nuclear envelopes of maturing oocytes of various amphibia contain an unusually high number of pore complexes in very close packing. Consequently, nuclear envelopes , which can be manually isolated in great purity, provide a remarkable enrichment of nuclear pore complex material, relative to membranous and other interporous structures. When the polypeptides of nuclear envelopes isolated from oocytes of Xenopl/s la evis and Triturus alpestris are examined by gel electrophoresis, visualized either by staining with Coomassie blue or by radiotluorography after in vitro reaction with [3H]dansyl chloride , a characteristic pattern is obtained (10 major and 15 minor bands). This polypeptide pattern is radically different from that of the nuclear contents isolated from the same cell. Extraction of the nuclear envelope with high salt concentrations and moderateIy ac tive detergents such as Triton X- 100 results in the removal of membrane material but leaves most of the non-membranous structure of the pore complexes. The dry weight of the pore complex (about 0.2 femtograms) remains essentially unchanged during such extractions as measured by quantitative electron microscopy . The extracted preparations which are highly enriched in nuclear pore complex material contain only two major polypeptide components with apparent molecular weights of 150000 and 73000. Components of such an electrophoretic mobility are not present as major bands , if at all , in nuclear contents extracted in the same way. lt is concluded that these two polypeptides are the major constituent protein(s) of the oocyte nuclear pore complex and are specific for this structure. When nuclear envelopes are isolated from rat liver and extracted with high salt buffers and Triton X- 100 similar bands are predominant, but two additional major components of molecular weights of 78000 and 66000 are also recognized. When the rat liver nuclear membranes are further subfractionated material enriched in the 66000 molecular weight component can be separated from the membrane material, indicating that this is relatively loosely associated material , probably a part of the nuclear matrix . The results suggest that the nuclear pore complex is not only a characteristic ubiquitous structure but also contains similar, if not identical , skeletal proteins that are remarkably re sistant to drastic changes of ionic strength as weil as to treatments with detergents and thiol reagents.}, language = {en} } @article{DusikSenthilanMentzeletal.2014, author = {Dusik, Verena and Senthilan, Pingkalai R. and Mentzel, Benjamin and Hartlieb, Heiko and W{\"u}lbeck, Corina and Yoshii, Taishi and Raabe, Thomas and Helfrich-F{\"o}rster, Charlotte}, title = {The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock}, series = {PLoS Genetics}, volume = {10}, journal = {PLoS Genetics}, number = {8}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1004565}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119433}, pages = {e1004565}, year = {2014}, abstract = {All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining ∼ 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot results and point to p38 as a potential "clock kinase" phosphorylating Period. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.}, language = {en} } @article{HaydnHufnagelGrimmetal.2014, author = {Haydn, Johannes M. and Hufnagel, Anita and Grimm, Johannes and Maurus, Katja and Schartl, Manfred and Meierjohann, Svenja}, title = {The MAPK pathway as an apoptosis enhancer in melanoma}, series = {Oncotarget}, volume = {5}, journal = {Oncotarget}, number = {13}, issn = {1949-2553}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120649}, pages = {5040-53}, year = {2014}, abstract = {Inhibition of RAF/MEK/ERK signaling is beneficial for many patients with BRAFV600E-mutated melanoma. However, primary and secondary resistances restrict long-lasting therapy success. Combination therapies are therefore urgently needed. Here, we evaluate the cellular effect of combining a MEK inhibitor with a genotoxic apoptosis inducer. Strikingly, we observed that an activated MAPK pathway promotes in several melanoma cell lines the pro-apoptotic response to genotoxic stress, and MEK inhibition reduces intrinsic apoptosis. This goes along with MEK inhibitor induced increased RAS and P-AKT levels. The protective effect of the MEK inhibitor depends on PI3K signaling, which prevents the induction of pro-apoptotic PUMA that mediates apoptosis after DNA damage. We could show that the MEK inhibitor dependent feedback loop is enabled by several factors, including EGF receptor and members of the SPRED family. The simultaneous knockdown of SPRED1 and SPRED2 mimicked the effects of MEK inhibitor such as PUMA repression and protection from apoptosis. Our data demonstrate that MEK inhibition of BRAFV600E-positive melanoma cells can protect from genotoxic stress, thereby achieving the opposite of the intended anti-tumorigenic effect of the combination of MEK inhibitor with inducers of intrinsic apoptosis.}, language = {en} } @article{AlsheimerLinkJahnetal.2013, author = {Alsheimer, Manfred and Link, Jana and Jahn, Daniel and Schmitt, Johannes and G{\"o}b, Eva and Baar, Johannes and Ortega, Sagrario and Benavente, Ricardo}, title = {The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse}, series = {PLoS Genetics}, journal = {PLoS Genetics}, doi = {10.1371/journal.pgen.1003261}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96285}, year = {2013}, abstract = {The nuclear lamina is the structural scaffold of the nuclear envelope and is well known for its central role in nuclear organization and maintaining nuclear stability and shape. In the past, a number of severe human disorders have been identified to be associated with mutations in lamins. Extensive research on this topic has provided novel important clues about nuclear lamina function. These studies have contributed to the knowledge that the lamina constitutes a complex multifunctional platform combining both structural and regulatory functions. Here, we report that, in addition to the previously demonstrated significance for somatic cell differentiation and maintenance, the nuclear lamina is also an essential determinant for germ cell development. Both male and female mice lacking the short meiosis-specific A-type lamin C2 have a severely defective meiosis, which at least in the male results in infertility. Detailed analysis revealed that lamin C2 is required for telomere-driven dynamic repositioning of meiotic chromosomes. Loss of lamin C2 affects precise synapsis of the homologs and interferes with meiotic double-strand break repair. Taken together, our data explain how the nuclear lamina contributes to meiotic chromosome behaviour and accurate genome haploidization on a mechanistic level.}, language = {en} } @phdthesis{Schuecker2018, author = {Sch{\"u}cker, Katharina}, title = {The molecular architecture of the meiotic chromosome axis as revealed by super-resolution microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {During meiosis proteins of the chromosome axis are important for monitoring chromatin structure and condensation, for pairing and segregation of chromosomes, as well as for accurate recombination. They include HORMA-domain proteins, proteins of the DNA repair system, synaptonemal complex (SC) proteins, condensins and cohesins. To understand more about their function in shaping the meiotic chromosome it is crucial to establish a defined model of their molecular architecture. Up to now their molecular organization was analysed using conventional methods, like confocal scanning microscopy (CLSM) and transmission electron microscopy (TEM). Unfortunately, these techniques are limited either by their resolution power or their localization accuracy. In conclusion, a lot of data on the molecular organization of chromosome axis proteins stays elusive. For this thesis the molecular structure of the murine synaptonemal complex (SC) and the localization of its proteins as well as of three cohesins was analysed with isotropic resolution, providing new insights into their architecture and topography on a nanoscale level. This was done using immunofluorescence labelling in combination with super-resolution microscopy, line profiles and average position determination. The results show that the murine SC has a width of 221.6 nm ± 6.1 nm including a central region (CR) of 148.2 nm ± 2.6 nm. In the CR a multi-layered organization of the central element (CE) proteins was verified by measuring their strand diameters and strand distances and additionally by imaging potential anchoring sites of SYCP1 (synaptonemal complex protein 1) to the lateral elements (LEs). We were able to show that the two LEs proteins SYCP2 and SYCP3 do co-localize alongside their axis and that there is no significant preferential localization towards the inner LE axis of SYCP2. The presented results also predict an orderly organization of murine cohesin complexes (CCs) alongside the chromosome axis in germ cells and support the hypothesis that cohesins in the CR of the SC function independent of CCs. In the end new information on the molecular organization of two main components of the murine chromosome axis were retrieved with nanometer precision and previously unknown details of their molecular architecture and topography were unravelled.}, subject = {Meiose}, language = {en} } @phdthesis{Paul2001, author = {Paul, J{\"u}rgen}, title = {The Mouthparts of Ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Ant mandible movements cover a wide range of forces, velocities and precision. The key to the versatility of mandible functions is the mandible closer muscle. In ants, this muscle is generally composed of distinct muscle fiber types that differ in morphology and contractile properties. Volume proportions of the fiber types are species-specific and correlate with feeding habits. Two biomechanical models explain how the attachment angles are optimized with respect to force and velocity output and how filament-attached fibers help to generate the largest force output from the available head capsule volume. In general, the entire mandible closer muscle is controlled by 10-12 motor neurons, some of which exclusively supply specific muscle fiber groups. Simultaneous recordings of muscle activity and mandible movement reveal that fast movements require rapid contractions of fast muscle fibers. Slow and accurate movements result from the activation of slow muscle fibers. Forceful movements are generated by simultaneous co-activation of all muscle fiber types. For fine control, distinct fiber bundles can be activated independently of each other. Retrograde tracing shows that most dendritic arborizations of the different sets of motor neurons share the same neuropil in the suboesophageal ganglion. In addition, some motor neurons invade specific parts of the neuropil. The labiomaxillary complex of ants is essential for food intake. I investigated the anatomical design of the labiomaxillary complex in various ant species focusing on movement mechanisms. The protraction of the glossa is a non muscular movement. Upon relaxation of the glossa retractor muscles, the glossa protracts elastically. I compared the design of the labiomaxillary complex of ants with that of the honey bee, and suggest an elastic mechanism for glossa protraction in honey bees as well. Ants employ two different techniques for liquid food intake, in which the glossa works either as a passive duct (sucking), or as an up- and downwards moving shovel (licking). For collecting fluids at ad libitum food sources, workers of a given species always use only one of both techniques. The species-specific feeding technique depends on the existence of a well developed crop and on the resulting mode of transporting the fluid food. In order to evaluate the performance of collecting liquids during foraging, I measured fluid intake rates of four ant species adapted to different ecological niches. Fluid intake rate depends on sugar concentration and the associated fluid viscosity, on the species-specific feeding technique, and on the extent of specialization on collecting liquid food. Furthermore, I compared the four ant species in terms of glossa surface characteristics and relative volumes of the muscles that control licking and sucking. Both probably reflect adaptations to the species-specific ecological niche and determine the physiological performance of liquid feeding. Despite species-specific differences, single components of the whole system are closely adjusted to each other according to a general rule.}, subject = {Ameisen}, language = {en} } @article{PattschullWalzGruendletal.2019, author = {Pattschull, Grit and Walz, Susanne and Gr{\"u}ndl, Marco and Schwab, Melissa and R{\"u}hl, Eva and Baluapuri, Apoorva and Cindric-Vranesic, Anita and Kneitz, Susanne and Wolf, Elmar and Ade, Carsten P. and Rosenwald, Andreas and von Eyss, Bj{\"o}rn and Gaubatz, Stefan}, title = {The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes}, series = {Cell Reports}, volume = {27}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2019.05.071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202039}, pages = {3533-3546}, year = {2019}, abstract = {YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, language = {en} } @article{KohlRutschmann2018, author = {Kohl, Patrick Laurenz and Rutschmann, Benjamin}, title = {The neglected bee trees: European beech forests as a home for feral honey bee colonies}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, number = {e4602}, doi = {10.7717/peerj.4602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176512}, year = {2018}, abstract = {It is a common belief that feral honey bee colonies (Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km\(^{2}\). Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.}, language = {en} } @phdthesis{Cook2012, author = {Cook, Mandy}, title = {The neurodegenerative Drosophila melanogaster AMPK mutant loechrig}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72027}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Doktorarbeit wird die Drosophila Mutante loechrig (loe), die progressive Degeneration des Nervensystems aufweist, weiter beschrieben. In der loe Mutante fehlt eine neuronale Isoform der γ- Untereinheit der Proteinkinase AMPK (AMP-activated protein kinase). Die heterotrimere AMPK (auch als SNF4Aγ bekannt) kontrolliert das Energieniveau der Zelle, was st{\"a}ndiges Beobachten des ATP/AMP- Verh{\"a}ltnis erfordert. AMPK wird durch niedrige Energiekonzentrationen und Beeintr{\"a}chtigungen im Metabolismus, wie zum Beispiel Sauerstoffmangel, aktiviert und reguliert mehrere wichtige Signaltransduktionswege, die den Zellmetabolismus kontrollieren. Jedoch ist die Rolle von AMPK im neuronalen {\"U}berleben noch unklar. Eines der Proteine, dass von AMPK reguliert wird, ist HMGR (hydroxymethylglutaryl-CoA- reductase), ein Schl{\"u}sselenzym in der Cholesterin- und Isoprenoidsynthese. Es wurde gezeigt, dass wenn die Konzentration von HMGR manipuliert wird, auch der Schweregrad des neurodegenerativen Ph{\"a}notyps in loe beeinflusst wird. Obwohl die regulatorische Rolle von AMPK auf HMGR in Drosophila konserviert ist, k{\"o}nnen Insekten Cholesterin nicht de novo synthetisieren. Dennoch ist der Syntheseweg von Isoprenoiden zwischen Vertebraten und Insekten evolution{\"a}r konserviert. Isoprenylierung von Proteinen, wie zum Beispiel von kleinen G-Proteinen, stellt den Proteinen einen hydophobischen Anker bereit, mit denen sie sich an die Zellmembran binden k{\"o}nnen, was in anschließender Aktivierung resultieren kann. In dieser Doktorarbeit wird gezeigt, dass die loe Mutation die Prenylierung von Rho1 und den LIM-Kinasesignalweg beeinflusst, was eine wichtige Rolle im Umsatz von Aktin und axonalem Auswachsen spielt. Die Ergebnisse weisen darauf hin, dass die Mutation in LOE, Hyperaktivit{\"a}t des Isoprenoidsynthesewegs verursacht, was zur erh{\"o}hten Farnesylierung von Rho1 und einer dementsprechend h{\"o}heren Konzentration von Phospho- Cofilin f{\"u}hrt. Eine Mutation in Rho1 verbessert den neurodegenerativen Ph{\"a}notyp und die Lebenserwartung von loe. Der Anstieg vom inaktiven Cofilin in loe f{\"u}hrt zu einer Zunahme von filament{\"o}sen Aktin. Aktin ist am Auswachen von Neuronen beteiligt und Experimente in denen loe Neurone analysiert wurden, gaben wertvolle Einblicke in eine m{\"o}gliche Rolle die AMPK, und dementsprechend Aktin, im Neuronenwachstum spielt. Des Weiteren wurde demonstriert, dass Neurone, die von der loe Mutante stamen, einen verlangsamten axonalen Transport aufweisen, was darauf hinweist dass Ver{\"a}nderungen, die durch den Einfluss von loe auf den Rho1 Signalweg im Zytoskelettnetzwerk hervorgerufen wurden, zur St{\"o}rung des axonalen Transports und anschließenden neuronalen Tod f{\"u}hren. Es zeigte außerdem, dass Aktin nicht nur am neuronalen Auswachsen beteiligt ist, sondern auch wichtig f{\"u}r die Aufrechterhaltung von Neuronen ist. Das bedeutet, dass {\"A}nderungen der Aktindynamik zur progressiven Degeneration von Neuronen f{\"u}hren kann. Zusammenfassend unterstreichen diese Ergebnisse die wichtige Bedeutung von AMPK in den Funktionen und im {\"U}berleben von Neuronen und er{\"o}ffnen einen neuartigen funktionellen Mechanismus in dem {\"A}nderungen in AMPK neuronale Degeneration hervorrufen kann.}, subject = {Taufliege}, language = {en} } @article{ReinhardSchubertBertolinietal.2022, author = {Reinhard, Nils and Schubert, Frank K. and Bertolini, Enrico and Hagedorn, Nicolas and Manoli, Giulia and Sekiguchi, Manabu and Yoshii, Taishi and Rieger, Dirk and Helfrich-F{\"o}rster, Charlotte}, title = {The neuronal circuit of the dorsal circadian clock neurons in Drosophila melanogaster}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.886432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-272527}, year = {2022}, abstract = {Drosophila's dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly's circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.}, language = {en} } @article{BoertleinDraegerSchoenaueretal.2018, author = {B{\"o}rtlein, Charlene and Draeger, Annette and Schoenauer, Roman and Kuhlemann, Alexander and Sauer, Markus and Schneider-Schaulies, Sybille and Avota, Elita}, title = {The neutral sphingomyelinase 2 is required to polarize and sustain T Cell receptor signaling}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {815}, doi = {10.3389/fimmu.2018.00815}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176572}, year = {2018}, abstract = {By promoting ceramide release at the cytosolic membrane leaflet, the neutral sphingomyelinase 2 (NSM) is capable of organizing receptor and signalosome segregation. Its role in T cell receptor (TCR) signaling remained so far unknown. We now show that TCR-driven NSM activation is dispensable for TCR clustering and initial phosphorylation, but of crucial importance for further signal amplification. In particular, at low doses of TCR stimulatory antibodies, NSM is required for Ca\(^{2+}\) mobilization and T cell proliferation. NSM-deficient T cells lack sustained CD3ζ and ZAP-70 phosphorylation and are unable to polarize and stabilize their microtubular system. We identified PKCζ as the key NSM downstream effector in this second wave of TCR signaling supporting dynamics of microtubule-organizing center (MTOC). Ceramide supplementation rescued PKCζ membrane recruitment and MTOC translocation in NSM-deficient cells. These findings identify the NSM as essential in TCR signaling when dynamic cytoskeletal reorganization promotes continued lateral and vertical supply of TCR signaling components: CD3ζ, Zap70, and PKCζ, and functional immune synapses are organized and stabilized via MTOC polarization.}, language = {en} } @article{SbieraKunzWeigandetal.2019, author = {Sbiera, Silviu and Kunz, Meik and Weigand, Isabel and Deutschbein, Timo and Dandekar, Thomas and Fassnacht, Martin}, title = {The new genetic landscape of Cushing's disease: deubiquitinases in the spotlight}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers11111761}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193194}, pages = {1761}, year = {2019}, abstract = {Cushing's disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CD's genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5\%) and USP48 (13.3\%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5\% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5\% and 7\%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways.}, language = {en} } @article{FrankeScheerKrohneetal.1981, author = {Franke, Werner W. and Scheer, Ulrich and Krohne, Georg and Jarasch, Ernst-Dieter}, title = {The nuclear envelope and the architecture of the nuclear periphery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33108}, year = {1981}, abstract = {No abstract available}, language = {en} } @article{ScheerDabauvalleMerkertetal.1988, author = {Scheer, Ulrich and Dabauvalle, Marie-Christine and Merkert, Hilde and Benavente, Ricardo}, title = {The nuclear envelope and the organization of the pore complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34275}, year = {1988}, abstract = {No abstract available}, language = {en} } @book{KartenbeckZentgrafScheeretal.1971, author = {Kartenbeck, J. and Zentgraf, H. and Scheer, Ulrich and Franke, Werner W.}, title = {The nuclear envelope in freeze-etching}, isbn = {3-540-05538-X}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40534}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1971}, abstract = {No abstract available}, subject = {Anatomie}, language = {en} }