@article{SponslerKallnikRequieretal.2022, author = {Sponsler, Douglas and Kallnik, Katharina and Requier, Fabrice and Classen, Alice and Maihoff, A. Fabienne and Sieger, Johanna and Steffan-Dewenter, Ingolf}, title = {Floral preferences of mountain bumble bees are constrained by functional traits but flexible through elevation and season}, series = {Oikos}, volume = {2022}, journal = {Oikos}, number = {3}, doi = {10.1111/oik.08902}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259653}, year = {2022}, abstract = {Patterns of resource use by animals can clarify how ecological communities have assembled in the past, how they currently function and how they are likely to respond to future perturbations. Bumble bees (Hymentoptera: Bombus spp.) and their floral hosts provide a diverse yet tractable system in which to explore resource selection in the context of plant-pollinator networks. Under conditions of resource limitation, the ability of bumble bees species to coexist should depend on dietary niche overlap. In this study, we report patterns and dynamics of floral morphotype preferences in a mountain bumble bee community based on ~13 000 observations of bumble bee floral visits recorded along a 1400 m elevation gradient. We found that bumble bees are highly selective generalists, rarely visiting floral morphotypes at the rates predicted by their relative abundances. Preferences also differed markedly across bumble bee species, and these differences were well-explained by variation in bumble bee tongue length, generating patterns of preference similarity that should be expected to predict competition under conditions of resource limitation. Within species, though, morphotype preferences varied by elevation and season, possibly representing adaptive flexibility in response to the high elevational and seasonal turnover of mountain floral communities. Patterns of resource partitioning among bumble bee communities may determine which species can coexist under the altered distributions of bumble bees and their floral hosts caused by climate and land use change.}, language = {en} } @article{HsuKuegelKemmeretal.2016, author = {Hsu, Pin-Jui and K{\"u}gel, Jens and Kemmer, Jeannette and Toldin, Francesco Parisen and Mauerer, Tobias and Vogt, Matthias and Assaad, Fakher and Bode, Matthias}, title = {Coexistence of charge and ferromagnetic order in fcc Fe}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms10949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173969}, year = {2016}, abstract = {Phase coexistence phenomena have been intensively studied in strongly correlated materials where several ordered states simultaneously occur or compete. Material properties critically depend on external parameters and boundary conditions, where tiny changes result in qualitatively different ground states. However, up to date, phase coexistence phenomena have exclusively been reported for complex compounds composed of multiple elements. Here we show that charge- and magnetically ordered states coexist in double-layer Fe/Rh(001). Scanning tunnelling microscopy and spectroscopy measurements reveal periodic charge-order stripes below a temperature of 130 K. Close to liquid helium temperature, they are superimposed by ferromagnetic domains as observed by spin-polarized scanning tunnelling microscopy. Temperature-dependent measurements reveal a pronounced cross-talk between charge and spin order at the ferromagnetic ordering temperature about 70 K, which is successfully modelled within an effective Ginzburg-Landau ansatz including sixth-order terms. Our results show that subtle balance between structural modifications can lead to competing ordering phenomena.}, language = {en} }